Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林頌然zh_TW
dc.contributor.advisorSung-Jan Linen
dc.contributor.author范茹惠zh_TW
dc.contributor.authorRu-Hui Fanen
dc.date.accessioned2023-10-03T17:41:48Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Fajardo, L.F., M. Berthrong, and R.E. Anderson, Radiation pathology. 2001: Oxford University Press.
2. Suortti, P. and W. Thomlinson, Medical applications of synchrotron radiation. Physics in Medicine & Biology, 2003. 48(13): p. R1.
3. Tsai, S.-R. and M.R. Hamblin, Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology B: Biology, 2017. 170: p. 197-207.
4. Brouwer, O.R., et al., Comparing the hybrid fluorescent–radioactive tracer indocyanine green–99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. Journal of Nuclear Medicine, 2012. 53(7): p. 1034-1040.
5. Ashfaq, A., et al., Polymerization reactions and modifications of polymers by ionizing radiation. Polymers, 2020. 12(12): p. 2877.
6. Silindir, M. and A.Y. Özer, Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences, 2009. 34(1): p. 43.
7. Indiarto, R., et al., Food irradiation technology: A review of the uses and their capabilities. International Journal of Engineering Trends and Technology, 2020. 68(12): p. 91-98.
8. Allen, D.K., P.D. Bates, and H. Tjellström, Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: past, present and future. Progress in Lipid Research, 2015. 58: p. 97-120.
9. Williams, J.P. and W.H. McBride, After the bomb drops: a new look at radiation-induced multiple organ dysfunction syndrome (MODS). International journal of radiation biology, 2011. 87(8): p. 851-868.
10. Nakai, K. and D. Tsuruta, What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? International journal of molecular sciences, 2021. 22(19): p. 10799.
11. Hur, W. and S.K. Yoon, Molecular pathogenesis of radiation-induced cell toxicity in stem cells. International journal of molecular sciences, 2017. 18(12): p. 2749.
12. Smith, T.A., et al., Radioprotective agents to prevent cellular damage due to ionizing radiation. Journal of translational medicine, 2017. 15: p. 1-18.
13. Painuli, S. and N. Kumar, Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India. Journal of Ayurveda and integrative medicine, 2016. 7(1): p. 62-68.
14. Dayal, R., et al., Reactive oxygen species as mediator of tumor radiosensitivity. Journal of cancer research and therapeutics, 2014. 10(4): p. 811-818.
15. Liu, C., et al., The molecular mechanisms of increased radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an extensive review. Journal of Otolaryngology-Head & Neck Surgery, 2018. 47: p. 1-8.
16. Paus, R. and G. Cotsarelis, The biology of hair follicles. New England journal of medicine, 1999. 341(7): p. 491-497.
17. Uno, H. Biology of hair growth. in Seminars in reproductive endocrinology. 1986. Copyright© 1986 by Thieme Medical Publishers, Inc.
18. Freites-Martinez, A., et al., Hair disorders in cancer survivors. Journal of the American Academy of Dermatology, 2019. 80(5): p. 1199-1213.
19. Choi, E.K., et al., Impact of chemotherapy‐induced alopecia distress on body image, psychosocial well‐being, and depression in breast cancer patients. Psycho‐Oncology, 2014. 23(10): p. 1103-1110.
20. Hunt, N. and S. McHale, The psychological impact of alopecia. Bmj, 2005. 331(7522): p. 951-953.
21. Verma, S., C. Srinivas, and M. Thomas, Radiation-induced temporary alopecia after embolization of cerebral aneurysm. Indian Journal of Dermatology, 2014. 59(6): p. 633.
22. Wen, C.-S., et al., Radiation-induced temporary alopecia after embolization of cerebral arteriovenous malformations. Clinical neurology and neurosurgery, 2003. 105(3): p. 215-217.
23. Min, C.H., et al., Evaluation of permanent alopecia in pediatric medulloblastoma patients treated with proton radiation. Radiation Oncology, 2014. 9(1): p. 1-6.
24. Lawenda, B.D., et al., Permanent alopecia after cranial irradiation: dose–response relationship. International Journal of Radiation Oncology* Biology* Physics, 2004. 60(3): p. 879-887.
25. Lin, S.-J., Z. Yue, and R. Paus, Clinical Pathobiology of Radiotherapy-Induced Alopecia: A Guide toward More Effective Prevention and Hair Follicle Repair. Journal of Investigative Dermatology, 2023.
26. Freites-Martinez, A., et al., Persistent chemotherapy-induced alopecia, persistent radiotherapy-induced alopecia, and hair growth disorders related to endocrine therapy or cancer surgery. Journal of the American Academy of Dermatology, 2019. 80(5): p. 1199.
27. Phillips, G.S., et al., Assessment and treatment outcomes of persistent radiation-induced alopecia in patients with cancer. JAMA dermatology, 2020. 156(9): p. 963-972.
28. Montagna, W. and H.B. Chase, Histology and cytochemistry of human skin. X. X‐irradiation of the scalp. American Journal of Anatomy, 1956. 99(3): p. 415-445.
29. Tosti, A., B.M. Piraccini, and G. Alagna, Temporary hair loss simulating alopecia areata after endovascular surgery of cerebral arteriovenous malformations: a report of 3 cases. Archives of Dermatology, 1999. 135(12): p. 1555-1556.
30. Lin, S.-J., et al., Hair follicle stem cells and hair regeneration. Cell Engineering and Regeneration, 2020: p. 265-296.
31. Stenn, K. and R. Paus, Controls of hair follicle cycling. Physiological reviews, 2001.
32. Driskell, R.R., et al., Hair follicle dermal papilla cells at a glance. Journal of cell science, 2011. 124(8): p. 1179-1182.
33. Schneider, M.R., R. Schmidt-Ullrich, and R. Paus, The hair follicle as a dynamic miniorgan. Current biology, 2009. 19(3): p. R132-R142.
34. Cotsarelis, G., Epithelial stem cells: a folliculocentric view. Journal of investigative dermatology, 2006. 126(7): p. 1459-1468.
35. Chen, C.-L., et al., Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. Journal of biomedical science, 2020. 27: p. 1-11.
36. Saxena, N., K.W. Mok, and M. Rendl, An updated classification of hair follicle morphogenesis. Experimental dermatology, 2019. 28(4): p. 332-344.
37. Schmidt‐Ullrich, R. and R. Paus, Molecular principles of hair follicle induction and morphogenesis. Bioessays, 2005. 27(3): p. 247-261.
38. Krause, K. and K. Foitzik. Biology of the hair follicle: the basics. in Seminars in cutaneous medicine and surgery. 2006. Philadelphia, PA: WB Saunders Co., c1996-.
39. Rishikaysh, P., et al., Signaling involved in hair follicle morphogenesis and development. International journal of molecular sciences, 2014. 15(1): p. 1647-1670.
40. Lee, J. and T. Tumbar. Hairy tale of signaling in hair follicle development and cycling. in Seminars in cell & developmental biology. 2012. Elsevier.
41. Reddy, S., et al., Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mechanisms of development, 2001. 107(1-2): p. 69-82.
42. Li, Y.-H., et al., Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. Journal of Investigative Dermatology, 2013. 133(1): p. 42-48.
43. Reya, T. and H. Clevers, Wnt signalling in stem cells and cancer. Nature, 2005. 434(7035): p. 843-850.
44. Gavagan, M., et al., The scaffold protein Axin promotes signaling specificity within the Wnt pathway by suppressing competing kinase reactions. Cell systems, 2020. 10(6): p. 515-525. e5.
45. Clevers, H., Wnt/β-Catenin Signaling in Development and Disease. Cell, 2006. 127(3): p. 469-480.
46. Silva-García, O., J.J. Valdez-Alarcón, and V.M. Baizabal-Aguirre, Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Frontiers in immunology, 2019. 10: p. 2135.
47. Pai, S.G., et al., Wnt/beta-catenin pathway: modulating anticancer immune response. Journal of hematology & oncology, 2017. 10: p. 1-12.
48. Logan, C.Y. and R. Nusse, The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol., 2004. 20: p. 781-810.
49. Müller-Röver, S., et al., A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. Journal of investigative dermatology, 2001. 117(1): p. 3-15.
50. Couchman, J.R. and W.T. Gibson, Expression of basement membrane components through morphological changes in the hair growth cycle. Developmental biology, 1985. 108(2): p. 290-298.
51. De Weert, J., A. Kint, and M. Geerts, Morphological changes in the proximal area of the rat's hair follicle during early catagen: An electron-microscopic study. Archives of Dermatological Research, 1981. 272: p. 79-92.
52. Martino, P.A., N. Heitman, and M. Rendl, The dermal sheath: An emerging component of the hair follicle stem cell niche. Experimental dermatology, 2021. 30(4): p. 512-521.
53. Lin, C.-m., et al., Expression of Wnt/β-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. Journal of Molecular Histology, 2015. 46(3): p. 233-240.
54. Zhu, N., et al., LncRNA H19 Overexpression Activates Wnt Signaling to Maintain the Hair Follicle Regeneration Potential of Dermal Papilla Cells. Frontiers in Genetics, 2020. 11.
55. Lin, X., L. Zhu, and J. He, Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Frontiers in Cell and Developmental Biology, 2022. 10.
56. Harshuk-Shabso, S., et al., Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nature Communications, 2020. 11(1): p. 5114.
57. Mok, K.-W., et al., Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent. Developmental cell, 2019. 48(1): p. 32-48. e5.
58. Chi, W., E. Wu, and B.A. Morgan, Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development, 2013. 140(8): p. 1676-1683.
59. Jahoda, C.A., et al., Smooth muscle α-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of cell science, 1991. 99(3): p. 627-636.
60. Heitman, N., et al., Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science, 2020. 367(6474): p. 161-166.
61. Aamar, E., et al., Hair-Follicle Mesenchymal Stem Cell Activity during Homeostasis and Wound Healing. Journal of Investigative Dermatology, 2021. 141(12): p. 2797-2807.e6.
62. Rahmani, W., et al., Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Developmental cell, 2014. 31(5): p. 543-558.
63. Messenger, A.G. and R. Sinclair, Follicular miniaturization in female pattern hair loss: clinicopathological correlations. British Journal of Dermatology, 2006. 155(5): p. 926-930.
64. Shin, W., et al., Dysfunction of hair follicle mesenchymal progenitors contributes to age-associated hair loss. Developmental cell, 2020. 53(2): p. 185-198. e7.
65. Xie, Y., et al., Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell, 2022. 29(1): p. 70-85.e6.
66. Rossi, A., et al., Multi-therapies in androgenetic alopecia: review and clinical experiences. Dermatologic Therapy, 2016. 29(6): p. 424-432.
67. Rossi, A., et al., Minoxidil use in dermatology, side effects and recent patents. Recent patents on inflammation & allergy drug discovery, 2012. 6(2): p. 130-136.
68. ROSSI, A., et al., Finasteride, 1 mg daily administration on male androgenetic alopecia in different age groups: 10-year follow-up. Dermatologic Therapy, 2011. 24(4): p. 455-461.
69. Phillips, G.S., et al., Assessment and Treatment Outcomes of Persistent Radiation-Induced Alopecia in Patients With Cancer. JAMA Dermatology, 2020. 156(9): p. 963-972.
70. Bienová, M., et al., Androgenetic alopecia and current methods of treatment. Acta dermatovenerologica Alpina, Pannonica, et Adriatica, 2005. 14(1): p. 5-8.
71. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249.
72. Barton, M.B., et al., Estimating the demand for radiotherapy from the evidence: A review of changes from 2003 to 2012. Radiotherapy and Oncology, 2014. 112(1): p. 140-144.
73. Yap, M.L., et al., Global Access to Radiotherapy Services: Have We Made Progress During the Past Decade? Journal of Global Oncology, 2016. 2(4): p. 207-215.
74. Schaue, D. and W.H. McBride, Opportunities and challenges of radiotherapy for treating cancer. Nature Reviews Clinical Oncology, 2015. 12(9): p. 527-540.
75. Min, C.H., et al., Evaluation of permanent alopecia in pediatric medulloblastoma patients treated with proton radiation. Radiation Oncology, 2014. 9(1): p. 220.
76. Lawenda, B.D., et al., Permanent alopecia after cranial irradiation: Dose–response relationship. International Journal of Radiation Oncology*Biology*Physics, 2004. 60(3): p. 879-887.
77. Schlake, T. Determination of hair structure and shape. in Seminars in cell & developmental biology. 2007. Elsevier.
78. Malkinson, F.D., M.L. Griem, and R. Marianovic, Persistent impairment of hair growth after single large doses of x-rays. Radiation research, 1970. 43(1): p. 83-91.
79. MALKINSON, F.D. and M.L. GRIEM, Reduced Growth Rates of Hair in Mice Following Radiation. Archives of Dermatology, 1966. 94(4): p. 491-498.
80. Behrendt, K., et al., A function for Rac1 in the terminal differentiation and pigmentation of hair. Journal of cell science, 2012. 125(4): p. 896-905.
81. Huelsken, J., et al., β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 2001. 105(4): p. 533-545.
82. Lim, X., et al., Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proceedings of the National Academy of Sciences, 2016. 113(11): p. E1498-E1505.
83. Lai, S.-F., et al., Prostaglandin E2 prevents radiotherapy-induced alopecia by attenuating transit amplifying cell apoptosis through promoting G1 arrest. Journal of Dermatological Science, 2023. 109(3): p. 117-126.
84. Wang, X., et al., Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Scientific reports, 2015. 5(1): p. 8566.
85. Wu, D. and W. Pan, GSK3: a multifaceted kinase in Wnt signaling. Trends in biochemical sciences, 2010. 35(3): p. 161-168.
86. Matsumura, H., et al., Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science, 2016. 351(6273): p. aad4395.
87. Trüeb, R., Chemotherapy-induced hair loss. Skin Therapy Lett, 2010. 15(7): p. 5-7.
88. Kanwar, A.J. and T. Narang, Anagen effluvium. Indian journal of dermatology, venereology and leprology, 2013. 79: p. 604.
89. Clavel, C., et al., Sox2 in the Dermal Papilla Niche Controls Hair Growth by Fine-Tuning BMP Signaling in Differentiating Hair Shaft Progenitors. Developmental Cell, 2012. 23(5): p. 981-994.
90. Shi, X., et al., Disrupted citric acid metabolism inhibits hair growth. The Journal of Dermatology, 2022. 49(10): p. 1037-1048.
91. Seiberg, M., et al., Trypsin‐induced follicular papilla apoptosis results in delayed hair growth and pigmentation. Developmental dynamics: an official publication of the American Association of Anatomists, 1997. 208(4): p. 553-564.
92. Chiu, H.Y., et al., Depilatory laser miniaturizes hair by inducing bystander dermal papilla cell necrosis through thermal diffusion. Lasers in Surgery and Medicine, 2022. 54(6): p. 916-927.
93. Chi, W.Y., D. Enshell-Seijffers, and B.A. Morgan, De Novo Production of Dermal Papilla Cells during the Anagen Phase of the Hair Cycle. Journal of Investigative Dermatology, 2010. 130(11): p. 2664-2666.
94. Reynolds, A.J. and C.A. Jahoda, Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development, 1996. 122(10): p. 3085-3094.
95. Daszczuk, P., et al., An intrinsic oscillation of gene networks inside hair follicle stem cells: an additional layer that can modulate hair stem cell activities. Frontiers in Cell and Developmental Biology, 2020. 8: p. 595178.
96. Wu, P., et al., The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles. Cell Communication and Signaling, 2019. 17(1): p. 1-10.
97. Hawkshaw, N., et al., Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. British Journal of Dermatology, 2020. 182(5): p. 1184-1193.
98. Choi, B.Y., Targeting Wnt/β-catenin pathway for developing therapies for hair loss. International journal of molecular sciences, 2020. 21(14): p. 4915.
99. Huang, W.-Y., et al., Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer research, 2017. 77(22): p. 6083-6096.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90804-
dc.description.abstract癌症患者逐年增加且約有60%的患者接受過放射線治療,透過放射線造成癌細胞死亡,然而除了癌細胞被影響,周邊健康組織的細胞也受放射線傷害影響,而落髮是放射線治療常見的副作用之一。然而頭髮是不可或缺的,失去頭髮對於患者來說不僅會產生心理壓力、負面情緒,還會影響生活品質。
放射線治療導致的落髮可分為暫時性落髮和永久性落髮,暫時性落髮的患者約在放射線療程結束二至六個月後頭髮恢復,永久性落髮的患者則是在放射線療程結束六個月後頭髮仍無法恢復。此外,不管是暫時性還是永久性落髮的患者,他們再生的頭髮發生一定程度變細的情況,代表毛囊發生微小化的問題,而毛囊微小化這個現象只會日趨嚴重,最終導致毛囊消失無法再生,且目前臨床上並沒有有效的治療方法,因此本研究致力於探討放射線造成毛囊微小化的原因以及提出改善方法。
為了模擬臨床上經放射線治療後造成毛囊微小化的現象,於實驗中以銫-137作為射源,給予不同輻射劑量以建立動物模型,最後以20Gy作為探討毛囊微小化的輻射劑量。臨床上以頭髮變細這個現象作為認定毛囊微小化的依據,而從本研究發現毛髮的寬度及長度都有減少的現象,意即毛髮變細及變短,毛囊發生微小化。
追究造成毛囊微小化的原因為毛囊間質細胞中的真皮乳突細胞數量減少,且細胞減少的時間點落在退化性衰退期,因為於退化性休止期和下個生長期 (輻射後再生) 毛囊真皮乳突細胞數量已經減少。而真皮乳突細胞數量減少的原因目前可以排除細胞凋亡,因為透過cleaved caspase 3的染色並沒有觀察到真皮乳突細胞凋亡的情形,至於詳細真皮乳突細胞數量減少的原因還有待釐清。
同時透過aSMACreER:R26LSL-tdtomato轉基因鼠追蹤毛囊翹幹細胞補充至真皮乳突的毛囊比例,發現毛囊鞘幹細胞補充至真皮乳突的毛囊比例減少,代表毛囊鞘幹細胞特化為真皮乳突細胞的能被抑制,所以經高劑量輻射傷害後無法藉由毛囊鞘幹細胞的補充來增加真皮乳突細胞數量。
另外,為了促進毛囊鞘幹細胞特化為真皮乳突細胞的能力,我們觀察真皮鞘細胞與毛囊鞘幹細胞的生長動態,從實驗結果瞭解真皮鞘細胞在生長期第一期就開始增生,且持續增生至生長期第三、四期,而毛囊鞘幹細胞則是在生長期第三期就補充至真皮乳突,所以未來若要促進毛囊鞘幹細胞的能力,必須在生長期早期開始實施。
zh_TW
dc.description.abstractThe number of cancer patients has been increasing year by year, with approximately 60% of patients receiving radiation therapy. Radiation therapy causes the death of cancer cells, but it also affects the surrounding healthy tissue cells, resulting in a common side effect known as alopecia. However, hair is essential, and losing it not only generates psychological stress and negative emotions for patients but also affects their quality of life.
Radiation-induced alopecia can be categorized into temporary alopecia and persistent alopecia. Patients with temporary alopecia usually experience hair regrowth within two to six months after the completion of radiation therapy, while patients with persistent alopecia are unable to restore their hair even six months after the completion of radiation therapy. Furthermore, regardless of temporary or persistent alopecia, the regrown hair tends to be thinner, indicating the problem of hair follicle miniaturization. This phenomenon of hair follicle miniaturization worsens over time, eventually leading to the disappearance of hair follicles and the inability to regenerate hair. Currently, there are no effective treatment methods for this issue in clinical practice. Therefore, this study aims to investigate the causes of radiation-induced hair follicle miniaturization and propose improvement methods.
To simulate the phenomenon of radiation-induced hair follicle miniaturization observed in clinical practice, the experiment utilized cesium-137 (Cs-137) as the radiation source and administered different radiation doses to establish an animal model. Ultimately, a radiation dose of 20Gy was selected to investigate hair follicle miniaturization. In clinical practice, the thinning of hair serves as the basis for identifying hair follicle miniaturization. This study discovered a decrease in both the width and length of hair, indicating hair thinning and shortening, as well as hair follicle miniaturization.
The investigation into the causes of hair follicle miniaturization led to the observation of a decrease in the number of dermal papilla cells. The reduction in cell numbers occurred during the dystrophic catagen, as the number of dermal papilla cells had already decreased during the dystrophic catagen and subsequent anagen (post-radiation regenerated anagen). However, cell apoptosis can be ruled out as the cause of the reduction in dermal papilla cell numbers, as no apoptosis of dermal papilla cells was observed through staining with cleaved caspase 3. The specific reasons for the decrease in dermal papilla cell numbers remain to be clarified.
Additionally, tracking the proportion of hair follicle dermal stem cells (hfDSCs) replenishing the dermal papilla in aSMACreER:R26LSL-tdtomato transgenic mice revealed a decrease in this ratio. This indicates that the specialization of hfDSCs into dermal papilla cells is inhibited. Therefore, after high-dose radiation injury, the replenishment of dermal papilla cells cannot be achieved through the supplementation of hfDSCs. The Wnt signaling family plays a crucial role in hair follicle regeneration and the maintenance of hair follicle stem cells.
In addition, to enhance the specialization ability of hfDSCs into dermal papilla cells, we observed the growth dynamics of dermal sheath cells and hfDSCs. From the experimental results, we found that dermal sheath cells begin to proliferate during the anagen phase and continue to proliferate until anagen III or IV. On the other hand, hfDSCs replenish the dermal papilla during anagen III. Therefore, if we aim to promote the ability of hfDSCs, it is crucial to implement interventions during early anagen.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:41:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:41:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xi
第 1章 緒論 1
1.1 游離輻射的基本介紹與應用 1
1.2 游離輻射對細胞的傷害 2
1.3 放射線治療對於毛囊的影響 3
1.4 毛囊的結構 4
1.5 毛囊的發育與生長週期 5
1.6 毛囊間質細胞的功能 8
1.6.1 真皮乳突細胞 8
