Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宜玲zh_TW
dc.contributor.advisorYi-Ling Tsaien
dc.contributor.author張家源zh_TW
dc.contributor.authorJia-Yuan Changen
dc.date.accessioned2023-10-03T17:46:38Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation蘇聖凱. (2020). 丁香油酚對人類牙髓細胞的細胞毒性和發炎反應的影響 國立臺灣大學]. 台北市. https://hdl.handle.net/11296/hfm4xc
Abou Hashieh, I., Camps, J., Dejou, J., & Franquin, J. C. (1998). Eugenol diffusion through dentin related to dentin hydraulic conductance. Dent Mater, 14(4), 229-236. https://doi.org/10.1016/s0109-5641(98)00028-1
Allen, R. G., & Tresini, M. (2000). Oxidative stress and gene regulation. Free Radic Biol Med, 28(3), 463-499. https://doi.org/10.1016/s0891-5849(99)00242-7
Anpo, M., Shirayama, K., & Tsutsui, T. (2011). Cytotoxic effect of eugenol on the expression of molecular markers related to the osteogenic differentiation of human dental pulp cells. Odontology, 99(2), 188-192. https://doi.org/10.1007/s10266-011-0009-2
Botero, T. M., Son, J. S., Vodopyanov, D., Hasegawa, M., Shelburne, C. E., & Nör, J. E. (2010). MAPK signaling is required for LPS-induced VEGF in pulp stem cells. J Dent Res, 89(3), 264-269. https://doi.org/10.1177/0022034509357556
Chan, A. S., Pang, H., Yip, E. C., Tam, Y. K., & Wong, Y. H. (2005). Carvacrol and eugenol differentially stimulate intracellular Ca2+ mobilization and mitogen-activated protein kinases in Jurkat T-cells and monocytic THP-1 cells. Planta Med, 71(7), 634-639. https://doi.org/10.1055/s-2005-871269
Chang, J., Zhang, C., Tani-Ishii, N., Shi, S., & Wang, C. Y. (2005). NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res, 84(11), 994-998. https://doi.org/10.1177/154405910508401105
Chang, Y. C., Tai, K. W., Huang, F. M., & Huang, M. F. (2000). Cytotoxic and nongenotoxic effects of phenolic compounds in human pulp cell cultures. J Endod, 26(8), 440-443. https://doi.org/10.1097/00004770-200008000-00002
Charan Raja, M. R., Kar, A., Srinivasan, S., Chellappan, D., Debnath, J., & Kar Mahapatra, S. (2021). Oral administration of eugenol oleate cures experimental visceral leishmaniasis through cytokines abundance. Cytokine, 145, 155301. https://doi.org/https://doi.org/10.1016/j.cyto.2020.155301
Ciarlone, A. E., Tao, L., Ziemer, D., & Pashley, D. H. (1991). Epinephrine permeation across dentin in vitro. Endod Dent Traumatol, 7(1), 5-9. https://doi.org/10.1111/j.1600-9657.1991.tb00175.x
Das, U. N. (2005). COX-2 inhibitors and metabolism of essential fatty acids. Med Sci Monit, 11(7), Ra233-237.
de Perrot, M., Fischer, S., Liu, M., Jin, R., Bai, X. H., Waddell, T. K., & Keshavjee, S. (2001). Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury: a shift from pro- to anti-inflammatory cytokines. Transplantation, 72(9), 1505-1512. https://doi.org/10.1097/00007890-200111150-00006
Dean, J. L., Brook, M., Clark, A. R., & Saklatvala, J. (1999). p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem, 274(1), 264-269. https://doi.org/10.1074/jbc.274.1.264
Dewhirst, F. E. (1980). Structure-activity relationships for inhibition of prostaglandin cyclooxygenase by phenolic compounds. Prostaglandins, 20(2), 209-222. https://doi.org/10.1016/s0090-6980(80)80040-2
do Nascimento, A. B., Fontana, U. F., Teixeira, H. M., & Costa, C. A. (2000). Biocompatibility of a resin-modified glass-ionomer cement applied as pulp capping in human teeth. Am J Dent, 13(1), 28-34.
Escobar-García, M., Rodríguez-Contreras, K., Ruiz-Rodríguez, S., Pierdant-Pérez, M., Cerda-Cristerna, B., & Pozos-Guillén, A. (2016). Eugenol Toxicity in Human Dental Pulp Fibroblasts of Primary Teeth. J Clin Pediatr Dent, 40(4), 312-318. https://doi.org/10.17796/1053-4628-40.4.312
Exton, J. H. (1994). Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta, 1212(1), 26-42. https://doi.org/10.1016/0005-2760(94)90186-4
Garibaldi, J. A., Greenlaw, J., Choi, J., & Fotovatjah, M. (1995). Treatment of post-operative pain. J Calif Dent Assoc, 23(4), 71-72, 74.
Gerosa, R., Borin, M., Menegazzi, G., Puttini, M., & Cavalleri, G. (1996). In vitro evaluation of the cytotoxicity of pure eugenol. J Endod, 22(10), 532-534. https://doi.org/10.1016/s0099-2399(96)80012-4
Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J., & Kumar, A. P. (2005). Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J Biol Chem, 280(7), 5812-5819. https://doi.org/10.1074/jbc.M411429200
Grant, R., & Guest, J. (2016). Role of Omega-3 PUFAs in Neurobiological Health. Adv Neurobiol, 12, 247-274. https://doi.org/10.1007/978-3-319-28383-8_13
Guo, Y. S., Hellmich, M. R., Wen, X. D., & Townsend, C. M., Jr. (2001). Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem, 276(25), 22941-22947. https://doi.org/10.1074/jbc.M101801200
He, W., Qu, T., Yu, Q., Wang, Z., Lv, H., Zhang, J., Zhao, X., & Wang, P. (2013). LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. Int Endod J, 46(2), 128-136. https://doi.org/10.1111/j.1365-2591.2012.02096.x
Hilton, T. J. (2009). Keys to clinical success with pulp capping: a review of the literature. Oper Dent, 34(5), 615-625. https://doi.org/10.2341/09-132-0
Hinz, B., & Brune, K. (2002). Cyclooxygenase-2--10 years later. J Pharmacol Exp Ther, 300(2), 367-375. https://doi.org/10.1124/jpet.300.2.367
Hinz, B., Brune, K., & Pahl, A. (2000). Cyclooxygenase-2 expression in lipopolysaccharide-stimulated human monocytes is modulated by cyclic AMP, prostaglandin E(2), and nonsteroidal anti-inflammatory drugs. Biochem Biophys Res Commun, 278(3), 790-796. https://doi.org/10.1006/bbrc.2000.3885
Hosoya, S., & Matsushima, K. (1997). Stimulation of interleukin-1β production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide. Journal of Endodontics, 23(1), 39-42. https://doi.org/https://doi.org/10.1016/S0099-2399(97)80205-1
Huang, F. M., Tsai, C. H., Yang, S. F., & Chang, Y. C. (2005). Induction of interleukin-6 and interleukin-8 gene expression by root canal sealers in human osteoblastic cells. J Endod, 31(9), 679-683. https://doi.org/10.1097/01.don.0000155227.86046.a2
Hume, W. R. (1984a). An analysis of the release and the diffusion through dentin of eugenol from zinc oxide-eugenol mixtures. J Dent Res, 63(6), 881-884. https://doi.org/10.1177/00220345840630061301
Hume, W. R. (1984b). Effect of eugenol on respiration and division in human pulp, mouse fibroblasts, and liver cells in vitro. J Dent Res, 63(11), 1262-1265. https://doi.org/10.1177/00220345840630110101
Hume, W. R. (1988). In vitro studies on the local pharmacodynamics, pharmacology and toxicology of eugenol and zinc oxide-eugenol. Int Endod J, 21(2), 130-134. https://doi.org/10.1111/j.1365-2591.1988.tb00966.x
Hume, W. R. (1994). Influence of dentine on the pulpward release of eugenol or acids from restorative materials. J Oral Rehabil, 21(4), 469-473. https://doi.org/10.1111/j.1365-2842.1994.tb01161.x
Jeng, J. H., Hahn, L. J., Lu, F. J., Wang, Y. J., & Kuo, M. Y. (1994). Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts. J Dent Res, 73(5), 1050-1055. https://doi.org/10.1177/00220345940730050601
Jiang, R. D., Lin, H., Zheng, G., Yuan, S. P., Du, Q., & Zhang, Y. (2015). Dentin barrier cytotoxicity test with three-dimensional cell cultures. Beijing Da Xue Xue Bao Yi Xue Ban, 47(2), 330-335.
Kadoma, Y., Murakami, Y., Atsumi, T., Ito, S., & Fujisawa, S. (2009). Cloves (Eugenol). In Molecular Targets and Therapeutic Uses of Spices (pp. 117-148). https://doi.org/10.1142/9789812837912_0005
Kapoor, M., Kojima, F., Yang, L., & Crofford, L. J. (2007). Sequential induction of pro- and anti-inflammatory prostaglandins and peroxisome proliferators-activated receptor-gamma during normal wound healing: a time course study. Prostaglandins Leukot Essent Fatty Acids, 76(2), 103-112. https://doi.org/10.1016/j.plefa.2006.11.006
Kerins, D. M., Murray, R., & FitzGerald, G. A. (1991). Prostacyclin and prostaglandin E1: molecular mechanisms and therapeutic utility. Prog Hemost Thromb, 10, 307-337.
Kielbassa, A. M., Attin, T., & Hellwig, E. (1997). Diffusion behavior of eugenol from zinc oxide-eugenol mixtures through human and bovine dentin in vitro. Oper Dent, 22(1), 15-20.
Kim, S. S., Oh, O. J., Min, H. Y., Park, E. J., Kim, Y., Park, H. J., Nam Han, Y., & Lee, S. K. (2003). Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci, 73(3), 337-348. https://doi.org/10.1016/s0024-3205(03)00288-1
Koh, T., Murakami, Y., Tanaka, S., Machino, M., & Sakagami, H. (2013). Re-evaluation of anti-inflammatory potential of eugenol in IL-1β-stimulated gingival fibroblast and pulp cells. In Vivo, 27(2), 269-273.
Kwon, J.-S., Illeperuma, R. P., Kim, J., Kim, K.-M., & Kim, K.-N. (2014). Cytotoxicity evaluation of zinc oxide-eugenol and non-eugenol cements using different fibroblast cell lines. Acta Odontologica Scandinavica, 72(1), 64-70.
Lee, J. H., Lee, H. H., Kim, H. W., Yu, J. W., Kim, K. N., & Kim, K. M. (2017). Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. Dent Mater, 33(1), e1-e12. https://doi.org/10.1016/j.dental.2016.09.012
Lee, M. H., Yeon, K. Y., Park, C. K., Li, H. Y., Fang, Z., Kim, M. S., Choi, S. Y., Lee, S. J., Lee, S., Park, K., Lee, J. H., Kim, J. S., & Oh, S. B. (2005). Eugenol inhibits calcium currents in dental afferent neurons. J Dent Res, 84(9), 848-851. https://doi.org/10.1177/154405910508400913
Lee, S. H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D., & Hwang, D. (1992). Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem, 267(36), 25934-25938.
