Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90841
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜憶萍zh_TW
dc.contributor.advisorI-Ping Tuen
dc.contributor.author林伯駿zh_TW
dc.contributor.authorPo-Chun Linen
dc.date.accessioned2023-10-03T17:51:41Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citationT. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley Series in Probability and Statistics. Wiley, 2003.
A. Basu, I. R. Harris, N. L. Hjort, and M. Jones. Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3):549–559, 1998.
A. Ghosh and A. Basu. Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression. Electronic Journal of Statistics, 7:2420–2456, 2013.
A. Ghosh, T. Majumder, and A. Basu. General robust bayes pseudo-posterior: Exponential convergence results with applications. Statistica Sinica, 32:787–823, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90841-
dc.description.abstractGhosh et al. (2022)利用適當的阿爾法概似函數推導出符合指數收斂的穩健貝氏偽後驗分配,以確保參數估計不受數據中離群值的影響。然而,當我們試圖將Ghosh et al. (2022)的結果,應用在階層貝氏線性回歸模型時,我們發現參數估計的計算量過於巨大。因此在階層貝氏模型的框架下,我們推導出穩健經驗貝氏模型,將其應用到權重線性回歸。藉由權重來達到模型的穩健,此權重來自Ghosh and Basu (2013)線性回歸模型的最小密度功率散度估計方法。此穩健模型有效降低參數估計的計算量,同時達到估計的穩健性。最後,本文也展示該穩健方法在數據模擬上的表現。zh_TW
dc.description.abstractBasu et al. (1998) proposed a minimum divergence method, based on the density with a single index on its power, to derive a robust estimate and has been widely applied. Ghosh and Basu (2013) further extended the minimum density power divergence method in the linear regression model. Ghosh et al. (2022) proposed a pseudo-posterior Bayesian estimate by equipping the Bayes framework with the density power divergence. However, we observe that the pseudo-posterior Bayesian estimate can hardly be extended to the hierarchical Bayes model due to lack of conjugated priors and thus requires huge computation loading. Here, we introduce a robust empirical Bayesian model by assigning weights on each individual data, where the weights are derived from the minimum density power divergence method. We apply it to the Bayesian linear regression model and use the weights derived in the linear regression model proposed by Ghosh and Basu (2013). The introduction of weights allows us to achieve robustness for the Bayesian estimates. This approach could reduce the computation loading and improve the robustness in estimating the parameters. In the end, we also demonstrate the performance of the robust method in a simulation study.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:51:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:51:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Frequentist inference 1
1.1.1 Linear regression model 1
1.1.2 Weighted linear regression model 3
1.2 Bayes inference 5
1.2.1 Hierarchical Bayes Model 6
1.2.2 Empirical Bayes Model 8
Chapter 2 Literature review 11
2.1 Minimum density power divergence estimator (MDPDE) 11
2.1.1 Example: independent and identically distributed data 12
2.2 MDPDE for linear regression model 13
2.2.1 Consistency 14
2.2.2 Algorithm 16
2.3 Robust Bayes pseudo-posteriors 16
Chapter 3 Our model 19
3.1 The concept of our model 19
3.2 A robust empirical Bayesian model for weighted linear regression 20
3.2.1 Formula 20
3.2.2 Weighted Empirical Bayes estimator (WEB) 22
3.3 Consistency 24
Chapter 4 Simulation 27
4.1 Simulation results 29
4.2 Conclusion 32
References 33
-
dc.language.isoen-
dc.subject權重線性回歸zh_TW
dc.subject穩健zh_TW
dc.subject階層式貝氏zh_TW
dc.subject經驗貝氏zh_TW
dc.subjectRobusten
dc.subjectHierarchical Bayesen
dc.subjectEmpirical Bayesen
dc.subjectWeighted Linear Regressionen
dc.title穩健經驗貝氏權重線性回歸模型zh_TW
dc.titleA Robust Empirical Bayesian Model for Weighted Linear Regressionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee姚怡慶;陳定立;章為皓;鍾思齊zh_TW
dc.contributor.oralexamcommitteeYi-Ching Yao;Ting-Li Chen;Wei-Hau Chang;Szu-Chi Chungen
dc.subject.keyword階層式貝氏,經驗貝氏,穩健,權重線性回歸,zh_TW
dc.subject.keywordHierarchical Bayes,Empirical Bayes,Robust,Weighted Linear Regression,en
dc.relation.page33-
dc.identifier.doi10.6342/NTU202304149-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用數學科學研究所-
dc.date.embargo-lift2028-08-12-
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
928.03 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved