請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90809完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | zh_TW |
| dc.contributor.advisor | Kung-Bin Sung | en |
| dc.contributor.author | 蔡瑩儒 | zh_TW |
| dc.contributor.author | Ying-Ju Tsai | en |
| dc.date.accessioned | 2023-10-03T17:43:10Z | - |
| dc.date.available | 2025-01-24 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | 1. Min Xu, Electric field Monte Carlo simulation of polarized light propagation in turbid media, Opt. Express12, 6530-6539 (2004).
2. John Sawicki, Nikolas Kastor, and Min Xu, Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Exp., vol. 16,pp. 5728–5738, Apr. 2008. 3. Fuhong Cai, Jiaxin Yu, and Sailing He, Vectorial Electric Field Monte Caro Simulations for Focused Laser Beams (800 Nm-2220 Nm) in a Biological Sample. Prog. Electromagnetics. Res. 2013, 142, 667−681. 4. Xiuwei Zhu, Luyao Lu, Zili Cao, Bixin Zeng, and Min Xu, Transmission matrix-based Electric field Monte Carlo study and experimental validation of the propagation characteristics of Bessel beams in turbid media, Optics Letters. 2018. Vol. 43(19). P.4835-4838 5. Bartel, Sebastian, and Andreas H. Hielscher. Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Applied Optics 39.10 (2000): 1580-1588. 6. Jacques, Steven L. Modeling tissue optics using Monte Carlo modeling: a tutorial. Optical Interactions with Tissue and Cells XIX 6854 (2008): 138-146. 7. Mignon, C., Rodriguez, A. H., Palero, J. A., Varghese, B., & Jurna, M. Fractional laser photothermolysis using Bessel beams. Biomedical optics express, 7(12), 4974-4981(2016). 8. Luo, Y., Tseng, M. L., Vyas, S., Kuo, H. Y., Chu, C. H., Chen, M. K., ... & Yang, P. C. (2022). Metasurface‐Based Abrupt Autofocusing Beam for Biomedical Applications. Small Methods, 6(4), 2101228. 9. McGloin, D.,& Dholakia, K. Bessel beams: diffraction in a new light. Contemporary physics, 46(1), 15-28. (2005). 10. Mignon, C. A.. Numerical modelling and experimental studies in skin laser photo-thermolysis. (2013) 11. Z. Bouchal, J. Wagner and M. Chlup, "Self-reconstruction of a distorted nondiffracting beam," Optics Communications, p. 207, 2008. 12. Ersoy, T., Yalizay, B., and Akturk, S. “Self-reconstruction of diffraction-free and accelerating laser beams in scattering media,” Journal of Quantitative Spectroscopy and Radiative Transfer, 113(18), 2470-2475. (2012). 13. Durnin, J., Miceli, J. J., and Eberly, J. H.. “Comparison of Bessel and Gaussian beams,” Optics letters, 13(2), 79-80. (1988). 14. Khonina, S. N., Kazanskiy, N. L., Karpeev, S. V., & Butt, M. A. “Bessel beam: Significance and applications—A progressive review,” Micromachines, 11(11), 997. (2020). 15. Wilson, B. C., & Adam, G. “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Medical physics, 10(6), 824-830. (1983). 16. Wang, L., Jacques, S. L., & Zheng, L. “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Computer methods and programs in biomedicine, 47(2), 131-146. (1995). 17. Fischer, D. G., Prahl, S. A., & Duncan, D. D. “Monte Carlo modeling of spatial coherence: free-space diffraction,” JOSA A, 25(10), 2571-2581. (2008). 18. Prahl, S. A., Duncan, D. D., & Fischer, D. G. (2010, February). “Stochastic Huygens and partial coherence propagation through thin tissues,” Biomedical Applications of Light Scattering IV (Vol. 7573, pp. 37-42). SPIE. 19. Hayakawa, C. K., Venugopalan, V., Krishnamachari, V. V., & Potma, E. O. (2009). “Amplitude and phase of tightly focused laser beams in turbid media,” Physical review letters, 103(4), 043903. 20. V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000). 21. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31(15), 2708–2713 (1992). 22. R. G. Geronemus, “Fractional photothermolysis: current and future applications,” Lasers Surg. Med. 38(3), 169–176 (2006). 23. A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015). 24. J. C. Ramella-Roman, “Imaging skin pathologies with polarized light: empirical and theoretical studies,” Ph.D. thesis, OGI School of Science & Engineering at Oregon Health & Science University (2004). 25. Ramella-Roman, J. C., Prahl, S. A., & Jacques, S. L. (2005). Three Monte Carlo programs of polarized light transport into scattering media: part I. Optics Express, 13(12), 4420-4438. 26. Ramella-Roman, J. C., Prahl, S. A., & Jacques, S. L. (2005). Three Monte Carlo programs of polarized light transport into scattering media: part II. Optics express, 13(25), 10392-10405. 27. Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38, 2944–2949 (1999). 28. Lu, Q., Gan, X., Gu, M., & Luo, Q. (2004). Monte Carlo modeling of optical coherence tomography imaging through turbid media. Applied optics, 43(8), 1628-1637. 29. Hayakawa CK, Potma EO, Venugopalan V, "Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues," Biomed Opt Express, 2(2), 278-90 (2011). 30. Wang Y, Li P, Jiang C, Wang J, Luo Q, "GPU accelerated electric field Monte Carlo simulation of light propagation in turbid media using a finite-size beam model," Opt Express, 20(15), 16618-30 (2012). 31. Ding, C., Tan, Z., Zhang, S., & Chen, S. (2017, October). Electric field Monte Carlo simulation of polarized light propagation in multi-layered media. In AOPC 2017: Optical Spectroscopy and Imaging (Vol. 10461, pp. 90-98). SPIE. 32. Zeng H, MacAulay C, McLean DI, Palcic B, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," Journal of photochemistry and photobiology B, Biology, 38(2-3), 234-40 (1997). 33. Tuchin V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. 2nd ed: SPIE Press; (2007). 34. H. C. van de Hulst, Light scattering by small particles (Dover, New York, 1981). 35. Giovanelli, R. G. (1955). Reflection by semi-infinite diffusers. Optica Acta: International Journal of Optics, 2(4), 153-162. 36. Prahl, S. A. (1989, January). A Monte Carlo model of light propagation in tissue. In Dosimetry of laser radiation in medicine and biology (Vol. 10305, pp. 105-114). SPIE. 37. van de Hulst, H. C. (1980). Multiple light scattering. New York: Academic, 1. 38. Chremmos, I., Efremidis, N. K., & Christodoulides, D. N. (2011). Pre-engineered abruptly autofocusing beams. Optics Letters, 36(10), 1890-1892. 39. Zhang, H., Deng, H., Wang, X., & Chu, X. (2022). Self-healing ability of radially Airy beam. Optik, 251, 168478. 40. Sun, Z., Hu, J., Wang, Y., Ye, W., Qian, Y., & Li, X. (2023). Generation of high-dimensional caustic beams via phase holograms using angular spectral representation. Optics Express, 31(5), 7480-7491. 41. Guo, Y., Huang, Y., Li, J., Wang, L., Yang, Z., Liu, J., ... & Qu, J. (2021). Deep penetration microscopic imaging with non-diffracting airy beams. Membranes, 11(6), 391. 42. Ostermeyer, M. R., & Jacques, S. L. (1997). Perturbation theory for diffuse light transport in complex biological tissues. JOSA A, 14(1), 255-261. 43. Kunz, K. S., & Luebbers, R. J. (1993). The finite difference time domain method for electromagnetics. CRC press. 44. Liu, Q. H. (1997). The PSTD algorithm: A time‐domain method requiring only two cells per wavelength. Microwave and optical technology letters, 15(3), 158-165. 45. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser speckle and related phenomena, J. C. Dainty, ed., pp. 9–75 (Springer-Verlag, Berlin, 1975). 46. Yun, T., Zeng, N., Li, W., Li, D., Jiang, X., & Ma, H. (2009). Monte Carlo simulation of polarized photon scattering in anisotropic media. Optics express, 17(19), 16590-16602. 47. Doronin, A., Radosevich, A. J., Backman, V., & Meglinski, I. (2014). Two electric field Monte Carlo models of coherent backscattering of polarized light. JOSA A, 31(11), 2394-2400. 48. Doronin, A., Macdonald, C., & Meglinski, I. (2014). Propagation of coherent polarized light in turbid highly scattering medium. Journal of biomedical optics, 19(2), 025005-025005. 49. Siviloglou, G. A., Broky, J., Dogariu, A., & Christodoulides, D. N. (2008). Ballistic dynamics of Airy beams. Optics Letters, 33(3), 207-209. 50. Siviloglou, G. A., Broky, J., Dogariu, A., & Christodoulides, D. N. (2007). Observation of accelerating Airy beams. Physical Review Letters, 99(21), 213901. 51. Sztul, H. I., & Alfano, R. R. (2008). The Poynting vector and angular momentum of Airy beams. Optics express, 16(13), 9411-9416. 52. Broky, J., Siviloglou, G. A., Dogariu, A., & Christodoulides, D. N. (2008). Self-healing properties of optical Airy beams. Optics express, 16(17), 12880-12891. 53. Balazs, M. V. B. N. L., & Berry, M. V. (1979). Nonspreading wave packets. Am. J. Phys., 4, 264-267. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90809 | - |
| dc.description.abstract | 本論文旨在研究複雜光束於生物組織中的行進及其潛在的應用優勢,對此進行了數值模擬的探討。為了考慮光的波動特性,採用電場蒙特卡羅方法代替傳統蒙特卡羅方法。所採用的電場蒙特卡羅方法用於研究相干複雜光束於混濁介質中的作用。
對於入射光束的分布設定,採用拒絕採樣(Rejetion sampling)方法,從複雜光束的分布中隨機取樣入射光子的初始位置。模擬的組織模型由單層模型擴展到多層模型,其中對於遇到折射率不匹配的邊界時,光子經歷反射和透射的座標軸轉換公式於本篇中推導與實踐。程式逐步進行驗證,並將驗證結果與其他研究團隊產生的結果進行比對,程式模擬結果與文獻結果相當接近,說明程式有一定程度的可信度。 最後使用此程式進行貝索光束與艾里光束於混濁介質中行進的模擬,模擬結果與均勻光束和高斯光束的結果進行了比較。其強度隨穿透深度變化衰減曲線顯示了貝索光束衰減的較均勻光束與高斯光束緩慢。了解複雜光束在渾濁介質中行進的機制可能為潛在的雷射治療應用提供一些啟發。 | zh_TW |
| dc.description.abstract | In the thesis, the numerical investigation focuses on how complex beams propagate through biological tissue and the possible benefits they exhibit. The conventional Monte Carlo method is substituted with the electric field Monte Carlo method to address the wave characteristics of light. This new approach is utilized to explore how coherent complex light interacts with turbid media.
To address the incident beam distribution, a sampling method is employed to determine photon positions from specific distributions. The tissue model is expanded from a single-layer to a multi-layer structure, with the derivation of formulas and the incorporation of reflection and transmission thoroughly presented. The program is validated step by step and its results are compared to those obtained by other research groups. The simulation results of the Bessel and Airy beams are evaluated in comparison to those of the uniform and Gaussian beams. The relationship between beam intensity decay and penetration depth is presented. Understanding the mechanisms of complex beam propagation in turbid media may offer valuable information for potential applications in laser therapy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:43:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:43:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Related Research 4 1.2.1 Modeling of Light Propagation in Tissue 4 1.2.2 Standard Monte Carlo Methods 5 1.2.3 Techniques to Include Polarization in MC 6 1.2.4 Techniques to Include Wave Properties in MC 6 1.2.5 Electric Field Monte Carlo Methods 8 1.3 Overview 9 Chapter 2 Theoretical Principles 10 2.1 Monte Carlo Simulation 10 2.2 Electric field Monte Carlo Simulation 16 2.3 Special Beams 21 2.4 Polarization and Mueller matrix 30 Chapter 3 Methods 32 3.1 Sampling of Intensity Profile 32 3.2 Calculation of Mueller matrix 37 3.3 Multi-layer Electric Field Monte Carlo Simulation 39 3.4 Calculation of Scored Physical Quantities 44 Chapter 4 Simulation Results and Discussion 47 4.1 Validation of Monte Carlo code 47 4.1.1 Total Transmittance and Diffuse Reflectance in a Single-Slab Model with Index-Matched Boundary 47 4.1.2 Total Diffuse Reflectance for a Semi-Infinite Medium with an Index-Mismatched Boundary 48 4.1.3 Reflectance, Absorption, and Transmittance in Three-Layer Model 49 4.1.4 Energy Deposition and Fluence Rate in Three-Layer Model 51 4.2 Validation for the Basic Electric Field Monte Carlo code 54 4.3 Simulations of Bessel Beam 59 4.3.1 Scattering Patterns at Different Depths 59 4.3.2 Fluence Rates in Cross Section and Along the Depth 61 4.4 Simulations of Airy Beam 67 4.5 Discussion 69 Chapter 5 Conclusions and Future Development 71 5.1 Conclusions 71 5.2 Future Development 72 REFERENCES 73 | - |
| dc.language.iso | en | - |
| dc.subject | 電場蒙地卡羅法 | zh_TW |
| dc.subject | 艾里光束 | zh_TW |
| dc.subject | 貝索光束 | zh_TW |
| dc.subject | 蒙地卡羅法 | zh_TW |
| dc.subject | 自聚焦光束 | zh_TW |
| dc.subject | Monte Carlo method | en |
| dc.subject | Airy beam | en |
| dc.subject | Bessel beam | en |
| dc.subject | Electric field Monte Carlo method | en |
| dc.subject | Autofocusing beam | en |
| dc.title | 電場蒙地卡羅模擬自動聚焦光束於組織中研究 | zh_TW |
| dc.title | Electric Field Monte Carlo Simulation of Autofocusing Beams in Turbid Media | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 駱遠 | zh_TW |
| dc.contributor.coadvisor | Yuan Luo | en |
| dc.contributor.oralexamcommittee | 邱奕鵬;楊東霖 | zh_TW |
| dc.contributor.oralexamcommittee | Yih-Peng Chiou;Tung-Lin Yang | en |
| dc.subject.keyword | 蒙地卡羅法,電場蒙地卡羅法,貝索光束,艾里光束,自聚焦光束, | zh_TW |
| dc.subject.keyword | Monte Carlo method,Electric field Monte Carlo method,Bessel beam,Airy beam,Autofocusing beam, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202303858 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