Lee, Y. Y., Hung, S. L., Pai, S. F., Lee, Y. H., & Yang, S. F. (2007). Eugenol suppressed the expression of lipopolysaccharide-induced proinflammatory mediators in human macrophages. J Endod, 33(6), 698-702. https://doi.org/10.1016/j.joen.2007.02.010
Lee, Y. Y., Yang, S. F., Ho, W. H., Lee, Y. H., & Hung, S. L. (2007). Eugenol modulates cyclooxygenase-2 expression through the activation of nuclear factor kappa B in human osteoblasts. J Endod, 33(10), 1177-1182. https://doi.org/10.1016/j.joen.2007.05.011
Li, W., Tsubouchi, R., Qiao, S., Haneda, M., Murakami, K., & Yoshino, M. (2006). Inhibitory action of eugenol compounds on the production of nitric oxide in RAW264.7 macrophages. Biomed Res, 27(2), 69-74. https://doi.org/10.2220/biomedres.27.69
Lin, C.-P., Wang, Y.-L., Shen, L.-J., & Lin, C.-P. (2019). The dentin permeability of anti-inflammatory and antibacterial drugs: In vitro study. Journal of the Formosan Medical Association, 118(4), 828-832. https://doi.org/https://doi.org/10.1016/j.jfma.2018.09.009
Lin, C. P., Chen, Y. J., Lee, Y. L., Wang, J. S., Chang, M. C., Lan, W. H., Chang, H. H., Chao, W. M., Tai, T. F., Lee, M. Y., Lin, B. R., & Jeng, J. H. (2004). Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts. J Biomed Mater Res B Appl Biomater, 71(2), 429-440. https://doi.org/10.1002/jbm.b.30107
Luo, M., Flamand, N., & Brock, T. G. (2006). Metabolism of arachidonic acid to eicosanoids within the nucleus. Biochim Biophys Acta, 1761(5-6), 618-625. https://doi.org/10.1016/j.bbalip.2006.02.018
Markowitz, K., Moynihan, M., Liu, M., & Kim, S. (1992). Biologic properties of eugenol and zinc oxide-eugenol: A clinically oriented review. Oral Surgery, Oral Medicine, Oral Pathology, 73(6), 729-737. https://doi.org/https://doi.org/10.1016/0030-4220(92)90020-Q
Martínez-Herrera, A., Pozos-Guillén, A., Ruiz-Rodríguez, S., Garrocho-Rangel, A., Vértiz-Hernández, A., & Escobar-García, D. M. (2016). Effect of 4-Allyl-1-hydroxy-2-methoxybenzene (Eugenol) on Inflammatory and Apoptosis Processes in Dental Pulp Fibroblasts. Mediators Inflamm, 2016, 9371403. https://doi.org/10.1155/2016/9371403
Meryon, S. D., & Jakeman, K. J. (1986). An in vitro study of the role of dentine in moderating the cytotoxicity of zinc oxide eugenol cement. Biomaterials, 7(6), 459-462. https://doi.org/10.1016/0142-9612(86)90035-9
Meryon, S. D., Johnson, S. G., & Smith, A. J. (1988). Eugenol release and the cytotoxicity of different zinc oxide-eugenol combination. J Dent, 16(2), 66-70. https://doi.org/10.1016/0300-5712(88)90053-x
Modena, K. C., Casas-Apayco, L. C., Atta, M. T., Costa, C. A., Hebling, J., Sipert, C. R., Navarro, M. F., & Santos, C. F. (2009). Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci, 17(6), 544-554. https://doi.org/10.1590/s1678-77572009000600002
Murakami, Y., Kawata, A., Seki, Y., Koh, T., Yuhara, K., Maruyama, T., Machino, M., Ito, S., Kadoma, Y., & Fujisawa, S. (2012). Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis. In Vivo, 26(6), 941-950.
Nagaoka, S., Tokuda, M., Sakuta, T., Taketoshi, Y., Tamura, M., Takada, H., & Kawagoe, M. (1996). Interleukin-8 gene expression by human dental pulp fibroblast in cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod, 22(1), 9-12. https://doi.org/10.1016/s0099-2399(96)80228-7
Niiro, H., Otsuka, T., Izuhara, K., Yamaoka, K., Ohshima, K., Tanabe, T., Hara, S., Nemoto, Y., Tanaka, Y., Nakashima, H., & Niho, Y. (1997). Regulation by interleukin-10 and interleukin-4 of cyclooxygenase-2 expression in human neutrophils. Blood, 89(5), 1621-1628.
Onoe, Y., Miyaura, C., Kaminakayashiki, T., Nagai, Y., Noguchi, K., Chen, Q. R., Seo, H., Ohta, H., Nozawa, S., Kudo, I., & Suda, T. (1996). IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase-2-dependent prostaglandin synthesis in osteoblasts. J Immunol, 156(2), 758-764.
Parirokh, M., Torabinejad, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J, 51(2), 177-205. https://doi.org/10.1111/iej.12841
Park, C. K., Li, H. Y., Yeon, K. Y., Jung, S. J., Choi, S. Y., Lee, S. J., Lee, S., Park, K., Kim, J. S., & Oh, S. B. (2006). Eugenol inhibits sodium currents in dental afferent neurons. J Dent Res, 85(10), 900-904. https://doi.org/10.1177/154405910608501005
Pashley, D. H., Kalathoor, S., & Burnham, D. (1986). The effects of calcium hydroxide on dentin permeability. J Dent Res, 65(3), 417-420. https://doi.org/10.1177/00220345860650030801
Pasten, C., Olave, N. C., Zhou, L., Tabengwa, E. M., Wolkowicz, P. E., & Grenett, H. E. (2007). Polyphenols downregulate PAI-1 gene expression in cultured human coronary artery endothelial cells: Molecular contributor to cardiovascular protection. Thrombosis Research, 121(1), 59-65. https://doi.org/https://doi.org/10.1016/j.thromres.2007.02.001
Paudel, U., Lee, Y. H., Kwon, T. H., Park, N. H., Yun, B. S., Hwang, P. H., & Yi, H. K. (2014). Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition. Oral Dis, 20(8), 827-832. https://doi.org/10.1111/odi.12266
Porto Mde, P., da Silva, G. N., Luperini, B. C., Bachiega, T. F., de Castro Marcondes, J. P., Sforcin, J. M., & Salvadori, D. M. (2014). Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages. Mol Biol Rep, 41(11), 7043-7051. https://doi.org/10.1007/s11033-014-3657-9
Reeh, E. S., Messer, H. H., & Douglas, W. H. (1989). Reduction in tooth stiffness as a result of endodontic and restorative procedures. Journal of Endodontics, 15(11), 512-516. https://doi.org/https://doi.org/10.1016/S0099-2399(89)80191-8
Ricucci, D., Siqueira, J. F., Jr., Li, Y., & Tay, F. R. (2019). Vital pulp therapy: histopathology and histobacteriology-based guidelines to treat teeth with deep caries and pulp exposure. J Dent, 86, 41-52. https://doi.org/10.1016/j.jdent.2019.05.022
Schmalz, G., Hoffmann, M., Weis, K., & Schweikl, H. (2000). Influence of albumin and collagen on the cell mortality evoked by zinc oxide-eugenol in vitro. J Endod, 26(5), 284-287. https://doi.org/10.1097/00004770-200005000-00008
Sheng, H., Shao, J., Dixon, D. A., Williams, C. S., Prescott, S. M., DuBois, R. N., & Beauchamp, R. D. (2000). Transforming growth factor-beta1 enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem, 275(9), 6628-6635. https://doi.org/10.1074/jbc.275.9.6628
Shovelton, D. S. (1968). A study of deep carious dentine. Int Dent J, 18(2), 392-405.
Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J. M., Martin, T. J., & Suda, T. (1988). Osteoblastic cells are involved in osteoclast formation. Endocrinology, 123(5), 2600-2602. https://doi.org/10.1210/endo-123-5-2600
Thompson, D., & Moldéus, P. (1991). Formation and Reactivity of a Quinone Methide in Biological Systems. In C. M. Witmer, R. R. Snyder, D. J. Jollow, G. F. Kalf, J. J. Kocsis, & I. G. Sipes (Eds.), Biological Reactive Intermediates IV: Molecular and Cellular Effects and Their Impact on Human Health (pp. 589-596). Springer New York. https://doi.org/10.1007/978-1-4684-5877-0_74
Tokuda, M., Sakuta, T., Fushuku, A., Torii, M., & Nagaoka, S. (2001). Regulation of interleukin-6 expression in human dental pulp cell cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod, 27(4), 273-277. https://doi.org/10.1097/00004770-200104000-00008
Vong, L., Ferraz, J. G., Panaccione, R., Beck, P. L., & Wallace, J. L. (2010). A pro-resolution mediator, prostaglandin D(2), is specifically up-regulated in individuals in long-term remission from ulcerative colitis. Proc Natl Acad Sci U S A, 107(26), 12023-12027. https://doi.org/10.1073/pnas.1004982107
Xie, W., Fletcher, B. S., Andersen, R. D., & Herschman, H. R. (1994). v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element. Mol Cell Biol, 14(10), 6531-6539. https://doi.org/10.1128/mcb.14.10.6531-6539.1994
Zheng, S., Wang, Q., He, Q., Song, X., Ye, D., Gao, F., Jin, S., & Lian, Q. (2011). Novel biphasic role of LipoxinA(4) on expression of cyclooxygenase-2 in lipopolysaccharide-stimulated lung fibroblasts. Mediators Inflamm, 2011, 745340. https://doi.org/10.1155/2011/745340
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90822-
dc.description.abstract實驗目的:過去的研究顯示丁香油酚可經由牙本質緩慢的滲透進入發炎的牙髓腔中,達到抗發炎、止痛的效果;不過丁香油酚藉由牙本質滲透進入牙髓腔的濃度,各研究存在差異。另外,過去的研究也較少著墨於丁香油酚對於健康人類牙髓細胞之影響。牙科臨床上利用丁香油酚抗發炎與止痛特性的同時,應同時瞭解這個材料對健康細胞的影響。本研究欲探討丁香油酚對於牙本質之滲透濃度、及對於健康人類牙髓細胞的細胞毒性和發炎反應的影響,並嘗試了解相關的細胞訊息傳導路徑。
實驗方法:第一部分先藉由Transwell Dentin Disc Model體外實驗觀察並以質譜儀(Mass Spectrometers)檢測分析不同濃度丁香油酚於12小時、24小時滲透0.5mm牙本質的能力。第二部分自拔除的牙齒培養人類牙髓細胞,參考第一部分滲透後丁香油酚濃度刺激細胞,以光學顯微鏡觀察細胞形態的變化,再以MTT細胞存活率分析檢測細胞活性。第三部分將健康人類牙髓細胞以丁香油酚處理不同時間後,以西方墨點法(Western blot)及免疫螢光染色法(Immunofluorescence)觀察丁香油酚對於促發炎路徑及細胞膜內訊息分子的影響。接著使用U0126(MEK/ERK的抑制劑)預先處理人類牙髓細胞,來反向驗證丁香油酚對於訊息傳導路徑的影響。實驗中分析的訊息傳導路徑的蛋白包括ERK 1/2、p38 mitogen-activated protein kinases(p38)、nuclear factor-kappa B(NF-κB)、Cyclooxygenase-2(COX-2)。
實驗結果:IRM®和10mM丁香油酚滲透0.5mm牙本質12小時後丁香油酚之滲透濃度分別約為82.6µM、61.3µM;24小時後丁香油酚之滲透濃度分別約為242.3µM、387µM。小於500µM丁香油酚的濃度對人類牙髓細胞的細胞活性及細胞形態的影響較小,濃度高於500µM開始會使細胞活性及細胞形態改變,而濃度大於1.5mM在12小時即觀察到細胞死亡。在健康人類牙髓細胞加入500µM或1000µM的丁香油酚處理約三小時後,觀察到ERK 1/2、p38及NF-κB磷酸化表現達到高峰; COX-2在丁香油酚濃度500μM或1000µM處理下,隨著時間的增加呈現上升趨勢。抑制劑預處理的結果顯示,U0126對於丁香油酚所引發之COX-2表現量的上升,具有抑制效果。
結論(1)IRM®和丁香油酚可以透過很薄的牙本質滲透進入牙髓腔。不論是使用IRM®或是含有10mM的丁香油酚溶液,在透過牙本質試片模型進行滲透實驗時,24小時的滲透濃度都低於500µM。這樣的滲透濃度不會對人類牙髓細胞產生細胞毒性,對人類牙髓細胞的影響也很小。(2)小於500µM濃度的丁香油酚對人類牙髓細胞的細胞活性及細胞形態的影響較小,高於500µM開始會使細胞活性及細胞形態改變。濃度大於1.5mM在12小時即觀察到細胞死亡,顯現高濃度的丁香油酚的細胞毒性高。(3)丁香油酚加入健康人類牙髓細胞後,可能透過MEK/ERK訊息傳導路徑誘導COX-2的表現。
目前丁香油酚廣泛應用於窩洞填補和間接覆髓,並具有抗菌、抗發炎、止痛和鎮靜神經的效果。善用這些特性或許能減少未來根管治療的需求。不過高濃度的丁香油酚具有細胞毒性,應避免直接接觸牙髓細胞。研究丁香油酚對牙髓細胞的影響對牙科臨床治療很重要,未來需深入探究其對COX-2表現相關訊息傳遞路徑及調控蛋白的影響,以優化臨床應用。
zh_TW
dc.description.abstractAim:Past studies have indicated that eugenol can slowly permeate into the inflamed dental pulp chamber through dentin, resulting in anti-inflammatory and analgesic effects. However, there are variations in the eugenol concentration that penetrates through dentin in different research studies. Moreover, there has been limited research on the impact of eugenol on healthy human dental pulp cells(hDPCs). While utilizing eugenol for its anti-inflammatory and analgesic properties in dental clinical practice, understanding its effects on healthy cells is crucial. This study aims to explore the eugenol permeation through dentin, its cytotoxicity, and its impact on inflammatory response in healthy hDPCs, as well as investigating relevant cellular signaling pathways.
Materials and methods:
The study consists of three main parts. The first part involves an in vitro experiment using the transwell dentin disc model with mass spectrometers to detect and analyze the permeation ability of varying concentrations of eugenol through 0.5mm dentin over 12 and 24 hours. In the second part, hDPCs obtained from extracted teeth are cultured and exposed to eugenol at concentrations determined in the previous part. Cell morphology are observed using an optical microscope, and cell viability is analyzed using the MTT assay. The third part involves treating healthy hDPCs with eugenol for different time durations. The effects of eugenol on pro-inflammatory pathways and intracellular signaling molecules are examined using Western blot and Immunofluorescence techniques. Additionally, pre-treatment with U0126 (MEK/ERK inhibitor) was conducted in healthy hDPCs to investigate eugenol's influence on signaling pathways.
Results:
After 12 hours of permeation through 0.5mm dentin, the eugenol concentrations of IRM® and 10mM were approximately 82.6µM and 61.3µM, respectively. After 24 hours, the eugenol concentrations were approximately 242.3µM and 387µM, respectively. Eugenol concentrations below 500µM had minimal impact on the cell viability and morphology of human dental pulp cells. However, concentrations higher than 500µM started to induce changes in cell viability and morphology. Cell death observed at concentrations greater than 1.5mM within 12 hours. In healthy hDPCs exposed to 500µM or 1000µM eugenol for approximately three hours, we observed the highest levels of phosphorylation in ERK 1/2, p38, and NF-κB. Concurrently, the expression of COX-2 exhibited an upward trend over time following treatment with 500μM or 1000µM eugenol. U0126 inhibited the increase in COX-2 levels in healthy hDPCs induced by eugenol.
Conclusion:(1)Both IRM® and eugenol can penetrate through dentin. Whether using IRM® or a 10mM eugenol solution, the permeation concentrations were below 500µM in the dentin disc model. Such permeation concentrations do not exhibit cytotoxicity to human dental pulp cells and have minimal impact on their behavior.(2)Eugenol concentrations below 500µM have limited effects on the cell viability and morphology of human dental pulp cells, while concentrations above 500µM start to induce changes in cell viability and morphology. At concentrations higher than 1.5mM, cell death was observed within 12 hours, indicating high cytotoxicity of eugenol at high concentrations.(3)U0126 inhibited the increase in COX-2 levels in healthy hDPCs induced by eugenol.
Currently, eugenol is widely used in cavity filling and indirect pulp capping procedures due to its antibacterial, anti-inflammatory, analgesic, and nerve-calming effects. Utilizing these properties may reduce root canal treatments in the future. However, high concentrations of eugenol can be cytotoxic to cells, and direct contact with dental pulp cells should be avoided. Research on the effects of eugenol on dental pulp cells is crucial for dental clinical treatment, and further investigations should explore its impact on COX-2 expression and related signaling pathways to optimize its clinical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:46:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:46:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
中文摘要 ii
ABSTRACT iv
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 丁香油酚的基本性質及其在牙科治療的應用 1
1.2 丁香油酚對於口腔細胞的細胞毒性 2
1.3 丁香油酚對於牙髓腔的滲透 3
1.4 牙髓炎之原因與特徵 4
1.5 牙髓細胞發炎的訊息傳導路徑 5
1.6 花生四烯酸代謝途徑與發炎反應之關係 6
1.7 現今牙髓治療的困境與活髓治療 8
1.8 現今牙科活髓治療的主要材料 9
1.9 丁香油酚的抗發炎作用 10
1.10 丁香油酚對於健康細胞發炎反應的影響 11
第二章 實驗目的 13
第三章 材料與方法 15
3.1 實驗材料 15
3.2 牙本質試片滲透 17
3.2.1 牙本質試片之製備 17
3.2.2 Transwell dentin disc tube model之製作 18
3.2.3 Transwell dentin disc model之製作 19
3.2.4 丁香油酚之牙本質試片模型滲透檢測 19
3.3 人類牙髓細胞培養 20
3.3.1 收集人類牙髓細胞(human dental pulp cell, hDPCs) 20
3.3.2 人類牙髓細胞之初代培養(Primary culture) 21
3.4 光學顯微鏡觀察(Optical Microscope Observation) 21
3.5 細胞存活率分析(MTT assay) 22
3.6 免疫螢光染色(Immunofluorescence staining)24
3.6.1 丁香油酚對ERK 1/2膜內蛋白之影響 24
3.6.2 丁香油酚對p38膜內蛋白之影響 25
3.6.3 丁香油酚對NF-κB轉錄因子之影響 25
3.6.4 丁香油酚對COX-2之影響 26
3.7 西方墨點法(Western blot) 28
3.7.1 丁香油酚對於健康人類牙髓細胞COX-2和p-ERK 1/2等膜內蛋白表現的影響 28
3.7.2 以訊息傳導抑制劑(signal transduction inhibitors)證明丁香油酚對於健康人類牙髓細胞訊息傳導路徑的影響 29
3.7.3 蛋白質萃取 30
3.7.4 蛋白質定量 30
3.7.5 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis) 31
3.7.6 轉印(Transfer) 32
3.7.7 封閉及抗體反應(Blocking and antibody incubation) 33
3.7.8 化學冷光呈色分析 (Chemiluminescence photography) 34
3.8 統計分析 34
第四章 實驗結果 35
4.1 丁香油酚之牙本質滲透 35
4.2 光學顯微鏡觀察丁香油酚處理後之人類牙髓細胞形態變化 36
4.3 丁香油酚對於人類牙髓細胞之細胞存活率分析 (MTT assay) 36
4.4 免疫螢光染色 36
4.4.1 丁香油酚對ERK 1/2膜內蛋白之影響 36
4.4.2 丁香油酚對p38膜內蛋白之影響 37
4.4.3 丁香油酚對轉錄因子NF-κB之影響 37
4.4.4 丁香油酚對COX-2之影響 37
4.5 西方墨點法 38
4.5.1 丁香油酚對於健康人類牙髓細胞COX-2和p-ERK 1/2等膜內蛋白表現的影響 38
4.5.2 以訊息傳導抑制劑證明丁香油酚對於健康人類牙髓細胞訊息傳導路徑的影響 38
第五章 討論 39
5.1 丁香油酚對於牙本質之滲透 39
5.2 丁香油酚對於人類牙髓細胞的細胞毒性 40
5.3 丁香油酚對於健康人類牙髓細胞發炎反應的影響 41
5.3.1 丁香油酚對MAPK路徑之影響 41
5.3.2 丁香油酚對NF-κB及COX-2之影響 42
第六章 結論 44
附圖 45
參考文獻 70
-
dc.language.isozh_TW-
dc.subject丁香油酚zh_TW
dc.subject牙本質滲透zh_TW
dc.subject人類牙髓細胞zh_TW
dc.subject環氧化酶zh_TW
dc.subjectCyclooxygenase-2en
dc.subjectEugenolen
dc.subjectDentin permeabilityen
dc.subjectHuman dental pulp cellsen
dc.title丁香油酚之牙本質滲透性對於健康人類牙髓細胞的影響zh_TW
dc.titleThe effect of dentin permeability of Eugenol on healthy human dental pulp cellsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor鄭景暉zh_TW
dc.contributor.coadvisorJiiang-Huei Jengen
dc.contributor.oralexamcommittee陳羿貞;張美姬zh_TW
dc.contributor.oralexamcommitteeYi-Jane Chen;Mei-Chi Changen
dc.subject.keyword丁香油酚,牙本質滲透,人類牙髓細胞,環氧化酶,zh_TW
dc.subject.keywordEugenol,Dentin permeability,Human dental pulp cells,Cyclooxygenase-2,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202303682-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved