請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90802
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳林祈 | zh_TW |
dc.contributor.advisor | Lin-Chi Chen | en |
dc.contributor.author | 施柏佑 | zh_TW |
dc.contributor.author | Bo-You Shi | en |
dc.date.accessioned | 2023-10-03T17:41:15Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-31 | - |
dc.identifier.citation | 姚傑文。2013。平面式離子選擇電極研究與水耕養液元素感測應用。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
張家豪。2015。全固態式陰離子選擇電極製備與養液元素感測應用之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 張哲綸。2015。以普魯士藍薄膜作為固態式離子選擇電極之離子電子傳導層。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 陳志豪。2015。以共聚物Pluronic F127修飾網版印刷式鈉離子選擇電極之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 陳裕夫。2017。透過調控聚苯胺傳導層之疏水性提升固態離子選擇電極感測性能。 碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 顏敬容。2017。固態離子選擇電極陣列試片製程及其應用於水耕栽培中營養離子 感測之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 潘慶育。2017。基於離子選擇電極之可攜式水耕巨量營養素感測系統。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 呂奇翰。2018。調控聚(3,4-乙烯二氧噻吩)傳導層電鍍製程以提升固態式離子選擇電極長時間電位穩定性。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 吳伊敏。2018。探討聚氯乙烯/氯化鉀薄膜製程對固態銀/氯化銀參考電極電位穩定性之影響。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 何禮丞。2019。以聚(3,4-乙烯二氧噻吩)修飾黃金電極製備固態pH與碳酸根離子感測試片之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。 鍾興穎。2019。植物工廠中調整光質與養液配方生產高附加價值芽菜與萵苣。碩士論文。台北:國立臺灣大學生物產業機電工程學系研究所。 黃聖丰。2020。以固態接觸式離子選擇電極陣列試片應用於葉菜汁液離子組成分析。碩士論文。台北:國立臺灣大學生物機電工程學系研究所。 陳顗伊。2021。固態離子選擇電極陣列於水耕作物之營養素組成分析。碩士論文。台北:國立臺灣大學生物機電工程學系研究所。 Alaaudeen, K. M., Aruna, T., & Ananthi, G. (2022). An improved strong tracking Kalman filter algorithm for real-time vehicle tracking. Materials Today: Proceedings, 64, 931–939. Alatise, M. B., & Hancke, G. P. (2017). Pose estimation of a mobile robot based on fusion of IMU data and vision data using an extended kalman filter. Sensors (Basel, Switzerland), 17. https://doi.org/10.3390/s17102164 Al Tahtawi, A. R. (2018). Kalman Filter Algorithm Design for HC-SR04 Ultrasonic Sensor Data Acquisition System. IJITEE (International Journal of Information Technology and Electrical Engineering), 2. https://doi.org/10.22146/ijitee.36646 Anandhalli, M., & Baligar, V. P. (2017). A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2017.06.008 Arakeri, Megha. P., Vijaya Kumar, B. P., Barsaiya, S., & Sairam, H. V. (2017). Computer vision based robotic weed control system for precision agriculture. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1201–1205. IEEE. Attari, M., & Fabry, P. (2000). On the static and dynamic selectivity study of a sodium sensor. IEEE Transactions on Instrumentation and Measurement, 49, 732–735. Avinash, R. A., Janardhan H R, Adiga, S., Vijeth B, Manjunath S, Jayashree, S., & Shivashankarappa, N. (2015). Data prediction in Wireless Sensor Networks using Kalman Filter. 2015 International Conference on Smart Sensors and Systems (IC-SSS), 1–4. IEEE. Bailey, B. J., Haggett, B. G. D., Hunter, A., Albery, W. J., & Svanberg, L. R. (1988). Monitoring nutrient film solutions using ion-selective electrodes. Journal of Agricultural Engineering Research, 40, 129–142. Ban, B., Lee, J., Ryu, D., Lee, M., & Eom, T. D. (2020). Nutrient solution management system for smart farms and plant factory. 2020 International Conference on Information and Communication Technology Convergence (ICTC), 1537–1542. IEEE. Bishop, G., & Welch, G. (2001). An introduction to the kalman filter. Proc of SIGGRAPH, Course, 8. Booranawong, A., Sengchuai, K., & Jindapetch, N. (2019). Implementation and test of an RSSI-based indoor target localization system: Human movement effects on the accuracy. Measurement, 133, 370–382. Cao, Q., Liang, B., Mao, X., Wei, J., Tu, T., Fang, L., & Ye, X. (2021). A Smartwatch Integrated with a Paper‐based Microfluidic Patch for Sweat Electrolytes Monitoring. Electroanalysis, 33, 643–651. Capella, Juan V., Bonastre, A., Ors, R., & Peris, M. (2015). An interference-tolerant nitrate smart sensor for Wireless Sensor Network applications. Sensors and Actuators B: Chemical, 213, 534–540. Capella, J V, Bonastre, A., Ors, R., & Peris, M. (2010). A Wireless Sensor Network approach for distributed in-line chemical analysis of water. Talanta, 80, 1789–1798. Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients, 6, 1519–1538. Cerna, M., & Harvey, A. F. (2000). The fundamentals of FFT-based signal analysis and measurement. The Fundamentals of FFT-Based Signal Analysis and Measurement, 1. Cho, W.-J., Kim, H.-J., Jung, D.-H., Han, H.-J., & Cho, Y.-Y. (2019). Hybrid Signal-Processing Method Based on Neural Network for Prediction of NO3, K, Ca, and Mg Ions in Hydroponic Solutions Using an Array of Ion-Selective Electrodes. Sensors (Basel, Switzerland), 19. https://doi.org/10.3390/s19245508 Cho, W.-J., Kim, H.-J., Jung, D.-H., Kim, D.-W., Ahn, T. I., & Son, J.-E. (2018). On-site ion monitoring system for precision hydroponic nutrient management. Computers and Electronics in Agriculture, 146, 51–58. Cho, W. J., Kim, H.-J., Jung, D. H., Kang, C. I., Choi, G.-L., & Son, J.-E. (2017). An embedded system for automated hydroponic nutrient solution management. Transactions of the ASABE, 60, 1083–1096. Dae Hyun Jung, Hak-jin Kim, Won Kyung Kim, Chang Ik Kang, & Gyeong-Lee Choi. (2013). Automated Sensing and Control of Hydroponic Macronutrients Using a Computer-controlled System. 2013 Kansas City, Missouri, July 21 - July 24, 2013. Presented at the 2013 Kansas City, Missouri, July 21 - July 24, 2013, St. Joseph, MI. De Marco, R. (2003). Determination of phosphate in hydroponic nutrient solutions using flow injection potentiometry and a cobalt-wire phosphate ion-selective electrode. Talanta, 60, 1215–1221. Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53–61. Fay, C., Anastasova, S., Slater, C., Buda, S. T., Shepherd, R., Corcoran, B., … Diamond, D. (2011). Wireless Ion-Selective Electrode Autonomous Sensing System. IEEE Sensors Journal, 11, 2374–2382. Foo, J. Y. A., Wilson, S. J., Williams, G. R., Harris, M. A., & Cooper, D. M. (2006). Measurement of pulse transit time using AT90S8535 microcontroller. Measurement, 39, 505–511. Ganesh, G. R. D., Jaidurgamohan, K., Srinu, V., Kancharla, C. R., & Suresh, S. V. S. (2016). Design of a low cost smart chair for telemedicine and IoT based health monitoring: An open source technology to facilitate better healthcare. 2016 11th International Conference on Industrial and Information Systems (ICIIS), 89–94. IEEE. Gutiérrez, M., Alegret, S., Cáceres, R., Casadesús, J., Marfà, O., & del Valle, M. (2007). Application of a potentiometric electronic tongue to fertigation strategy in greenhouse cultivation. Computers and Electronics in Agriculture, 57, 12–22. Hampp, N., Eppelsheim, C., Popp, J., Bisenberger, M., & Bräuchle, C. (1992). Design and application of thick-film multisensors. Sensors and Actuators A: Physical, 31, 144–148. Huang, S.-F., Shih, W.-L., Chen, Y.-Y., Wu, Y.-M., & Chen, L.-C. (2021). Ion composition profiling and pattern recognition of vegetable sap using a solid-contact ion-selective electrode array. Biosensors and Bioelectronics: X, 9, 100088. Huang, Y., Wang, T., Xu, Z., Hughes, E., Qian, F., Lee, M., … Li, B. (2019). Real-Time in Situ Monitoring of Nitrogen Dynamics in Wastewater Treatment Processes using Wireless, Solid-State, and Ion-Selective Membrane Sensors. Environmental Science & Technology, 53, 3140–3148. Jung, D.-H., Kim, H.-J., Kim, J. Y., Park, S. H., & Cho, W. J. (2021). Water Nitrate Remote Monitoring System with Self-Diagnostic Function for Ion-Selective Electrodes. Sensors (Basel, Switzerland), 21. https://doi.org/10.3390/s21082703 Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82, 35. Kester, W. (2005). Which ADC architecture is right for your application. EDA Tech Forum, 2, 22. Kim, H.-J., Kim, D.-W., Kim, W. K., Cho, W.-J., & Kang, C. I. (2017). PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Computers and Electronics in Agriculture, 140, 374–385. Kim, H.-J., Kim, W.-K., Roh, M.-Y., Kang, C.-I., Park, J.-M., & Sudduth, K. A. (2013). Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture, 93, 46–54. Kim, S.-J., Chiami, K., & Ishii, G. (2006). Effect of ammonium: nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad ( Eruca sativa Mill.). Soil Science and Plant Nutrition, 52, 387–393. Lai, X., Yang, T., Wang, Z., & Chen, P. (2019). Iot implementation of kalman filter to improve accuracy of air quality monitoring and prediction. Applied Sciences, 9, 1831. La Mura, M., De Gregorio, M., Lamberti, P., & Tucci, V. (2023). IoT System for Real-Time Posture Asymmetry Detection. Sensors, 23, 4830. Lim, H.-R., Lee, S. M., Mahmood, M., Kwon, S., Kim, Y.-S., Lee, Y., & Yeo, W.-H. (2021). Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection. Sensors (Basel, Switzerland), 21. https://doi.org/10.3390/s21051642 Ma’arif, A., Iswanto, I., Nuryono, A. A., & Alfian, R. I. (2019). Kalman filter for noise reducer on sensor readings. Signal and Image Processing Letters, 1, 11–22. Milici, S., Lazaro, A., Villarino, R., Girbau, D., & Magnarosa, M. (2018). Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring. IEEE Sensors Journal, 18, 2145–2152. Min, X., Bao, C., & Kim, W. S. (2019). Additively Manufactured Digital Microfluidic Platforms for Ion-Selective Sensing. ACS Sensors, 4, 918–923. Mithen, R. F., Dekker, M., Verkerk, R., Rabot, S., & Johnson, I. T. (2000). The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture. Mohamadou, Y., Momo, F., Theophile, L., Njike Kouekeu Landry, C., Fabrice, T., & Emmanuel, S. (2018). Accuracy enhancement in low frequency gain and phase detector (AD8302) based bioimpedance spectroscopy system. Measurement, 123, 304–308. Mousa, M., Zhang, X., & Claudel, C. (2016). Flash flood detection in urban cities using ultrasonic and infrared sensors. IEEE Sensors Journal, 16, 7204–7216. Muckley, E. S., Anazagasty, C., Jacobs, C. B., Hianik, T., & Ivanov, I. N. (2016). Low-cost scalable quartz crystal microbalance array for environmental sensing. In I. Kymissis, R. Shinar, & L. Torsi (Eds.), Organic Sensors and Bioelectronics IX (p. 99440Y). SPIE. Neelamegam, P., Murugananthan, K., Raghunathan, R., & Jamaludeen, A. (2009). Atmega8535 MICROCONTROLLER BASED BLOOD SODIUM ANALYZER USING ISE DIRECT POTENTIOMETRY. Instrumentation Science & Technology, 38, 63–71. Ngoc Tuan, V., Khattak, A. M., Zhu, H., Gao, W., & Wang, M. (2020). Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution. Sensors (Basel, Switzerland), 20. https://doi.org/10.3390/s20185314 Ozer, T., Agir, I., & Henry, C. S. (2022). Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care. Sensors and Actuators B: Chemical, 365, 131961. Pandya, U. T., & Desai, U. B. (2012). A novel algorithm for Bluetooth ECG. IEEE Transactions on Bio-Medical Engineering, 59, 3148–3154. Pitas, I., & Venetsanopoulos, A. N. (2013). Nonlinear digital filters: principles and applications. Nonlinear Digital Filters: Principles and Applications, 84. Redhyka, G. G., Setiawan, D., & Soetraprawata, D. (2015). Embedded sensor fusion and moving-average filter for Inertial Measurement Unit (IMU) on the microcontroller-based stabilized platform. 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), 72–77. IEEE. Rius-Ruiz, F. X., Andrade, F. J., Riu, J., & Rius, F. X. (2014). Computer-operated analytical platform for the determination of nutrients in hydroponic systems. Food Chemistry, 147, 92–97. Smith, S. W. (1997). The scientist and engineer’s guide to digital signal processing. Surkar, P. K., & Karwankar, A. R. (2016). Automatic testing of soil samples using ion selective electrodes (ISEs). 2016 International Conference on Communication and Signal Processing (ICCSP), 2176–2179. IEEE. Tazi, I., Triyana, K., & Siswanta, D. (2016). A novel Arduino Mega 2560 microcontroller-based electronic tongue for dairy product classification. 1758, 170003. Author(s). Top, A., & Gökbulut, M. (2023). A novel period–based method for the measurement direct current motor velocity using low-resolver encoder. Transactions of the Institute of Measurement and Control, 45, 711–722. Tuan, V. N., Dinh, T. D., Zhang, W., Khattak, A. M., Le, A. T., Saeed, I. A., … Wang, M. (2021). A smart diagnostic tool based on deep kernel learning for on-site determination of phosphate, calcium, and magnesium concentration in a hydroponic system. RSC Advances, 11, 11177–11191. Vardar, G., Altıkatoğlu, M., Ortaç, D., Cemek, M., & Işıldak, İ. (2015). Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. Biotechnology and Applied Biochemistry, 62, 663–668. Wang, W., Guo, Y., Huang, B., Zhao, G., Liu, B., & Wang, L. (2011). Analysis of filtering methods for 3D acceleration signals in body sensor network. International Symposium on Bioelectronics and Bioinformations 2011, 263–266. IEEE. Ward, S., Hensler, J., Alsalam, B., & Gonzalez, L. F. (2016). Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision. 2016 IEEE Aerospace Conference, 1–8. IEEE. Zhao, F., Evans, E. J., Bilsborrow, P. E., & Syers, J. K. (1993). Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). Journal of the Science of Food and Agriculture, 63, 29–37. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90802 | - |
dc.description.abstract | 水耕種植中,植物生長所需營養素皆由水耕養液中獲得,但現今缺乏可即時量測離子濃度之儀器,導致植物可能在過多或缺乏某種離子下生長。實驗室先前透過平面固態式離子選擇電極與微控制整合,開發為即時離子量測系統,但量測濃度精準度受到雜訊干擾嚴重。因此本研究嘗試透過數位濾波器解決雜訊干擾問題,使用數位濾波器包含移動平均濾波器 (moving average filter, MAF)、卡爾曼濾波器 (Kalman filter, KF) 和中位數濾波器 (median filter, MF)。在植物工廠中以鉀、鈣和鎂離子選擇電極進行量測,並透過快速傅立葉轉換(fast Fourier transform, FFT)和實驗結果進行分析,探討數位濾波器對離子選擇電極量測系統影響和雜訊主要來源和頻率。
根據FFT分析發現系統所受主要雜訊頻率為60Hz,與台電公司所提供交流電頻率符合,且該雜訊對硬體和電極皆會造成干擾。透過鉀、鈣和鎂離子選擇電極實驗結果可證明,數位濾波器可提高電位訊號穩定性,以鉀離子選擇電極為例,電位訊號標準差可由13 mV降為1 mV以下,且並不影響電位與濃度線性迴歸。濃度精準度方面,透過一價鉀和二價鈣離子選擇電極比較可證明,精準度提高並不受價數影響,兩離子電極平均絕對誤差 (Mean absolute error , MAE) 皆可降為0.2 mM以下。而二價鎂離子選擇電極原始數據MAE為1.07 mM,但經過數位濾波器後MAE僅降低為0.73mM,與鈣離子選擇電極比較可證明,數位濾波器並無法改善靈敏度低所造成誤差。考量卡爾曼濾波器可以降低離群值影響,選擇卡爾曼濾波器作為數位濾波器應用,最後也在商業型水耕場域中進行實驗,量測鉀和鈣離子濃度與離子層析儀相比僅有2 mM誤差。 綜合以上,本研究證明數位濾波器可以提高離子選擇電極系統濃度精準度,且考量離群值對數位濾波器影響,選擇卡爾曼濾波器作為數位濾波器應用。未來可透過即時離子量測系統快速得到離子濃度資訊,並將養液中離子濃度維持在特定範圍內,即可針對植物生長時最佳離子濃度範圍進行研究。 | zh_TW |
dc.description.abstract | The current monitoring and adjustment of hydroponic nutrient solution rely on conductivity and pH values, which do not provide information about the concentration of ions in the nutrient solution. Solid-contact ion-selective electrodes (SCISEs) can be integrated with microcontroller to create a real-time ion monitoring system (RTIMS). However, the measurement results are affected by noise, making it challenging to distinguish concentration changes accurately. This study employs digital filters, including moving average (MAF), Kalman (KF), and median filters (MF), to reduce the noise in the signal. In the plant factory, measurements are using potassium (K+), calcium (Ca2+), and magnesium (Mg2+), ion-selective electrodes. Using fast Fourier transform (FFT) to investigate the primary sources and frequencies of noise.
Based on FFT analysis, it was found that the main noise frequency is 60Hz, which corresponds to the frequency of the AC power provided by Taiwan Power Company. This noise interferes with both hardware and electrodes. The experimental results of K+, Ca2+ and Mg2+ SCISEs demonstrate that digital filters can improve the stability of the potential signal. Taking K+ SCISE as an example, the standard deviation of the potential signal can be reduced from 13 mV to below 1 mV. The experimental results of K+ and Ca2+ SCISEs demonstrate that the accuracy is not influenced by the valency of ion. The mean absolute error (MAE) of K+ and Ca2+ SCISEs is below 0.2 mM. The original MAE of Mg2+ SCISE is 1.07 mM. However, the MAE is reduced to only 0.73 mM through the use of KF. Comparing with the Ca2+ SCISE, it can be demonstrated that the digital filters are unable to improve the performance of electrode. KF is chosen as the digital filter for RTIMS because it can reduce the impact of outliers. Finally, the RTIMS measures hydroponic nutrient solution in a commercial hydroponic green house. The concentration of K+ and Ca2+ determined by the RTIMS exhibit only 2 mM error when compared to the values obtained from the ion chromatograph. In summary, this study demonstrates that digital filters can improve the accuracy of the ion-selective electrode device. Furthermore, considering the impact of outliers on the digital filters, the KF is chosen as the digital filter for the RTIMS. In the future, the RTIMS can provide real-time ion concentration information, allowing for the maintenance of ion concentrations within specific ranges in the nutrient solution. This capability conduct research on the optimal ion concentration range for plant growth. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:41:15Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:41:15Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 v 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究架構 4 第二章 文獻探討 5 2.1 水耕養液對水耕栽培影響 5 2.2 離子選擇電極應用於水耕養液監控上應用 6 2.3 本實驗室離子選擇電極用於農業相關研究 9 2.4 微控制器與離子選擇電極應用 11 2.5 微控制器與數位濾波器應用 13 第三章 數位濾波器原理 17 3.1 移動平均濾波器 (主要參數為n) 17 3.2 卡爾曼濾波器 (主要參數為Q) 18 3.3 中位數濾波器 (主要參數為n) 23 第四章 研究方法 24 4.1 實驗材料與儀器 24 4.1.1 實驗材料 24 4.1.2 實驗儀器 27 4.1.3 實驗軟體 28 4.2 離子選擇電極製作 29 4.2.1 網印碳電極 30 4.2.2 PEDOT離子電子傳導層 31 4.2.3 PVC離子選擇薄膜 32 4.3 即時離子量測系統建置 34 4.4 數位濾波器程式 37 4.4.1 移動平均濾波器 38 4.4.2 卡爾曼濾波器 39 4.4.3 中位數濾波器 40 4.5 即時離子量測系統性能分析 41 4.5.1 離子選擇電極電位濃度換算原理 41 4.5.2 儀器相關性驗證 42 4.5.3 電源接地實驗 43 4.5.4 交換式電源供應器干擾實驗 43 4.5.5 植物工廠內數位濾波器量測 44 4.5.6 快速傅立葉轉換頻率分析 45 4.6 商業型水耕溫室內養液離子濃度量測實驗 46 4.7 場域中電磁波雜訊量測 47 第五章 結果與討論 48 5.1 硬體和環境雜訊對電位訊號影響 48 5.1.1 不同訊號擷取方式對電位訊號穩定性影響 48 5.1.2 電源接地對電位訊號影響 52 5.1.3 裝置中低頻電磁波對電位訊號影響 54 5.1.4 環境中低頻電磁波對電位訊號影響 56 5.1.5 快速傅立葉轉換雜訊頻率分析 58 5.1.6 小結 62 5.2 數位濾波器對雜訊干擾抑制之研究 63 5.2.1 數位濾波器對電位穩定性影響 63 5.2.2 數位濾波器對電位與濃度線性迴歸影響 66 5.2.3 數位濾波器對系統精準度影響 68 5.2.4 通過數位濾波器後FFT雜訊頻率分析 71 5.2.5 小結 72 5.3 數位濾波器對不同價數離子選擇電極影響之研究 73 5.3.1 數位濾波器對二價離子選擇電極電位穩定性影響 73 5.3.2 數位濾波器對二價離子選擇電極電位與濃度線性迴歸影響 75 5.3.3 數位濾波器對二價離子選擇電極精準度影響 77 5.3.4 二價離子選擇電極通過數位濾波器後FFT雜訊頻率分析 80 5.3.5 小結 81 5.4 數位濾波對低靈敏度電極效益之研究 82 5.4.1 數位濾波器對低靈敏度電極電位穩定性影響 82 5.4.2 數位濾波器對低靈敏度電極電位與濃度線性迴歸影響 84 5.4.3 數位濾波器對低靈敏度電極精準度影響 86 5.4.4 低靈敏度電極經過數位濾波器後FFT雜訊頻率分析 89 5.4.5 小結 90 5.5 商業型水耕溫室量測驗證 91 5.5.1 水耕溫室內經過數位濾波器後電位穩定性 92 5.5.2 離群值對於三種數位濾波器影響 94 5.5.3 水耕溫室內養液中離子濃度 96 5.5.4 小結 98 第六章 結論與未來展望 99 6.1 研究結論 99 6.2 未來展望 100 參考文獻 101 附錄 111 | - |
dc.language.iso | zh_TW | - |
dc.title | 數位濾波處理於水耕栽培即時離子感測之研究 | zh_TW |
dc.title | Study of digital filter processing for real-time ion sensing in hydroponics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 方煒;林其誼;林致廷;鄭宗記 | zh_TW |
dc.contributor.oralexamcommittee | Wei Fang;Chi-Yi Lin;Chih-Ting Lin;Tzong-Jih Cheng | en |
dc.subject.keyword | 水耕養液監控,即時離子量測,平面固態式離子選擇電極,微控制器,卡爾曼濾波器, | zh_TW |
dc.subject.keyword | nutrient solution monitoring,real-time ion monitoring,solid-contact ion-selective electrodes,Kalman filter,microcontroller, | en |
dc.relation.page | 121 | - |
dc.identifier.doi | 10.6342/NTU202302422 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-02 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
dc.date.embargo-lift | 2028-07-31 | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-07-31 | 43.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。