1.6.2 毛囊鞘幹細胞與真皮鞘細胞 8
1.7 毛囊微小化的成因 9
1.8 臨床上治療落髮的方法 9
1.9 研究動機 10
第 2章 實驗材料與方法 11
2.1 動物實驗 11
2.1.1 游離輻射造成小鼠毛囊傷害模型 11
2.1.2 以蜜蠟貼片除毛誘導毛囊進入生長期 11
2.1.3 小鼠皮膚組織的保存 11
2.1.4 小鼠皮膚組織切片 12
2.1.5 小鼠毛髮的分類與分析 12
2.1.6 以他莫昔分 (Tamoxifen) 誘導轉基因小鼠表達tdTomato訊號 12
2.1.7 GSK-3抑制劑藥物的配方與給藥方式 13
2.2 小鼠組織染色 14
2.2.1 蘇木精-伊紅染色 (hematoxylin and eosin stain, H&E stain) 14
2.2.2 免疫螢光染色 (immunofluorescence staining) 14
2.2.3 冷凍切片免疫螢光染色 (thick cut staining) 15
2.2.4 乙炔去氧尿苷分析法 (EdU assay) 16
2.3 拍攝儀器與影像分析 17
2.3.1 石蠟切片染色的拍攝與分析 17
2.3.2 冷凍切片染色的拍攝與分析 17
2.3.3 小鼠毛髮的拍攝與分析 17
第 3章 實驗結果 18
3.1 高劑量游離輻射使小鼠毛囊微小化 18
3.1.1 游離輻射傷害對於毛囊再生與再生毛髮的健康狀態存在劑量依存性 (dosage-dependent)之關係 18
3.1.2 高劑量游離輻射使再生毛髮的寬度變細 20
3.1.3 高劑量游離輻射使再生毛髮的長度減短 22
3.1.4 游離輻射傷害對於再生毛髮型態比例成非劑量依存性之關係 24
3.2 高劑量游離輻射使毛囊的真皮乳突細胞數量減少 26
3.2.1 再生毛囊的真皮乳突細胞數量減少 26
3.2.2 高劑量游離輻射使毛囊鞘幹細胞特化為真皮乳突細胞的能力降低 28
3.2.3 退化性休止期毛囊的真皮乳突細胞數量減少 31
3.3 GSK-3抑制劑改善高劑量游離輻射造成真皮乳突細胞減少的情形 33
3.3.1 GSK-3抑制劑改善高劑量游離輻射造成毛囊再生程度降低的情況 33
3.3.2 GSK-3抑制劑改善高劑量游離輻射造成再生毛髮寬度變細的情況 35
3.3.3 GSK-3抑制劑改善高劑量游離輻射造成再生毛囊的真皮乳突細胞數量減少的情況 37
3.3.4 GSK-3抑制劑改善高劑量游離輻射造成毛囊鞘幹細胞特化為真皮乳突細胞的能力降低的情況 39
3.3.5 GSK-3抑制劑改善高劑量游離輻射造成退化性休止期毛囊的真皮乳突細胞減少的情況 42
3.3.6 GSK-3抑制劑減輕高劑量游離輻射對於毛囊的傷害 44
3.3.7 GSK-3抑制劑促進wnt相關蛋白的表現 46
3.3.8 GSK-3抑制劑保護毛囊真皮乳突細胞的數量 48
3.3.9 GSK-3抑制劑不是透過促進真皮乳突細胞增生改善輻射造成的毛囊損傷 49
3.3.10 GSK-3抑制劑不是透過抑制真皮乳突細胞凋亡改善輻射造成的毛囊損傷 51
3.4 真皮鞘細胞由休止期進入生長期的動態變化 52
3.4.1 真皮鞘細胞由休止期進入生長期的生長動態與增生情形 52
3.4.2 毛囊鞘幹細胞於生長期第三期補充至真皮乳突 54
第 4章 討論 55
4.1 高劑量游離輻射對於再生毛髮的影響 55
4.2 高劑量游離輻射造成毛囊微小化的原因 55
4.3 真皮鞘細胞對於毛囊再生的影響 56
4.4 Wnt訊息傳遞途徑對於輻射傷害的影響 57
第 5章 結論 59
參考文獻 60
-
dc.language.isozh_TW-
dc.subject毛囊間質細胞zh_TW
dc.subject毛囊微小化zh_TW
dc.subject真皮乳突細胞zh_TW
dc.subject毛囊鞘幹細胞zh_TW
dc.subject放射線治療zh_TW
dc.subject持續性落髮zh_TW
dc.subjectradiation therapyen
dc.subjecthair follicle dermal stem cells (hfDSCs)en
dc.subjectmesenchymal cellsen
dc.subjecthair follicle miniaturizationen
dc.subjectpersistent alopeciaen
dc.subjectdermal papilla cellsen
dc.title探討毛囊間質細胞於輻射造成毛囊微小化的角色zh_TW
dc.titleRole of hair follicle mesenchymal cells in radiation-induced hair miniaturizationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡素宜;蔡幸真;官振翔zh_TW
dc.contributor.oralexamcommitteeSu-Yi Tsai;Hsing-Chen Tsai;Chen-Hsiang Kuanen
dc.subject.keyword毛囊微小化,真皮乳突細胞,毛囊鞘幹細胞,毛囊間質細胞,持續性落髮,放射線治療,zh_TW
dc.subject.keywordhair follicle miniaturization,dermal papilla cells,hair follicle dermal stem cells (hfDSCs),mesenchymal cells,persistent alopecia,radiation therapy,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202302919-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2028-08-04-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-04
7.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved