請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90797完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林頌然 | zh_TW |
| dc.contributor.advisor | Sung-Jan Lin | en |
| dc.contributor.author | 洪尚煒 | zh_TW |
| dc.contributor.author | Shang-Wei Hung | en |
| dc.date.accessioned | 2023-10-03T17:39:55Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | [1] Ferlay J, Ervik M, Lam F, et al., eds. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer; 2020 [cited 2023 Jun 22]. Available from: gco.iarc.fr/t
[2] Soerjomataram I, Bray F. Planning for tomorrow: global cancer incidence and the role of prevention 2020-2070. Nat Rev Clin Oncol. 2021 Oct;18(10):663-672. doi: 10.1038/s41571-021-00514-z. Epub 2021 Jun 2. PMID: 34079102. [3] Wilson BE, Jacob S, Yap ML, Ferlay J, Bray F, Barton MB. Estimates of global chemotherapy demands and corresponding physician workforce requirements for 2018 and 2040: a population-based study. Lancet Oncol. 2019 Jun;20(6):769-780. doi: 10.1016/S1470-2045(19)30163-9. Epub 2019 May 8. Erratum in: Lancet Oncol. 2019 Jul;20(7):e346. PMID: 31078462. [4] Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-9. doi: 10.7150/ijms.3635. Epub 2012 Feb 27. PMID: 22408567; PMCID: PMC3298009. [5] Medenwald D, Vordermark D, Dietzel CT. Number of radiotherapy treatment machines in the population and cancer mortality: an ecological study. Clin Epidemiol. 2018 Sep 21;10:1249-1273. doi: 10.2147/CLEP.S156764. PMID: 30288122; PMCID: PMC6163015. [6] De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Primers. 2019 Feb 21;5(1):13. doi: 10.1038/s41572-019-0064-5. Erratum in: Nat Rev Dis Primers. 2019 Mar 4;5(1):15. PMID: 30792503. [7] Abdel-Wahab M, Gondhowiardjo SS, Rosa AA, Lievens Y, El-Haj N, Polo Rubio JA, Prajogi GB, Helgadottir H, Zubizarreta E, Meghzifene A, Ashraf V, Hahn S, Williams T, Gospodarowicz M. Global Radiotherapy: Current Status and Future Directions-White Paper. JCO Glob Oncol. 2021 Jun;7:827-842. doi: 10.1200/GO.21.00029. PMID: 34101482; PMCID: PMC8457786. [8] Laskar SG, Sinha S, Krishnatry R, Grau C, Mehta M, Agarwal JP. Access to Radiation Therapy: From Local to Global and Equality to Equity. JCO Glob Oncol. 2022 Aug;8:e2100358. doi: 10.1200/GO.21.00358. PMID: 35960905; PMCID: PMC9470145. [9] Lin SJ, Yue Z, Paus R. Clinical Pathobiology of Radiotherapy-Induced Alopecia: A Guide toward More Effective Prevention and Hair Follicle Repair. J Invest Dermatol. 2023 Jun 7:S0022-202X(23)02043-2. doi: 10.1016/j.jid.2023.02.041. Epub ahead of print. PMID: 37294241. [10] Quesada S, Guichard A, Fiteni F. Cancer-Related Alopecia: From Etiologies to Global Management. Cancers (Basel). 2021 Nov 5;13(21):5556. doi: 10.3390/cancers13215556. PMID: 34771716; PMCID: PMC8583126. [11] Freites-Martinez A, Shapiro J, Goldfarb S, Nangia J, Jimenez JJ, Paus R, Lacouture ME. Hair disorders in patients with cancer. J Am Acad Dermatol. 2019 May;80(5):1179-1196. doi: 10.1016/j.jaad.2018.03.055. Epub 2018 Apr 14. PMID: 29660422; PMCID: PMC6186204. [12] Watanabe T, Yagata H, Saito M, Okada H, Yajima T, Tamai N, Yoshida Y, Takayama T, Imai H, Nozawa K, Sangai T, Yoshimura A, Hasegawa Y, Yamaguchi T, Shimozuma K, Ohashi Y. A multicenter survey of temporal changes in chemotherapy-induced hair loss in breast cancer patients. PLoS One. 2019 Jan 9;14(1):e0208118. doi: 10.1371/journal.pone.0208118. PMID: 30625139; PMCID: PMC6326423. [13] Freites-Martinez A, Chan D, Sibaud V, Shapiro J, Fabbrocini G, Tosti A, Cho J, Goldfarb S, Modi S, Gajria D, Norton L, Paus R, Cigler T, Lacouture ME. Assessment of Quality of Life and Treatment Outcomes of Patients With Persistent Postchemotherapy Alopecia. JAMA Dermatol. 2019 Jun 1;155(6):724-728. doi: 10.1001/jamadermatol.2018.5071. Erratum in: JAMA Dermatol. 2019 Apr 10;: PMID: 30840033; PMCID: PMC6563563. [14] Phillips GS, Freret ME, Friedman DN, Trelles S, Kukoyi O, Freites-Martinez A, Unger RH, Disa JJ, Wexler LH, Tinkle CL, Mechalakos JG, Dusza SW, Beal K, Wolden SL, Lacouture ME. Assessment and Treatment Outcomes of Persistent Radiation-Induced Alopecia in Patients With Cancer. JAMA Dermatol. 2020 Sep 1;156(9):963-972. doi: 10.1001/jamadermatol.2020.2127. PMID: 32756880; PMCID: PMC7407362. [15] Boland V, Brady AM, Drury A. The physical, psychological and social experiences of alopecia among women receiving chemotherapy: An integrative literature review. Eur J Oncol Nurs. 2020 Dec;49:101840. doi: 10.1016/j.ejon.2020.101840. Epub 2020 Sep 28. PMID: 33120213. [16] Rebora A, Guarrera M. Why Do Not All Chemotherapy Patients Lose Their Hair? Answering an Intriguing Question. Skin Appendage Disord. 2021 Jun;7(4):280-285. doi: 10.1159/000514342. Epub 2021 May 6. PMID: 34307475; PMCID: PMC8280404. [17] Paus R, Haslam IS, Sharov AA, Botchkarev VA. Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 2013 Feb;14(2):e50-9. doi: 10.1016/S1470-2045(12)70553-3. PMID: 23369683. [18] Ohnemus U, Unalan M, Handjiski B, Paus R. Topical estrogen accelerates hair regrowth in mice after chemotherapy-induced alopecia by favoring the dystrophic catagen response pathway to damage. J Invest Dermatol. 2004 Jan;122(1):7-13. doi: 10.1046/j.0022-202X.2003.22120.x. PMID: 14962083. [19] Hendrix S, Handjiski B, Peters EM, Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol. 2005 Jul;125(1):42-51. doi: 10.1111/j.0022-202X.2005.23787.x. PMID: 15982301. [20] Kim JY, Ohn J, Yoon JS, Kang BM, Park M, Kim S, Lee W, Hwang S, Kim JI, Kim KH, Kwon O. Priming mobilization of hair follicle stem cells triggers permanent loss of regeneration after alkylating chemotherapy. Nat Commun. 2019 Aug 27;10(1):3694. doi: 10.1038/s41467-019-11665-0. PMID: 31455775; PMCID: PMC6711970. [21] Chon SY, Champion RW, Geddes ER, Rashid RM. Chemotherapy-induced alopecia. J Am Acad Dermatol. 2012 Jul;67(1):e37-47. doi: 10.1016/j.jaad.2011.02.026. Epub 2011 Dec 16. PMID: 22178150. [22] Rossi A, Caro G, Fortuna MC, Pigliacelli F, D'Arino A, Carlesimo M. Prevention and Treatment of Chemotherapy-Induced Alopecia. Dermatol Pract Concept. 2020 Jun 29;10(3):e2020074. doi: 10.5826/dpc.1003a74. PMID: 32642317; PMCID: PMC7319796. [23] Aiba T, Kono Y, Etoh T, Kawano Y, Oshima Y, Inomata M. Efficacy of cooling therapy and α-lipoic acid derivative against chemotherapy-induced alopecia in an animal model. Cancer Sci. 2023 Mar;114(3):1007-1014. doi: 10.1111/cas.15639. Epub 2022 Nov 15. PMID: 36337052; PMCID: PMC9986063. [24] Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol. 2009 Feb 10;19(3):R132-42. doi: 10.1016/j.cub.2008.12.005. PMID: 19211055. [25] Fuchs E. Scratching the surface of skin development. Nature. 2007 Feb 22;445(7130):834-42. doi: 10.1038/nature05659. PMID: 17314969; PMCID: PMC2405926. [26] Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009 Mar;10(3):207-17. doi: 10.1038/nrm2636. Epub 2009 Feb 11. PMID: 19209183; PMCID: PMC2760218. [27] Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005 Sep 8;437(7056):275-80. doi: 10.1038/nature03922. Epub 2005 Aug 10. PMID: 16094321; PMCID: PMC1399371. [28] Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999 Apr 22;398(6729):708-13. doi: 10.1038/19531. PMID: 10227293. [29] Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999 Apr 22;398(6729):714-8. doi: 10.1038/19539. PMID: 10227294. [30] Lim X, Tan SH, Koh WL, Chau RM, Yan KS, Kuo CJ, van Amerongen R, Klein AM, Nusse R. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science. 2013 Dec 6;342(6163):1226-30. doi: 10.1126/science.1239730. PMID: 24311688; PMCID: PMC4081860. [31] Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014 Oct 3;346(6205):1248012. doi: 10.1126/science.1248012. Epub 2014 Oct 2. PMID: 25278615. [32] Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 2002 Feb;118(2):216-25. doi: 10.1046/j.0022-202x.2001.01670.x. PMID: 11841536. [33] Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 2005 Mar;27(3):247-61. doi: 10.1002/bies.20184. PMID: 15714560. [34] Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol. 2012 Oct;23(8):917-27. doi: 10.1016/j.semcdb.2012.08.011. Epub 2012 Aug 31. PMID: 22960356; PMCID: PMC3496047. [35] Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol. 2014 Jan-Feb;25-26:11-21. doi: 10.1016/j.semcdb.2014.01.007. Epub 2014 Jan 30. PMID: 24487243. [36] Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation. 2004 Dec;72(9-10):512-26. doi: 10.1111/j.1432-0436.2004.07209005.x. PMID: 15617562. [37] Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA, Dlugosz AA. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol. 1999 Jan 1;205(1):1-9. doi: 10.1006/dbio.1998.9103. PMID: 9882493. [38] Woo WM, Zhen HH, Oro AE. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev. 2012 Jun 1;26(11):1235-46. doi: 10.1101/gad.187401.112. PMID: 22661232; PMCID: PMC3371411. [39] Myung PS, Takeo M, Ito M, Atit RP. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol. 2013 Jan;133(1):31-41. doi: 10.1038/jid.2012.230. Epub 2012 Jul 19. PMID: 22810306; PMCID: PMC3479363. [40] St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP. Sonic hedgehog signaling is essential for hair development. Curr Biol. 1998 Sep 24;8(19):1058-68. doi: 10.1016/s0960-9822(98)70443-9. PMID: 9768360. [41] Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014 Jan 22;15(1):1647-70. doi: 10.3390/ijms15011647. PMID: 24451143; PMCID: PMC3907891. [42] Jiang Y, Zou Q, Liu B, Li S, Wang Y, Liu T, Ding X. Atlas of Prenatal Hair Follicle Morphogenesis Using the Pig as a Model System. Front Cell Dev Biol. 2021 Oct 7;9:721979. doi: 10.3389/fcell.2021.721979. PMID: 34692680; PMCID: PMC8529045. [43] Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999 Aug 12;341(7):491-7. doi: 10.1056/NEJM199908123410706. PMID: 10441606. [44] Müller-Röver S, Handjiski B, van der Veen C, Eichmüller S, Foitzik K, McKay IA, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol. 2001 Jul;117(1):3-15. doi: 10.1046/j.0022-202x.2001.01377.x. PMID: 11442744. [45] Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008 Jan 17;451(7176):340-4. doi: 10.1038/nature06457. PMID: 18202659; PMCID: PMC2696201. [46] Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Dela Cruz-Racelis J, Fuchs E. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009 Feb 6;4(2):155-69. doi: 10.1016/j.stem.2008.12.009. Erratum in: Cell Stem Cell. 2009 May 8;4(5):464. PMID: 19200804; PMCID: PMC2668200. [47] Hsu YC, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell. 2011 Jan 7;144(1):92-105. doi: 10.1016/j.cell.2010.11.049. PMID: 21215372; PMCID: PMC3050564. [48] Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. Burns Trauma. 2022 Jul 4;10:tkac022. doi: 10.1093/burnst/tkac022. PMID: 35795256; PMCID: PMC9250793. [49] Lin X, Zhu L, He J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Front Cell Dev Biol. 2022 May 12;10:899095. doi: 10.3389/fcell.2022.899095. PMID: 35646909; PMCID: PMC9133560. [50] Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Dotto GP, Paus R. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J. 2000 Apr;14(5):752-60. doi: 10.1096/fasebj.14.5.752. PMID: 10744631. [51] Erdoğan B. Anatomy and Physiology of Hair [Internet]. Hair and Scalp Disorders. InTech; 2017. Available from: http://dx.doi.org/10.5772/67269 [52] Panteleyev AA. Functional anatomy of the hair follicle: The Secondary Hair Germ. Exp Dermatol. 2018 Jul;27(7):701-720. doi: 10.1111/exd.13666. PMID: 29672929. [53] Daszczuk P, Mazurek P, Pieczonka TD, Olczak A, Boryń ŁM, Kobielak K. An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities. Front Cell Dev Biol. 2020 Dec 10;8:595178. doi: 10.3389/fcell.2020.595178. PMID: 33363148; PMCID: PMC7758224. [54] Zhang B, Tsai PC, Gonzalez-Celeiro M, Chung O, Boumard B, Perdigoto CN, Ezhkova E, Hsu YC. Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes Dev. 2016 Oct 15;30(20):2325-2338. doi: 10.1101/gad.285429.116. Epub 2016 Nov 2. PMID: 27807033; PMCID: PMC5110998. [55] Hsu YC, Li L, Fuchs E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell. 2014 May 8;157(4):935-49. doi: 10.1016/j.cell.2014.02.057. PMID: 24813615; PMCID: PMC4041217. [56] Rompolas P, Greco V. Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol. 2014 Jan-Feb;25-26:34-42. doi: 10.1016/j.semcdb.2013.12.005. Epub 2013 Dec 17. PMID: 24361866; PMCID: PMC3988239. [57] Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther. 2021 Feb 17;6(1):66. doi: 10.1038/s41392-020-00441-y. PMID: 33594043; PMCID: PMC7886855. [58] Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, Seykora J, Kim JC, Sung YK, Kim M, Paus R, Plikus MV. A Guide to Studying Human Hair Follicle Cycling In Vivo. J Invest Dermatol. 2016 Jan;136(1):34-44. doi: 10.1038/JID.2015.354. Erratum in: J Invest Dermatol. 2016 Apr;136(4):883. PMID: 26763421; PMCID: PMC4785090. [59] Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001 Jan 26;104(2):233-45. doi: 10.1016/s0092-8674(01)00208-2. PMID: 11207364. [60] Castela M, Linay F, Roy E, Moguelet P, Xu J, Holzenberger M, Khosrotehrani K, Aractingi S. Igf1r signalling acts on the anagen-to-catagen transition in the hair cycle. Exp Dermatol. 2017 Sep;26(9):785-791. doi: 10.1111/exd.13287. Epub 2017 Apr 27. PMID: 28094870. [61] Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Dotto GP, Paus R. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J. 2000 Apr;14(5):752-60. doi: 10.1096/fasebj.14.5.752. PMID: 10744631. [62] Chen CL, Huang WY, Wang EHC, Tai KY, Lin SJ. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci. 2020 Mar 14;27(1):43. doi: 10.1186/s12929-020-0624-8. PMID: 32171310; PMCID: PMC7073016. [63] Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle stem cell niche. Exp Dermatol. 2021 Apr;30(4):512-521. doi: 10.1111/exd.14204. Epub 2020 Oct 22. PMID: 33006790; PMCID: PMC8016715. [64] Bai X, Lei M, Shi J, Yu Y, Qiu W, Lai X, Liu Y, Yang T, Yang L, Widelitz RB, Chuong CM, Lian X. Roles of GasderminA3 in Catagen-Telogen Transition During Hair Cycling. J Invest Dermatol. 2015 Sep;135(9):2162-2172. doi: 10.1038/jid.2015.147. Epub 2015 Apr 10. PMID: 25860385; PMCID: PMC4537385. [65] Ragone G, Bresin A, Piermarini F, Lazzeri C, Picchio MC, Remotti D, Kang SM, Cooper MD, Croce CM, Narducci MG, Russo G. The Tcl1 oncogene defines secondary hair germ cells differentiation at catagen-telogen transition and affects stem-cell marker CD34 expression. Oncogene. 2009 Mar 12;28(10):1329-38. doi: 10.1038/onc.2008.489. Epub 2009 Jan 26. PMID: 19169282. [66] Liu S, Leask A. CCN2 modulates hair follicle cycling in mice. Mol Biol Cell. 2013 Dec;24(24):3939-44. doi: 10.1091/mbc.E13-08-0472. Epub 2013 Oct 23. PMID: 24152728; PMCID: PMC3861088. [67] Kimura-Ueki M, Oda Y, Oki J, Komi-Kuramochi A, Honda E, Asada M, Suzuki M, Imamura T. Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. J Invest Dermatol. 2012 May;132(5):1338-45. doi: 10.1038/jid.2011.490. Epub 2012 Feb 2. PMID: 22297635. [68] Plikus MV. New activators and inhibitors in the hair cycle clock: targeting stem cells' state of competence. J Invest Dermatol. 2012 May;132(5):1321-4. doi: 10.1038/jid.2012.38. PMID: 22499035; PMCID: PMC4033821. [69] Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells. 2020 Feb;38(2):301-314. doi: 10.1002/stem.3117. Epub 2019 Nov 26. PMID: 31721388; PMCID: PMC7027765. [70] Harshuk-Shabso S, Dressler H, Niehrs C, Aamar E, Enshell-Seijffers D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat Commun. 2020 Oct 9;11(1):5114. doi: 10.1038/s41467-020-18643-x. PMID: 33037205; PMCID: PMC7547083. [71] Wu P, Zhang Y, Xing Y, Xu W, Guo H, Deng F, Ma X, Li Y. The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles. Cell Commun Signal. 2019 Feb 21;17(1):16. doi: 10.1186/s12964-019-0330-x. Erratum in: Cell Commun Signal. 2020 Jan 7;18(1):4. PMID: 30791955; PMCID: PMC6385416. [72] Calvo-Sánchez MI, Fernández-Martos S, Carrasco E, Moreno-Bueno G, Bernabéu C, Quintanilla M, Espada J. A role for the Tgf-β/Bmp co-receptor Endoglin in the molecular oscillator that regulates the hair follicle cycle. J Mol Cell Biol. 2019 Jan 1;11(1):39-52. doi: 10.1093/jmcb/mjy051. PMID: 30239775; PMCID: PMC6359924. [73] Kandyba E, Leung Y, Chen YB, Widelitz R, Chuong CM, Kobielak K. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1351-6. doi: 10.1073/pnas.1121312110. Epub 2013 Jan 4. PMID: 23292934; PMCID: PMC3557042. [74] Shin DW. The Molecular Mechanism of Natural Products Activating Wnt/β-Catenin Signaling Pathway for Improving Hair Loss. Life (Basel). 2022 Nov 11;12(11):1856. doi: 10.3390/life12111856. PMID: 36430990; PMCID: PMC9693075. [75] Yi R. Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation. Stem Cells. 2017 Dec;35(12):2323-2330. doi: 10.1002/stem.2696. Epub 2017 Sep 23. PMID: 28856849; PMCID: PMC5743437. [76] Deng Z, Lei X, Zhang X, Zhang H, Liu S, Chen Q, Hu H, Wang X, Ning L, Cao Y, Zhao T, Zhou J, Chen T, Duan E. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J Mol Cell Biol. 2015 Feb;7(1):62-72. doi: 10.1093/jmcb/mjv005. Epub 2015 Jan 20. PMID: 25609845. [77] Martel JL, Miao JH, Badri T. Anatomy, Hair Follicle. 2022 Oct 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 29261946. [78] Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther. 2021 Aug 11;12(1):453. doi: 10.1186/s13287-021-02527-y. PMID: 34380571; PMCID: PMC8359037. [79] Welle MM, Wiener DJ. The Hair Follicle: A Comparative Review of Canine Hair Follicle Anatomy and Physiology. Toxicol Pathol. 2016 Jun;44(4):564-74. doi: 10.1177/0192623316631843. Epub 2016 Mar 21. PMID: 27000375. [80] Brown TM, Krishnamurthy K. Histology, Hair and Follicle. 2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 30422524. [81] Welle MM. Basic principles of hair follicle structure, morphogenesis, and regeneration. Vet Pathol. 2023 Jun 5:3009858231176561. doi: 10.1177/03009858231176561. Epub ahead of print. PMID: 37272599. [82] Garcin CL, Ansell DM. The battle of the bulge: re-evaluating hair follicle stem cells in wound repair. Exp Dermatol. 2017 Feb;26(2):101-104. doi: 10.1111/exd.13184. PMID: 27574799. [83] Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development. 2014 Jul;141(13):2559-67. doi: 10.1242/dev.104588. PMID: 24961797; PMCID: PMC4067958. [84] Solanas G, Benitah SA. Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol. 2013 Nov;14(11):737-48. doi: 10.1038/nrm3675. Epub 2013 Sep 25. PMID: 24064540. [85] Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol. 2022 Nov 10;13:1029818. doi: 10.3389/fimmu.2022.1029818. PMID: 36439142; PMCID: PMC9686445. [86] Osada SI. Mechanism of Hair Loss from the Point of View of Epidermal Cell Polarity [Internet]. Hair and Scalp Disorders. InTech; 2017. Available from: http://dx.doi.org/10.5772/66735 [87] Díaz-García D, Filipová A, Garza-Veloz I, Martinez-Fierro ML. A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci. 2021 Oct 13;22(20):11030. doi: 10.3390/ijms222011030. PMID: 34681688; PMCID: PMC8538579. [88] Joulai Veijouye S, Yari A, Heidari F, Sajedi N, Ghoroghi Moghani F, Nobakht M. Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review. Iran J Public Health. 2017 Sep;46(9):1167-1175. PMID: 29026781; PMCID: PMC5632317. [89] Levy V, Lindon C, Harfe BD, Morgan BA. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell. 2005 Dec;9(6):855-61. doi: 10.1016/j.devcel.2005.11.003. PMID: 16326396. [90] Ji J, Ho BS, Qian G, Xie XM, Bigliardi PL, Bigliardi-Qi M. Aging in hair follicle stem cells and niche microenvironment. J Dermatol. 2017 Oct;44(10):1097-1104. doi: 10.1111/1346-8138.13897. Epub 2017 Jun 8. PMID: 28593683. [91] Soteriou D, Kostic L, Sedov E, Yosefzon Y, Steller H, Fuchs Y. Isolating Hair Follicle Stem Cells and Epidermal Keratinocytes from Dorsal Mouse Skin. J Vis Exp. 2016 Apr 29;(110):53931. doi: 10.3791/53931. PMID: 27168117; PMCID: PMC4942017. [92] Johnson S, Cowley K, Hawkins TJ, Määttä A. Pulling force deforms hair follicle root sheath nuclei and surrounding dermal collagen matrix differently at infundibulum, isthmus and suprabulbar regions. Exp Dermatol. 2019 Jul;28(7):862-866. doi: 10.1111/exd.13948. Epub 2019 May 15. PMID: 31021445. [93] Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacol Physiol. 2020;33(5):280-292. doi: 10.1159/000510152. Epub 2020 Oct 14. PMID: 33053562. [94] Sequeira I, Nicolas JF. Redefining the structure of the hair follicle by 3D clonal analysis. Development. 2012 Oct;139(20):3741-51. doi: 10.1242/dev.081091. PMID: 22991440. [95] Krause K, Foitzik K. Biology of the hair follicle: the basics. Semin Cutan Med Surg. 2006 Mar;25(1):2-10. doi: 10.1016/j.sder.2006.01.002. PMID: 16616298. [96] Sasaki GH. Review of Human Hair Follicle Biology: Dynamics of Niches and Stem Cell Regulation for Possible Therapeutic Hair Stimulation for Plastic Surgeons. Aesthetic Plast Surg. 2019 Feb;43(1):253-266. doi: 10.1007/s00266-018-1248-1. Epub 2018 Oct 15. PMID: 30324295. [97] Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacol Physiol. 2020;33(5):280-292. doi: 10.1159/000510152. Epub 2020 Oct 14. PMID: 33053562. [98] Mao MQ, Jing J, Miao YJ, Lv ZF. Epithelial-Mesenchymal Interaction in Hair Regeneration and Skin Wound Healing. Front Med (Lausanne). 2022 Apr 14;9:863786. doi: 10.3389/fmed.2022.863786. PMID: 35492363; PMCID: PMC9048199. [99] Wang X, Tredget EE, Wu Y. Dynamic signals for hair follicle development and regeneration. Stem Cells Dev. 2012 Jan;21(1):7-18. doi: 10.1089/scd.2011.0230. Epub 2011 Sep 7. PMID: 21787229. [100] Rogers GE. Hair follicle differentiation and regulation. Int J Dev Biol. 2004;48(2-3):163-70. doi: 10.1387/ijdb.15272381. PMID: 15272381. [101] Jahoda CA, Reynolds AJ. Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet. 2001 Oct 27;358(9291):1445-8. doi: 10.1016/S0140-6736(01)06532-1. PMID: 11705511. [102] Park S. Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Front Cell Dev Biol. 2022 Jul 22;10:933370. doi: 10.3389/fcell.2022.933370. PMID: 35938157; PMCID: PMC9354988. [103] Yoshida Y, Soma T, Kishimoto J. Characterization of human dermal sheath cells reveals CD36-expressing perivascular cells associated with capillary blood vessel formation in hair follicles. Biochem Biophys Res Commun. 2019 Aug 27;516(3):945-950. doi: 10.1016/j.bbrc.2019.06.146. Epub 2019 Jul 2. Erratum in: Biochem Biophys Res Commun. 2020 Jan 8;521(2):544. PMID: 31272715. [104] Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, Magness S, Metzger D, Biernaskie J. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell. 2014 Dec 8;31(5):543-58. doi: 10.1016/j.devcel.2014.10.022. Epub 2014 Nov 26. PMID: 25465495. [105] Heitman N, Sennett R, Mok KW, Saxena N, Srivastava D, Martino P, Grisanti L, Wang Z, Ma'ayan A, Rompolas P, Rendl M. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science. 2020 Jan 10;367(6474):161-166. doi: 10.1126/science.aax9131. Epub 2019 Dec 19. PMID: 31857493; PMCID: PMC7409777. [106] Martino P, Sunkara R, Heitman N, Rangl M, Brown A, Saxena N, Grisanti L, Kohan D, Yanagisawa M, Rendl M. Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol. 2023 Feb;25(2):222-234. doi: 10.1038/s41556-022-01065-w. Epub 2023 Jan 30. PMID: 36717629; PMCID: PMC9931655. [107] Yoshida Y, Tsuboi R, Kishimoto J. Dermal Sheath Cells and Hair Follicle Regeneration. Endogenous Stem Cell-Based Brain Remodeling in Mammals. [Online] Endogenous Stem Cell-Based Brain Remodeling in Mammals; 2022. p. 91–106. Available from: doi:10.1007/978-3-030-98331-4_5 [108] González R, Moffatt G, Hagner A, Sinha S, Shin W, Rahmani W, Chojnacki A, Biernaskie J. Platelet-derived growth factor signaling modulates adult hair follicle dermal stem cell maintenance and self-renewal. NPJ Regen Med. 2017 Apr 14;2:11. doi: 10.1038/s41536-017-0013-4. PMID: 29302347; PMCID: PMC5665619. [109] Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng. 2018 Apr 9;4(4):1193-1207. doi: 10.1021/acsbiomaterials.7b00072. Epub 2017 Mar 21. PMID: 29682604; PMCID: PMC5905671. [110] Yang CC, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci. 2010 Jan;57(1):2-11. doi: 10.1016/j.jdermsci.2009.11.005. PMID: 20022473; PMCID: PMC2818774. [111] Jadeja SD, Tobin DJ. Autoantigen Discovery in the Hair Loss Disorder, Alopecia Areata: Implication of Post-Translational Modifications. Front Immunol. 2022 Jun 3;13:890027. doi: 10.3389/fimmu.2022.890027. PMID: 35720384; PMCID: PMC9205194. [112] Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol. 2006 Jul;126(7):1459-68. doi: 10.1038/sj.jid.5700376. PMID: 16778814. [113] Lin X, Zhu L, He J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Front Cell Dev Biol. 2022 May 12;10:899095. doi: 10.3389/fcell.2022.899095. PMID: 35646909; PMCID: PMC9133560. [114] Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003 Nov 10;163(3):609-23. doi: 10.1083/jcb.200309042. PMID: 14610062; PMCID: PMC2173651. [115] Osorio KM, Lee SE, McDermitt DJ, Waghmare SK, Zhang YV, Woo HN, Tumbar T. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development. 2008 Mar;135(6):1059-68. doi: 10.1242/dev.012799. Epub 2008 Feb 6. PMID: 18256199. [116] Ito M. Biologic roles of the innermost cell layer of the outer root sheath in human anagen hair follicle: further electron microscopic study. Arch Dermatol Res. 1989;281(4):254-9. doi: 10.1007/BF00431059. PMID: 2774657. [117] Iismaa SE, Kaidonis X, Nicks AM, Bogush N, Kikuchi K, Naqvi N, Harvey RP, Husain A, Graham RM. Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med. 2018 Feb 23;3:6. doi: 10.1038/s41536-018-0044-5. PMID: 29507774; PMCID: PMC5824955. [118] Vidal VP, Chaboissier MC, Lützkendorf S, Cotsarelis G, Mill P, Hui CC, Ortonne N, Ortonne JP, Schedl A. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol. 2005 Aug 9;15(15):1340-51. doi: 10.1016/j.cub.2005.06.064. PMID: 16085486. [119] Li H, Masieri FF, Schneider M, Bartella A, Gaus S, Hahnel S, Zimmerer R, Sack U, Maksimovic-Ivanic D, Mijatovic S, Simon JC, Lethaus B, Savkovic V. The Middle Part of the Plucked Hair Follicle Outer Root Sheath Is Identified as an Area Rich in Lineage-Specific Stem Cell Markers. Biomolecules. 2021 Jan 25;11(2):154. doi: 10.3390/biom11020154. PMID: 33503918; PMCID: PMC7912066. [120] Hoover E, Alhajj M, Flores JL. Physiology, Hair. 2022 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 29763123. [121] Schneider M, Dieckmann C, Rabe K, Simon JC, Savkovic V. Differentiating the stem cell pool of human hair follicle outer root sheath into functional melanocytes. Methods Mol Biol. 2014;1210:203-27. doi: 10.1007/978-1-4939-1435-7_16. PMID: 25173171. [122] Choi BY. Targeting Wnt/β-Catenin Pathway for Developing Therapies for Hair Loss. Int J Mol Sci. 2020 Jul 12;21(14):4915. doi: 10.3390/ijms21144915. PMID: 32664659; PMCID: PMC7404278. [123] Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005 Nov;3(11):e331. doi: 10.1371/journal.pbio.0030331. Epub 2005 Sep 20. PMID: 16162033; PMCID: PMC1216328. [124] Chovatiya G, Ghuwalewala S, Walter LD, Cosgrove BD, Tumbar T. High-resolution single-cell transcriptomics reveals heterogeneity of self-renewing hair follicle stem cells. Exp Dermatol. 2021 Apr;30(4):457-471. doi: 10.1111/exd.14262. Epub 2021 Jan 6. PMID: 33319418; PMCID: PMC8016723. [125] Joost S, Annusver K, Jacob T, Sun X, Dalessandri T, Sivan U, Sequeira I, Sandberg R, Kasper M. The Molecular Anatomy of Mouse Skin during Hair Growth and Rest. Cell Stem Cell. 2020 Mar 5;26(3):441-457.e7. doi: 10.1016/j.stem.2020.01.012. Epub 2020 Feb 27. PMID: 32109378. [126] Huang WY, Hong JB, Chang M, Wang SY, Lai SF, Chien HF, Lin SJ. Lower proximal cup and outer root sheath cells regenerate hair bulbs during anagen hair follicle repair after chemotherapeutic injury. Exp Dermatol. 2021 Apr;30(4):503-511. doi: 10.1111/exd.14175. Epub 2020 Sep 22. PMID: 32781495. [127] Rothnagel JA, Roop DR. Hair follicle companion layer: reacquainting an old friend. J Invest Dermatol. 1995 May;104(5 Suppl):42S-43S. doi: 10.1038/jid.1995.59. PMID: 7537786. [128] Hanakawa Y, Li H, Lin C, Stanley JR, Cotsarelis G. Desmogleins 1 and 3 in the companion layer anchor mouse anagen hair to the follicle. J Invest Dermatol. 2004 Nov;123(5):817-22. doi: 10.1111/j.0022-202X.2004.23479.x. PMID: 15482466. [129] Langbein L, Rogers MA, Praetzel S, Aoki N, Winter H, Schweizer J. A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized huxley cells (Flügelzellen) of the human hair follicle. J Invest Dermatol. 2002 May;118(5):789-99. doi: 10.1046/j.1523-1747.2002.01711.x. PMID: 11982755. [130] Kido T, Horigome T, Uda M, Adachi N, Hirai Y. Generation of iPS-derived model cells for analyses of hair shaft differentiation. Biotechniques. 2017 Sep 1;63(3):131-134. doi: 10.2144/000114589. PMID: 28911317. [131] Joshi RS. The Inner Root Sheath and the Men Associated with it Eponymically. Int J Trichology. 2011 Jan;3(1):57-62. doi: 10.4103/0974-7753.82119. PMID: 21769243; PMCID: PMC3129131. [132] Morioka K. A guide to hair follicle analysis by transmission electron microscopy: technique and practice. Exp Dermatol. 2009 Jul;18(7):577-82. doi: 10.1111/j.1600-0625.2009.00879.x. Epub 2009 Apr 20. PMID: 19397695. [133] Pasolli HA. The hair follicle bulge: a niche for adult stem cells. Microsc Microanal. 2011 Aug;17(4):513-9. doi: 10.1017/S1431927611000419. Epub 2011 Jul 5. PMID: 21729356. [134] Mahjour SB, Ghaffarpasand F, Wang H. Hair follicle regeneration in skin grafts: current concepts and future perspectives. Tissue Eng Part B Rev. 2012 Feb;18(1):15-23. doi: 10.1089/ten.teb.2011.0064. Epub 2011 Sep 1. PMID: 21883016; PMCID: PMC3262975. [135] Lim YS, Harland DP, Dawson TL Jr. Wanted, dead and alive: Why a multidisciplinary approach is needed to unlock hair treatment potential. Exp Dermatol. 2019 May;28(5):517-527. doi: 10.1111/exd.13898. PMID: 30706973. [136] Lavker RM, Sun TT, Oshima H, Barrandon Y, Akiyama M, Ferraris C, Chevalier G, Favier B, Jahoda CA, Dhouailly D, Panteleyev AA, Christiano AM. Hair follicle stem cells. J Investig Dermatol Symp Proc. 2003 Jun;8(1):28-38. doi: 10.1046/j.1523-1747.2003.12169.x. PMID: 12894992. [137] Potter CS, Peterson RL, Barth JL, Pruett ND, Jacobs DF, Kern MJ, Argraves WS, Sundberg JP, Awgulewitsch A. Evidence that the satin hair mutant gene Foxq1 is among multiple and functionally diverse regulatory targets for Hoxc13 during hair follicle differentiation. J Biol Chem. 2006 Sep 29;281(39):29245-55. doi: 10.1074/jbc.M603646200. Epub 2006 Jul 10. PMID: 16835220. [138] Jing J, Xu P, Xu JL, Ding YX, Yang XS, Jin XQ, Zhou LJ, Chen YH, Wu XJ, Lu ZF. Expression and localization of Sox10 during hair follicle morphogenesis and induced hair cycle. Int J Med Sci. 2021 Aug 13;18(15):3498-3505. doi: 10.7150/ijms.60728. PMID: 34522176; PMCID: PMC8436095. [139] Mesler AL, Veniaminova NA, Lull MV, Wong SY. Hair Follicle Terminal Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors. Cell Rep. 2017 Apr 25;19(4):809-821. doi: 10.1016/j.celrep.2017.03.077. PMID: 28445731; PMCID: PMC5482241. [140] Fuchs E, Horsley V. More than one way to skin . . . Genes Dev. 2008 Apr 15;22(8):976-85. doi: 10.1101/gad.1645908. PMID: 18413712; PMCID: PMC2732395. [141] Purba TS, Brunken L, Peake M, Shahmalak A, Chaves A, Poblet E, Ceballos L, Gandarillas A, Paus R. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol. 2017 Sep;96(6):632-641. doi: 10.1016/j.ejcb.2017.03.011. Epub 2017 Apr 2. PMID: 28413121. [142] Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature. 2012 Jul 26;487(7408):496-9. doi: 10.1038/nature11218. PMID: 22763436; PMCID: PMC3772651. [143] Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 2000 Dec 15;19(24):6664-74. doi: 10.1093/emboj/19.24.6664. PMID: 11118201; PMCID: PMC305899. [144] Morgan BA. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect Med. 2014 Jul 1;4(7):a015180. doi: 10.1101/cshperspect.a015180. PMID: 24985131; PMCID: PMC4066645. [145] Lachgar S, Moukadiri H, Jonca F, Charveron M, Bouhaddioui N, Gall Y, Bonafe JL, Plouët J. Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J Invest Dermatol. 1996 Jan;106(1):17-23. doi: 10.1111/1523-1747.ep12326964. PMID: 8592070. [146] Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell. 2010 Apr 20;18(4):633-42. doi: 10.1016/j.devcel.2010.01.016. PMID: 20412777; PMCID: PMC2893731. [147] Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol. 2012 Oct;23(8):906-16. doi: 10.1016/j.semcdb.2012.08.003. Epub 2012 Aug 22. PMID: 22939761; PMCID: PMC3496046. [148] Morioka K. Hair Follicle [Internet]. 1st ed. Springer Tokyo; 2006. Available from: https://link.springer.com/book/10.1007/b138721 [149] Chang CH, Tsai RK, Yu HS. Apoptosis coordinates with proliferation and differentiation during human hair follicle morphogenesis. J Dermatol Sci. 2005 Jul;39(1):9-16. doi: 10.1016/j.jdermsci.2005.01.014. Epub 2005 Mar 5. PMID: 15978414. [150] Botchkareva NV, Ahluwalia G, Shander D. Apoptosis in the hair follicle. J Invest Dermatol. 2006 Feb;126(2):258-64. doi: 10.1038/sj.jid.5700007. PMID: 16418734. [151] Purba TS, Haslam IS, Poblet E, Jiménez F, Gandarillas A, Izeta A, Paus R. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges. Bioessays. 2014 May;36(5):513-25. doi: 10.1002/bies.201300166. Epub 2014 Mar 25. PMID: 24665045. [152] Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc. 2003 Jun;8(1):46-55. doi: 10.1046/j.1523-1747.2003.12171.x. PMID: 12894994. [153] Lindner G, Botchkarev VA, Botchkareva NV, Ling G, van der Veen C, Paus R. Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol. 1997 Dec;151(6):1601-17. PMID: 9403711; PMCID: PMC1858357. [154] Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. J Cell Sci. 2001 Oct;114(Pt 19):3419-31. doi: 10.1242/jcs.114.19.3419. PMID: 11682602. [155] Myung P, Ito M. Dissecting the bulge in hair regeneration. J Clin Invest. 2012 Feb;122(2):448-54. doi: 10.1172/JCI57414. Epub 2012 Feb 1. PMID: 22293183; PMCID: PMC3266778. [156] Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgård R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008 Nov;40(11):1291-9. doi: 10.1038/ng.239. Epub 2008 Oct 12. PMID: 18849992. [157] Hall EJ. Radiation biology for pediatric radiologists. Pediatr Radiol. 2009 Feb;39 Suppl 1:S57-64. doi: 10.1007/s00247-008-1027-2. Epub 2008 Dec 16. PMID: 19083223. [158] Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells. 2021 Nov 5;10(11):3041. doi: 10.3390/cells10113041. PMID: 34831262; PMCID: PMC8616186. [159] Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer. 2009 Feb;9(2):134-42. doi: 10.1038/nrc2587. Epub 2009 Jan 16. PMID: 19148183; PMCID: PMC2670578. [160] Panganiban RA, Snow AL, Day RM. Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci. 2013 Jul 31;14(8):15931-58. doi: 10.3390/ijms140815931. PMID: 23912235; PMCID: PMC3759894. [161] Mitin T, Zietman AL. Promise and pitfalls of heavy-particle therapy. J Clin Oncol. 2014 Sep 10;32(26):2855-63. doi: 10.1200/JCO.2014.55.1945. Epub 2014 Aug 11. PMID: 25113772; PMCID: PMC4152713. [162] Mohan R, Grosshans D. Proton therapy - Present and future. Adv Drug Deliv Rev. 2017 Jan 15;109:26-44. doi: 10.1016/j.addr.2016.11.006. Epub 2016 Dec 3. PMID: 27919760; PMCID: PMC5303653. [163] Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012 Jun 7;57(11):R99-117. doi: 10.1088/0031-9155/57/11/R99. Epub 2012 May 9. PMID: 22571913; PMCID: PMC3374500. [164] Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys Med Biol. 2008 Feb 21;53(4):1027-42. doi: 10.1088/0031-9155/53/4/014. Epub 2008 Jan 29. PMID: 18263956. [165] Graeff C. Motion mitigation in scanned ion beam therapy through 4D-optimization. Phys Med. 2014 Jul;30(5):570-7. doi: 10.1016/j.ejmp.2014.03.011. Epub 2014 May 10. PMID: 24818997. [166] Bert C, Durante M. Motion in radiotherapy: particle therapy. Phys Med Biol. 2011 Aug 21;56(16):R113-44. doi: 10.1088/0031-9155/56/16/R01. Epub 2011 Jul 20. PMID: 21775795. [167] Durante M, Paganetti H. Nuclear physics in particle therapy: a review. Rep Prog Phys. 2016 Sep;79(9):096702. doi: 10.1088/0034-4885/79/9/096702. Epub 2016 Aug 19. PMID: 27540827. [168] Kim CK, Yang VW, Bialkowska AB. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. Curr Stem Cell Rep. 2017;3(4):320-332. doi: 10.1007/s40778-017-0103-7. Epub 2017 Oct 5. Erratum in: Curr Stem Cell Rep. 2018;4(1):95. PMID: 29497599; PMCID: PMC5818549. [169] Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, Wan M, Lei W, Armour M, Tryggestad E, Wong J, Wen CY, Lu WW, Frassica FJ. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1609-14. doi: 10.1073/pnas.1015350108. Epub 2011 Jan 10. Erratum in: Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5921. PMID: 21220327; PMCID: PMC3029740. [170] Avraham T, Yan A, Zampell JC, Daluvoy SV, Haimovitz-Friedman A, Cordeiro AP, Mehrara BJ. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-beta1-mediated tissue fibrosis. Am J Physiol Cell Physiol. 2010 Sep;299(3):C589-605. doi: 10.1152/ajpcell.00535.2009. Epub 2010 Jun 2. PMID: 20519446; PMCID: PMC2944320. [171] Bray FN, Simmons BJ, Wolfson AH, Nouri K. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy. Dermatol Ther (Heidelb). 2016 Jun;6(2):185-206. doi: 10.1007/s13555-016-0120-y. Epub 2016 Jun 1. PMID: 27250839; PMCID: PMC4906114. [172] Hegedus F, Mathew LM, Schwartz RA. Radiation dermatitis: an overview. Int J Dermatol. 2017 Sep;56(9):909-914. doi: 10.1111/ijd.13371. Epub 2016 Aug 6. PMID: 27496623. [173] Spałek M. Chronic radiation-induced dermatitis: challenges and solutions. Clin Cosmet Investig Dermatol. 2016 Dec 9;9:473-482. doi: 10.2147/CCID.S94320. PMID: 28003769; PMCID: PMC5161339. [174] Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003 Sep 1;22(37):5734-54. doi: 10.1038/sj.onc.1206663. PMID: 12947383. [175] Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012 Dec 31;327(1-2):48-60. doi: 10.1016/j.canlet.2011.12.012. Epub 2011 Dec 17. PMID: 22182453; PMCID: PMC3980444. [176] Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019 Jul;25:101084. doi: 10.1016/j.redox.2018.101084. Epub 2018 Dec 21. PMID: 30612957; PMCID: PMC6859528. [177] Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018 Aug 13;18(4):e27. doi: 10.4110/in.2018.18.e27. PMID: 30181915; PMCID: PMC6117512. [178] Borrelli MR, Shen AH, Lee GK, Momeni A, Longaker MT, Wan DC. Radiation-Induced Skin Fibrosis: Pathogenesis, Current Treatment Options, and Emerging Therapeutics. Ann Plast Surg. 2019 Oct;83(4S Suppl 1):S59-S64. doi: 10.1097/SAP.0000000000002098. PMID: 31513068; PMCID: PMC6746243. [179] Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer. 2013 Sep;4(9-10):401-8. doi: 10.1177/1947601913485414. PMID: 24349638; PMCID: PMC3863336. [180] Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J Signal Transduct. 2011;2011:792639. doi: 10.1155/2011/792639. Epub 2011 Feb 6. PMID: 21637379; PMCID: PMC3100083. [181] Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 Jan;21(1):103-15. doi: 10.1038/cr.2010.178. Epub 2010 Dec 28. PMID: 21187859; PMCID: PMC3193400. [182] Veuger SJ, Hunter JE, Durkacz BW. Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene. 2009 Feb 12;28(6):832-42. doi: 10.1038/onc.2008.439. Epub 2008 Dec 8. Erratum in: Oncogene. 2023 Feb;42(7):546-547. PMID: 19060926; PMCID: PMC2642763. [183] Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova). 2015 Mar 31;3(1):e35. doi: 10.15190/d.2015.27. PMID: 32309561; PMCID: PMC7159829. [184] Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014 Mar 1;20(7):1126-67. doi: 10.1089/ars.2012.5149. Epub 2013 Oct 22. PMID: 23991888; PMCID: PMC3929010. [185] Landy RE, Stross WC, May JM, Kaleem TA, Malouff TD, Waddle MR, Vallow LA. Idiopathic mast cell activation syndrome and radiation therapy: a case study, literature review, and discussion of mast cell disorders and radiotherapy. Radiat Oncol. 2019 Dec 9;14(1):222. doi: 10.1186/s13014-019-1434-6. PMID: 31818306; PMCID: PMC6902562. [186] Moriyasu S, Yamamoto K, Kureyama N, Okamura K, Ikeda T, Yamatodani A. Involvement of histamine released from mast cells in acute radiation dermatitis in mice. J Pharmacol Sci. 2007 Jun;104(2):187-90. doi: 10.1254/jphs.sc0070127. Epub 2007 Jun 8. PMID: 17558180. [187] Teixeira G, Faria R. Inflammatory Mediators Leading to Edema Formation through Plasma Membrane Receptors [Internet]. Infections and Sepsis Development. IntechOpen; 2021. Available from: http://dx.doi.org/10.5772/intechopen.99230 [188] Wei J, Meng L, Hou X, Qu C, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res. 2018 Dec 21;11:167-177. doi: 10.2147/CMAR.S188655. PMID: 30613164; PMCID: PMC6306060. [189] Chan RJ, Webster J, Chung B, Marquart L, Ahmed M, Garantziotis S. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014 Jan 31;14:53. doi: 10.1186/1471-2407-14-53. PMID: 24484999; PMCID: PMC3909507. [190] Yang X, Ren H, Guo X, Hu C, Fu J. Radiation-induced skin injury: pathogenesis, treatment, and management. Aging (Albany NY). 2020 Nov 16;12(22):23379-23393. doi: 10.18632/aging.103932. Epub 2020 Nov 16. PMID: 33202382; PMCID: PMC7746368. [191] Sudarikova AV, Fomin MV, Yankelevich IA, Ilatovskaya DV. The implications of histamine metabolism and signaling in renal function. Physiol Rep. 2021 Apr;9(8):e14845. doi: 10.14814/phy2.14845. PMID: 33932106; PMCID: PMC8087988. [192] Sandig H, Bulfone-Paus S. TLR signaling in mast cells: common and unique features. Front Immunol. 2012 Jul 4;3:185. doi: 10.3389/fimmu.2012.00185. PMID: 22783258; PMCID: PMC3389341. [193] Agier J, Pastwińska J, Brzezińska-Błaszczyk E. An overview of mast cell pattern recognition receptors. Inflamm Res. 2018 Sep;67(9):737-746. doi: 10.1007/s00011-018-1164-5. Epub 2018 Jun 16. PMID: 29909493; PMCID: PMC6096630. [194] Kujath P, Michelsen A. Wounds - from physiology to wound dressing. Dtsch Arztebl Int. 2008 Mar;105(13):239-48. doi: 10.3238/arztebl.2008.0239. Epub 2008 Mar 28. PMID: 19629204; PMCID: PMC2696775. [195] Gonzalez AC, Costa TF, Andrade ZA, Medrado AR. Wound healing - A literature review. An Bras Dermatol. 2016 Sep-Oct;91(5):614-620. doi: 10.1590/abd1806-4841.20164741. PMID: 27828635; PMCID: PMC5087220. [196] Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011 Jul 11;13:e23. doi: 10.1017/S1462399411001943. PMID: 21740602; PMCID: PMC3596046. [197] Alhajj M, Goyal A. Physiology, Granulation Tissue. 2022 Oct 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32119289. [198] Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013 Aug;22(8):407-8, 410-12. doi: 10.12968/jowc.2013.22.8.407. PMID: 23924840. [199] Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014 Nov 6;7:301-11. doi: 10.2147/CCID.S50046. PMID: 25395868; PMCID: PMC4226391. [200] Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008 May 15;453(7193):314-21. doi: 10.1038/nature07039. PMID: 18480812. [201] Diller RB, Tabor AJ. The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics (Basel). 2022 Jul 1;7(3):87. doi: 10.3390/biomimetics7030087. PMID: 35892357; PMCID: PMC9326521. [202] Johnson MB, Pang B, Gardner DJ, Niknam-Benia S, Soundarajan V, Bramos A, Perrault DP, Banks K, Lee GK, Baker RY, Kim GH, Lee S, Chai Y, Chen M, Li W, Kwong L, Hong YK, Wong AK. Topical Fibronectin Improves Wound Healing of Irradiated Skin. Sci Rep. 2017 Jun 20;7(1):3876. doi: 10.1038/s41598-017-03614-y. PMID: 28634413; PMCID: PMC5478660. [203] Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG. Wound healing after radiation therapy: review of the literature. Radiat Oncol. 2012 Sep 24;7:162. doi: 10.1186/1748-717X-7-162. PMID: 23006548; PMCID: PMC3504517. [204] Dormand EL, Banwell PE, Goodacre TE. Radiotherapy and wound healing. Int Wound J. 2005 Jun;2(2):112-27. doi: 10.1111/j.1742-4801.2005.00079.x. PMID: 16722862; PMCID: PMC7951225. [205] Jacobson LK, Johnson MB, Dedhia RD, Niknam-Bienia Solmaz, Wong AK. Impaired wound healing after radiation therapy: A systematic review of pathogenesis and treatment. JPRAS Open [Internet]. 2017;13:92–105. Available from: https://doi.org/10.1016/j.jpra.2017.04.001. [206] Tibbs MK. Wound healing following radiation therapy: a review. Radiother Oncol. 1997 Feb;42(2):99-106. doi: 10.1016/s0167-8140(96)01880-4. PMID: 9106919. [207] de Andrade CBV, Ramos IPR, de Moraes ACN, do Nascimento ALR, Salata C, Goldenberg RCDS, de Carvalho JJ, de Almeida CEV. Radiotherapy-Induced Skin Reactions Induce Fibrosis Mediated by TGF-β1 Cytokine. Dose Response. 2017 Apr 28;15(2):1559325817705019. doi: 10.1177/1559325817705019. PMID: 28507463; PMCID: PMC5415163. [208] Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol. 2015 Nov;141(11):1985-94. doi: 10.1007/s00432-015-1974-6. Epub 2015 Apr 25. PMID: 25910988; PMCID: PMC4573901. [209] Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014 Sep;32(3):103-15. doi: 10.3857/roj.2014.32.3.103. Epub 2014 Sep 30. PMID: 25324981; PMCID: PMC4194292. [210] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017 Jun;58(5):235-263. doi: 10.1002/em.22087. Epub 2017 May 9. PMID: 28485537; PMCID: PMC5474181. [211] Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020 May 1;5(1):60. doi: 10.1038/s41392-020-0150-x. PMID: 32355263; PMCID: PMC7192953. [212] Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021 Jul 9;6(1):254. doi: 10.1038/s41392-021-00648-7. PMID: 34238917; PMCID: PMC8266832. [213] Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst). 2020 Jun;90:102866. doi: 10.1016/j.dnarep.2020.102866. Epub 2020 Apr 30. PMID: 32417669; PMCID: PMC7299775. [214] Nakano T, Xu X, Salem AMH, Shoulkamy MI, Ide H. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance. Free Radic Biol Med. 2017 Jun;107:136-145. doi: 10.1016/j.freeradbiomed.2016.11.041. Epub 2016 Nov 25. PMID: 27894771. [215] Morgan MA, Lawrence TS. Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways. Clin Cancer Res. 2015 Jul 1;21(13):2898-904. doi: 10.1158/1078-0432.CCR-13-3229. PMID: 26133775; PMCID: PMC4494107. [216] Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med. 2017 Jun;107:125-135. doi: 10.1016/j.freeradbiomed.2016.12.008. Epub 2016 Dec 8. PMID: 27939934. [217] Mladenova V, Mladenov E, Stuschke M, Iliakis G. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules. 2022 Feb 24;27(5):1540. doi: 10.3390/molecules27051540. PMID: 35268641; PMCID: PMC8911773. [218] Eccles LJ, O'Neill P, Lomax ME. Delayed repair of radiation induced clustered DNA damage: friend or foe? Mutat Res. 2011 Jun 3;711(1-2):134-41. doi: 10.1016/j.mrfmmm.2010.11.003. Epub 2010 Dec 2. PMID: 21130102; PMCID: PMC3112496. [219] Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 2013 Oct;25(10):578-85. doi: 10.1016/j.clon.2013.06.007. Epub 2013 Jul 10. PMID: 23849504. [220] Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel). 2019 Nov 14;11(11):1789. doi: 10.3390/cancers11111789. PMID: 31739493; PMCID: PMC6895987. [221] Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, Kagadis GC. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers (Basel). 2020 Mar 26;12(4):799. doi: 10.3390/cancers12040799. PMID: 32225023; PMCID: PMC7226293. [222] Wilkinson B, Hill MA, Parsons JL. The Cellular Response to Complex DNA Damage Induced by Ionising Radiation. Int J Mol Sci. 2023 Mar 3;24(5):4920. doi: 10.3390/ijms24054920. PMID: 36902352; PMCID: PMC10003081. [223] Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel). 2017 Jul 18;9(7):91. doi: 10.3390/cancers9070091. PMID: 28718816; PMCID: PMC5532627. [224] Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel). 2020 Jan 15;11(1):99. doi: 10.3390/genes11010099. PMID: 31952359; PMCID: PMC7017136. [225] Sutherland BM, Bennett PV, Sidorkina O, Laval J. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):103-8. doi: 10.1073/pnas.97.1.103. PMID: 10618378; PMCID: PMC26623. [226] David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007 Jun 21;447(7147):941-50. doi: 10.1038/nature05978. PMID: 17581577; PMCID: PMC2896554. [227] Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 2009 Jan;30(1):2-10. doi: 10.1093/carcin/bgn250. Epub 2008 Oct 31. PMID: 18978338; PMCID: PMC2639036. [228] Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 2015 Dec 2;43(21):10083-101. doi: 10.1093/nar/gkv1136. Epub 2015 Oct 30. PMID: 26519467; PMCID: PMC4666366. [229] Huang Y, Li L. DNA crosslinking damage and cancer - a tale of friend and foe. Transl Cancer Res. 2013 Jun;2(3):144-154. doi: 10.3978/j.issn.2218-676X.2013.03.01. PMID: 23998004; PMCID: PMC3755464. [230] Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013 Oct 1;5(10):a012609. doi: 10.1101/cshperspect.a012609. PMID: 24086042; PMCID: PMC3783044. [231] Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011 Jun 24;11(7):467-80. doi: 10.1038/nrc3088. PMID: 21701511; PMCID: PMC3560328. [232] Hashimoto S, Anai H, Hanada K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ. 2016 May 1;38:9. doi: 10.1186/s41021-016-0037-9. PMID: 27350828; PMCID: PMC4918140. [233] Sun Y, Nitiss JL, Pommier Y. Editorial: The repair of DNA-protein crosslinks. Front Mol Biosci. 2023 Apr 28;10:1203479. doi: 10.3389/fmolb.2023.1203479. PMID: 37187895; PMCID: PMC10175854. [234] Ide H, Nakano T, Shoulkamy MI, Salem AMH. Formation, Repair, and Biological Effects of DNA–Protein Cross-Link Damage [Internet]. Advances in DNA Repair. InTech; 2015. Available from: http://dx.doi.org/10.5772/59683 [235] Weickert P, Stingele J. DNA-Protein Crosslinks and Their Resolution. Annu Rev Biochem. 2022 Jun 21;91:157-181. doi: 10.1146/annurev-biochem-032620-105820. Epub 2022 Mar 18. PMID: 35303790. [236] Kühbacher U, Duxin JP. How to fix DNA-protein crosslinks. DNA Repair (Amst). 2020 Oct;94:102924. doi: 10.1016/j.dnarep.2020.102924. Epub 2020 Jul 9. PMID: 32683310; PMCID: PMC7511601. [237] Zhang H, Xiong Y, Chen J. DNA-protein cross-link repair: what do we know now? Cell Biosci. 2020 Jan 7;10:3. doi: 10.1186/s13578-019-0366-z. PMID: 31921408; PMCID: PMC6945406. [238] Caldecott KW. DNA single-strand break repair and human genetic disease. Trends Cell Biol. 2022 Sep;32(9):733-745. doi: 10.1016/j.tcb.2022.04.010. Epub 2022 May 26. PMID: 35643889. [239] Dianov GL, Hübscher U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 2013 Apr 1;41(6):3483-90. doi: 10.1093/nar/gkt076. Epub 2013 Feb 13. PMID: 23408852; PMCID: PMC3616742. [240] Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front Oncol. 2019 Oct 10;9:1009. doi: 10.3389/fonc.2019.01009. PMID: 31649878; PMCID: PMC6795692. [241] Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009 Feb 1;417(3):639-50. doi: 10.1042/BJ20080413. PMID: 19133841; PMCID: PMC2975036. [242] Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet. 2020 Dec 23;11:607428. doi: 10.3389/fgene.2020.607428. PMID: 33424929; PMCID: PMC7786053. [243] Watanabe G, Lieber MR. Dynamics of the Artemis and DNA-PKcs Complex in the Repair of Double-Strand Breaks. J Mol Biol. 2022 Dec 15;434(23):167858. doi: 10.1016/j.jmb.2022.167858. Epub 2022 Oct 19. PMID: 36270581; PMCID: PMC9940633. [244] Weterings E, Chen DJ. The endless tale of non-homologous end-joining. Cell Res. 2008 Jan;18(1):114-24. doi: 10.1038/cr.2008.3. PMID: 18166980. [245] Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017 Aug;18(8):495-506. doi: 10.1038/nrm.2017.48. Epub 2017 May 17. PMID: 28512351; PMCID: PMC7062608. [246] Allmann S, Mayer L, Olma J, Kaina B, Hofmann TG, Tomicic MT, Christmann M. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence. Nucleic Acids Res. 2020 Dec 2;48(21):12085-12101. doi: 10.1093/nar/gkaa965. PMID: 33166399; PMCID: PMC7708059. [247] Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007 Dec 14;28(5):739-45. doi: 10.1016/j.molcel.2007.11.015. PMID: 18082599. [248] Adjemian S, Oltean T, Martens S, Wiernicki B, Goossens V, Vanden Berghe T, Cappe B, Ladik M, Riquet FB, Heyndrickx L, Bridelance J, Vuylsteke M, Vandecasteele K, Vandenabeele P. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis. 2020 Nov 23;11(11):1003. doi: 10.1038/s41419-020-03209-y. PMID: 33230108; PMCID: PMC7684309. [249] Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018 Mar;25(3):486-541. doi: 10.1038/s41418-017-0012-4. Epub 2018 Jan 23. PMID: 29362479; PMCID: PMC5864239. [250] Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005 Apr;73(4):1907-16. doi: 10.1128/IAI.73.4.1907-1916.2005. PMID: 15784530; PMCID: PMC1087413. [251] D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019 Jun;43(6):582-592. doi: 10.1002/cbin.11137. Epub 2019 Apr 25. PMID: 30958602. [252] Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007 Jan;32(1):37-43. doi: 10.1016/j.tibs.2006.11.001. Epub 2006 Dec 1. PMID: 17141506. [253] Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016 May;15(5):348-66. doi: 10.1038/nrd.2015.6. Epub 2016 Jan 18. PMID: 26775689; PMCID: PMC6531857. [254] Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol. 2014 Nov;35:24-32. doi: 10.1016/j.semcdb.2014.02.006. Epub 2014 Feb 26. PMID: 24582829. [255] Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3-15. PMID: 7856735; PMCID: PMC1870771. [256] Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol. 1997 Jan-Feb;25(1):82-8. doi: 10.1177/019262339702500116. PMID: 9061857. [257] Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol. 2002 Aug;31(4):214-23. doi: 10.1046/j.1439-0264.2002.00398.x. PMID: 12196263. [258] Kühn K, D'Lima DD, Hashimoto S, Lotz M. Cell death in cartilage. Osteoarthritis Cartilage. 2004 Jan;12(1):1-16. doi: 10.1016/j.joca.2003.09.015. PMID: 14697678. [259] Dyer A, Di Y, Calderon H, Illingworth S, Kueberuwa G, Tedcastle A, Jakeman P, Chia SL, Brown A, Silva MA, Barlow D, Beadle J, Hermiston T, Ferguson DJ, Champion B, Fisher KD, Seymour LW. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators. Mol Ther Oncolytics. 2016 Dec 10;4:18-30. doi: 10.1016/j.omto.2016.11.003. PMID: 28345021; PMCID: PMC5363721. [260] Krysko O, De Ridder L, Cornelissen M. Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis. 2004 Jul;9(4):495-500. doi: 10.1023/B:APPT.0000031452.75162.75. PMID: 15192332. [261] Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol. 2021 Mar 4;9:634690. doi: 10.3389/fcell.2021.634690. PMID: 33748119; PMCID: PMC7970050. [262] Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011 Sep;243(1):206-14. doi: 10.1111/j.1600-065X.2011.01044.x. PMID: 21884178; PMCID: PMC3609431. [263] Labbé K, Saleh M. Cell death in the host response to infection. Cell Death Differ. 2008 Sep;15(9):1339-49. doi: 10.1038/cdd.2008.91. Epub 2008 Jun 20. PMID: 18566602. [264] Vossenkamper A, Warnes G. Flow Cytometry Reveals the Nature of Oncotic Cells. Int J Mol Sci. 2019 Sep 6;20(18):4379. doi: 10.3390/ijms20184379. PMID: 31489916; PMCID: PMC6769836. [265] Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 2022 Jul 22;13(7):637. doi: 10.1038/s41419-022-05066-3. PMID: 35869043; PMCID: PMC9307826. [266] Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR, go C, Becker JU, Linkermann A. The pathological features of regulated necrosis. J Pathol. 2019 Apr;247(5):697-707. doi: 10.1002/path.5248. Epub 2019 Feb 25. PMID: 30714148. [267] Karch J, Molkentin JD. Regulated necrotic cell death: the passive aggressive side of Bax and Bak. Circ Res. 2015 May 22;116(11):1800-9. doi: 10.1161/CIRCRESAHA.116.305421. PMID: 25999420; PMCID: PMC4443748. [268] Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014 Feb;15(2):135-47. doi: 10.1038/nrm3737. PMID: 24452471. [269] Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 May;29(5):347-364. doi: 10.1038/s41422-019-0164-5. Epub 2019 Apr 4. PMID: 30948788; PMCID: PMC6796845. [270] Jiao Y, Cao F, Liu H. Radiation-induced Cell Death and Its Mechanisms. Health Phys. 2022 Nov 1;123(5):376-386. doi: 10.1097/HP.0000000000001601. Epub 2022 Sep 6. PMID: 36069830; PMCID: PMC9512240. [271] Sia J, Szmyd R, Hau E, Gee HE. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front Cell Dev Biol. 2020 Feb 13;8:41. doi: 10.3389/fcell.2020.00041. PMID: 32117972; PMCID: PMC7031160. [272] Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010 Aug;31(4):363-72. doi: 10.1007/s13277-010-0042-8. Epub 2010 May 20. PMID: 20490962. [273] Cao X, Wen P, Fu Y, Gao Y, Qi X, Chen B, Tao Y, Wu L, Xu A, Lu H, Zhao G. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cell Signal. 2019 Oct;62:109337. doi: 10.1016/j.cellsig.2019.06.002. Epub 2019 Jun 5. PMID: 31173879. [274] Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000 Feb;45(3):528-37. doi: 10.1016/s0008-6363(99)00384-3. PMID: 10728374. [275] Taatjes DJ, Sobel BE, Budd RC. Morphological and cytochemical determination of cell death by apoptosis. Histochem Cell Biol. 2008 Jan;129(1):33-43. doi: 10.1007/s00418-007-0356-9. Epub 2007 Nov 14. PMID: 18000678; PMCID: PMC2137940. [276] Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99-126. doi: 10.1146/annurev.pathmechdis.3.121806.151456. PMID: 18039143; PMCID: PMC3094097. [277] Haanen C, Vermes I. Apoptosis and inflammation. Mediators Inflamm. 1995;4(1):5-15. doi: 10.1155/S0962935195000020. PMID: 18475609; PMCID: PMC2365613. [278] Wallach D, Kovalenko A. Keeping inflammation at bay. Elife. 2014 Mar 25;3:e02583. doi: 10.7554/eLife.02583. PMID: 24668174; PMCID: PMC3963505. [279] Kim J, Kang H, Son B, Kim MJ, Kang J, Park KH, Jeon J, Jo S, Kim HY, Youn H, Youn B. NRBF2-mediated autophagy contributes to metabolite replenishment and radioresistance in glioblastoma. Exp Mol Med. 2022 Nov;54(11):1872-1885. doi: 10.1038/s12276-022-00873-2. Epub 2022 Nov 4. PMID: 36333468; PMCID: PMC9723115. [280] Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010 Feb 5;140(3):313-26. doi: 10.1016/j.cell.2010.01.028. PMID: 20144757; PMCID: PMC2852113. [281] Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018 Sep;19(9):579-593. doi: 10.1038/s41580-018-0033-y. Erratum in: Nat Rev Mol Cell Biol. 2018 Jul 25;: PMID: 30006559; PMCID: PMC6424591. [282] Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010 May;221(1):3-12. doi: 10.1002/path.2697. PMID: 20225336; PMCID: PMC2990190. [283] Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014 Jan 20;20(3):460-73. doi: 10.1089/ars.2013.5371. Epub 2013 Aug 2. PMID: 23725295; PMCID: PMC3894687. [284] Jung M, Choi H, Mun JY. The autophagy research in electron microscopy. Appl Microsc. 2019 Nov 6;49(1):11. doi: 10.1186/s42649-019-0012-6. PMID: 33580401; PMCID: PMC7809580. [285] Hu L, Wang H, Huang L, Zhao Y, Wang J. Crosstalk between autophagy and intracellular radiation response (Review). Int J Oncol. 2016 Dec;49(6):2217-2226. doi: 10.3892/ijo.2016.3719. Epub 2016 Oct 5. PMID: 27748893. [286] Ouellette MM, Zhou S, Yan Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics (Basel). 2022 Mar 8;12(3):656. doi: 10.3390/diagnostics12030656. PMID: 35328212; PMCID: PMC8947583. [287] Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 2021 Nov;12(11):836-857. doi: 10.1007/s13238-021-00841-y. Epub 2021 Apr 23. PMID: 33891303; PMCID: PMC8563889. [288] Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018 Jul 9;9(7):753. doi: 10.1038/s41419-018-0794-4. PMID: 29988039; PMCID: PMC6037763. [289] Poltorack CD, Dixon SJ. Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J. 2022 Jan;289(2):374-385. doi: 10.1111/febs.15842. Epub 2021 Apr 7. PMID: 33773039; PMCID: PMC8473584. [290] Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, Zhao J, Liu S. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis. 2022 Jan 10;13(1):40. doi: 10.1038/s41419-021-04490-1. PMID: 35013137; PMCID: PMC8748693. [291] Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021 Feb;31(2):107-125. doi: 10.1038/s41422-020-00441-1. Epub 2020 Dec 2. PMID: 33268902; PMCID: PMC8026611. [292] Lei P, Bai T, Sun Y. Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front Physiol. 2019 Feb 26;10:139. doi: 10.3389/fphys.2019.00139. PMID: 30863316; PMCID: PMC6399426. [293] Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020 Feb 3;11(2):88. doi: 10.1038/s41419-020-2298-2. PMID: 32015325; PMCID: PMC6997353. [294] Wang H, Liu M, Zeng X, Zheng Y, Wang Y, Zhou Y. Cell death affecting the progression of gastric cancer. Cell Death Discov. 2022 Aug 29;8(1):377. doi: 10.1038/s41420-022-01161-8. PMID: 36038533; PMCID: PMC9424204. [295] Fabbrizi MR, Parsons JL. Cell death mechanisms in head and neck cancer cells in response to low and high-LET radiation. Expert Rev Mol Med. 2022 Jan 12;24:e2. doi: 10.1017/erm.2021.31. PMCID: PMC9884797. [296] Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol. 2022 Dec 1;17(1):196. doi: 10.1186/s13014-022-02171-7. PMID: 36457125; PMCID: PMC9714175. [297] Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, Jiang X. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019 Aug 8;15(10):2128-2138. doi: 10.7150/ijbs.35460. PMID: 31592122; PMCID: PMC6775290. [298] Bauer TM, Murphy E. Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death. Circ Res. 2020 Jan 17;126(2):280-293. doi: 10.1161/CIRCRESAHA.119.316306. Epub 2020 Jan 16. PMID: 31944918; PMCID: PMC8317591. [299] Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci. 2017 Aug;74(15):2795-2813. doi: 10.1007/s00018-017-2502-4. Epub 2017 Apr 4. PMID: 28378042; PMCID: PMC5977999. [300] Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015 Mar 19;34(12):1475-86. doi: 10.1038/onc.2014.96. Epub 2014 Apr 14. Erratum in: Oncogene. 2015 Mar 19;34(12):1608. PMID: 24727893. [301] Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis. 2022 Jan 1;1868(1):166297. doi: 10.1016/j.bbadis.2021.166297. Epub 2021 Oct 27. PMID: 34718119. [302] Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends Cell Biol. 2016 Sep;26(9):655-667. doi: 10.1016/j.tcb.2016.04.006. Epub 2016 May 5. PMID: 27161573. [303] Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules. 2020 Jul 4;10(7):998. doi: 10.3390/biom10070998. PMID: 32635556; PMCID: PMC7408088. [304] Wu Q, Allouch A, Martins I, Brenner C, Modjtahedi N, Deutsch E, Perfettini JL. Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Front Immunol. 2017 May 26;8:613. doi: 10.3389/fimmu.2017.00613. PMID: 28603525; PMCID: PMC5445662. [305] Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018 Jul 6;15(1):199. doi: 10.1186/s12974-018-1235-0. PMID: 29980212; PMCID: PMC6035417. [306] Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021 Mar 4;11(10):4839-4857. doi: 10.7150/thno.56747. PMID: 33754031; PMCID: PMC7978298. [307] Liu ZG, Jiao D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress. 2019 Dec 19;4(1):1-8. doi: 10.15698/cst2020.01.208. PMID: 31922095; PMCID: PMC6946014. [308] Dai W, Cheng J, Leng X, Hu X, Ao Y. The potential role of necroptosis in clinical diseases (Review). Int J Mol Med. 2021 May;47(5):89. doi: 10.3892/ijmm.2021.4922. Epub 2021 Mar 31. PMID: 33786617; PMCID: PMC8012024. [309] Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010 Oct;11(10):700-14. doi: 10.1038/nrm2970. Epub 2010 Sep 8. PMID: 20823910. [310] Du T, Gao J, Li P, Wang Y, Qi Q, Liu X, Li J, Wang C, Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021 Aug;11(8):e492. doi: 10.1002/ctm2.492. PMID: 34459122; PMCID: PMC8329701. [311] Wang L, Qin X, Liang J, Ge P. Induction of Pyroptosis: A Promising Strategy for Cancer Treatment. Front Oncol. 2021 Feb 26;11:635774. doi: 10.3389/fonc.2021.635774. PMID: 33718226; PMCID: PMC7953901. [312] Zheng Y, Xu X, Chi F, Cong N. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules. 2022 Nov 3;12(11):1625. doi: 10.3390/biom12111625. PMID: 36358975; PMCID: PMC9687982. [313] Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019 Aug;19(8):477-489. doi: 10.1038/s41577-019-0165-0. PMID: 31036962; PMCID: PMC7807242. [314] Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019 Jul 6;20(13):3328. doi: 10.3390/ijms20133328. PMID: 31284572; PMCID: PMC6651423. [315] Tan Y, Chen Q, Li X, Zeng Z, Xiong W, Li G, Li X, Yang J, Xiang B, Yi M. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021 May 3;40(1):153. doi: 10.1186/s13046-021-01959-x. Erratum in: J Exp Clin Cancer Res. 2021 Jul 1;40(1):219. Erratum in: J Exp Clin Cancer Res. 2021 Sep 22;40(1):296. PMID: 33941231; PMCID: PMC8091792. [316] Loveless R, Bloomquist R, Teng Y. Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res. 2021 Aug 24;40(1):264. doi: 10.1186/s13046-021-02065-8. PMID: 34429144; PMCID: PMC8383365. [317] Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022 Jun 20;7(1):196. doi: 10.1038/s41392-022-01046-3. PMID: 35725836; PMCID: PMC9208265. [318] Wang M, Jiang S, Zhang Y, Li P, Wang K. The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers (Basel). 2019 Sep 5;11(9):1313. doi: 10.3390/cancers11091313. PMID: 31492049; PMCID: PMC6770479. [319] Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol. 2022 Oct 8;15(1):140. doi: 10.1186/s13045-022-01365-6. PMID: 36209102; PMCID: PMC9547461. [320] Nagarajan K, Soundarapandian K, Thorne RF, Li D, Li D. Activation of Pyroptotic Cell Death Pathways in Cancer: An Alternative Therapeutic Approach. Transl Oncol. 2019 Jul;12(7):925-931. doi: 10.1016/j.tranon.2019.04.010. Epub 2019 May 11. PMID: 31085408; PMCID: PMC6518321. [321] Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009 Feb;7(2):99-109. doi: 10.1038/nrmicro2070. PMID: 19148178; PMCID: PMC2910423. [322] Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021 Mar 29;6(1):128. doi: 10.1038/s41392-021-00507-5. PMID: 33776057; PMCID: PMC8005494. [323] Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019 Sep;26:101239. doi: 10.1016/j.redox.2019.101239. Epub 2019 Jun 9. PMID: 31212216; PMCID: PMC6582207. [324] David KK, Andrabi SA, Dawson TM, Dawson VL. Parthanatos, a messenger of death. Front Biosci (Landmark Ed). 2009 Jan 1;14(3):1116-28. doi: 10.2741/3297. PMID: 19273119; PMCID: PMC4450718. [325] Huang P, Chen G, Jin W, Mao K, Wan H, He Y. Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci. 2022 Jun 30;23(13):7292. doi: 10.3390/ijms23137292. PMID: 35806303; PMCID: PMC9266317. [326] Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci. 2022 Jan 9;79(1):60. doi: 10.1007/s00018-021-04109-w. PMID: 35000037. [327] Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014 Apr;171(8):2000-16. doi: 10.1111/bph.12416. PMID: 24684389; PMCID: PMC3976618. [328] Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q, Zhang J. Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. J Inflamm Res. 2021 Jun 22;14:2647-2666. doi: 10.2147/JIR.S308177. PMID: 34188515; PMCID: PMC8235951. [329] Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2014 Jan;21(1):39-49. doi: 10.1038/cdd.2013.84. Epub 2013 Jul 5. PMID: 23832118; PMCID: PMC3857623. [330] Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, Kastritis E, Terpos E, Dimopoulos MA, Kalbacher H, Livaniou E, Christodoulou MI, Tsitsilonis OE. Immunogenic Cell Death, DAMPs and Prothymosin α as a Putative Anticancer Immune Response Biomarker. Cells. 2022 Apr 22;11(9):1415. doi: 10.3390/cells11091415. PMID: 35563721; PMCID: PMC9102069. [331] Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int. 2022 Apr 29;22(1):168. doi: 10.1186/s12935-022-02585-z. PMID: 35488303; PMCID: PMC9052538. [332] Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol. 2021 Aug 20;12:705361. doi: 10.3389/fimmu.2021.705361. PMID: 34489957; PMCID: PMC8417736. [333] Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 2020 Sep;86:106761. doi: 10.1016/j.intimp.2020.106761. Epub 2020 Jul 3. PMID: 32629409. [334] Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, Draganov D, Edelson RL, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Gameiro SR, Garg AD, Golden E, Han J, Harrington KJ, Hemminki A, Hodge JW, Hossain DMS, Illidge T, Karin M, Kaufman HL, Kepp O, Kroemer G, Lasarte JJ, Loi S, Lotze MT, Manic G, Merghoub T, Melcher AA, Mossman KL, Prosper F, Rekdal Ø, Rescigno M, Riganti C, Sistigu A, Smyth MJ, Spisek R, Stagg J, Strauss BE, Tang D, Tatsuno K, van Gool SW, Vandenabeele P, Yamazaki T, Zamarin D, Zitvogel L, Cesano A, Marincola FM. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020 Mar;8(1):e000337. doi: 10.1136/jitc-2019-000337. Erratum in: J Immunother Cancer. 2020 May;8(1): PMID: 32209603; PMCID: PMC7064135. [335] Benninger RKP, Piston DW. Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol. 2013 Jun;Chapter 4:4.11.1-4.11.24. doi: 10.1002/0471143030.cb0411s59. PMID: 23728746; PMCID: PMC4004770. [336] Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001 Jan;81(1):449-494. doi: 10.1152/physrev.2001.81.1.449. PMID: 11152763. [337] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089. PMID: 22930834; PMCID: PMC5554542. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90797 | - |
| dc.description.abstract | 隨著癌症患者的數量持續增多,放射治療的需求也逐漸升高。然而,這種治療方式就如同一把雙面劍,它能有效地清除癌細胞,但對於鄰近的正常組織卻可能產生不可逆的傷害。最為大眾所熟知的副作用,即是病人在接受治療後經常會產生落髮的情況。這種現象背後的原因是因為放療的主要原理在於摧毀快速分裂的細胞,而癌細胞正是這種細胞的典型例子。然而,多數人類毛囊(hair follicles)處於生長期(anagen),在此期間毛囊內的基質細胞(matrix cells)也會快速分裂,進而產生毛髮。因此,當毛囊受到放射性傷害時,其內部的基質細胞也會同時受損,進一步影響到毛髮的生長。更重要的是,毛囊是一種精緻的微型器官,其內部各部位都在結構與生理功能上相互緊密連結,任何一處的損傷都可能導致整體毛囊的損害,進而引發永久性的落髮。有趣的是,處於生長期的毛囊對於不同劑量的放射線所造成的傷害會有不同的反應,例如低劑量可能會引發失養性生長期(dystrophic anagen),而高劑量則可能引發失養性衰退期(dystrophic catagen)。然而,關於這兩種反應中的細胞動態和毛囊再生機制,目前還有許多細節尚待釐清。
過去的研究多是透過組織切片的技術來探討毛囊的相關課題,但這種技術卻有著一些限制,例如在過程中的任何步驟都有可能傷害到樣本中,而使毛囊呈現的並非是其在生物體中真正的狀態;難以追蹤毛囊於生物體中的真正的動態變化,並且切片採樣時間點之間的連續變化也無法得知;因為切面的角度的不同而可能會產生視覺上的錯覺。然而,隨著雙光子顯微鏡(Two-Photon Microscopy, TPM)的發展,我們已經可以對於毛囊進行即時的活體動態觀察。因此,我們利用雙光子顯微鏡開發了一個可以穩定模擬人類毛囊狀態的動物模型,並以此模型與雙光子顯微鏡來追蹤不同時期的毛囊在受到不同劑量的游離輻射(ionizing radiation)傷害後的反應。透過對於毛囊的每日追蹤(daily tracing)和縮時攝影(time-lapse),我們得以揭示許多過去研究中難以發現或確認的現象。 本研究揭示了許多先前在組織切片無法確定獲觀察到的受損的毛囊結構,特別是在高劑量的游離輻射傷害下,例如在衰退期(catagen)中毛囊的上皮鏈(epithelial strand)會有斷裂的現象,以及真皮乳頭(dermal papilla)受到傷害後的各種反應等,並將我所觀察到現象進行了詳細的分類和定義。我們認為這些現象背後都有其各自生理上的意義,雖然目前仍無法闡釋其背後機制,但若我們能夠對這些現象有更清晰的理解,或許就能更有效地應對臨床上因放療而引起的落髮問題。因此,清楚地定義與分類可以幫助我們更快地聚焦問題,對於未來解決放療所引起的落髮有著積極的意義。 | zh_TW |
| dc.description.abstract | The demand for radiotherapy (RT) is gradually rising due to the continual increase in the number of cancer patients. The RT can be likened to a double-edged sword, as it has the potential to successfully eradicate cancer cells, but it also carries the risk of causing irreversible harm to adjacent healthy tissues. The most observed adverse effect is alopecia, which is frequently experienced by patients following treatment. The underlying cause of this phenomenon can be attributed to the fundamental principle of RT, which is designed to eradicate rapidly proliferating cells, with cancer cells serving as a prime illustration. Most human hair follicles (HFs) are primarily in the anagen, characterized by rapid division of matrix cells within the HFs, resulting in the production of hair shafts. Therefore, the damage caused by RT not only affects the HFs, but also has an impact on the internal matrix cells, thereby further influencing the process of hair growth. More significantly, HF is a kind of intricate miniorgan, with each component intricately interconnected in terms of both structural and physiological functionality. Hence, any form of damage has the potential to cause a significant impairment in HF function, leading to persistent hair loss. Interestingly, HFs in the anagen phase exhibit distinct responses when exposed to different doses of ionizing radiation (IR). For example, a low dose IR may trigger a dystrophic anagen, while a high dose IR could induce a dystrophic catagen. However, there are still numerous aspects about the cell dynamics and mechanisms of HF regeneration in these two reactions that require further elucidation.
Earlier studies have employed tissue sectioning methods to investigate research about HFs. However, this technique is associated with certain limitations. For instance, any step in the process has the potential to damage the sample, thereby compromising the accurate representation of HFs in the organism. Additionally, it is challenging to monitor the true dynamic changes of HFs within the organism, and it is not feasible to ascertain the continuous changes that transpire between the sampling time points. Furthermore, visual distortions may arise due to variations in the angles of the slicing planes. With the advent of Two-photon microscopy (TPM), the real-time observation of in vivo cell dynamics in HFs has become possible. Therefore, we developed a stable in vivo animal model to simulate the state of human HFs. This model, along with TPM, was utilized to track the responses of HFs at different phases when subjected to varying doses of IR. Through the implementation of daily tracing and timelapse imaging techniques on HFs, numerous previously elusive or unverified phenomena have been successfully identified and confirmed. This study presents a comprehensive analysis of HF structures that have been found to be damaged, providing new insights that were previously unconfirmed or unobservable in tissue sections. Notably, this study highlights the impact of high doses of IR damage on these structures. For instance, the epithelial strand (ES) within the catagen of HFs may be disconnected, or dermal papilla (DP) reacts differently to IR damage. The phenomena were subsequently characterized and defined. We believe that each of these phenomena holds physiological significance, and although the underlying mechanisms remain elusive, a more comprehensive comprehension of these phenomena could potentially enhance the management of clinical radiotherapy-induced alopecia (RIA). Therefore, the establishment of clear definitions and classifications can facilitate a more efficient identification of the problem, thereby playing a crucial role in the resolution of RIA in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:39:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:39:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT ivv CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 The importance and motivation of the research 1 1.2 Hair follicle biology 3 1.2.1 The development of HF 3 1.2.2 Hair follicle cycle 5 1.2.3 The anatomy of hair follicle 9 1.3 Ionizing radiation 15 1.4 Effects of radiation on normal organisms 17 1.4.1 Radiation-induced skin reactions 18 1.4.2 Radiation-induced DNA damages and repairs 22 1.4.3 Radiation-induced cell death 26 1.5 Dystrophic model of hair follicle 36 1.6 Intravital imaging 38 1.7 Research objectives 40 Chapter 2 Material and methods 41 2.1 Mouse 41 2.2 Anesthesia 41 2.3 Synchronization of the hair follicle cycle 41 2.4 Ionizing radiation 42 2.5 Intravital imaging 42 2.6 Imaging process 43 2.7 Experimental designs 44 Chapter 3 Results 47 3.1 Most HFs enter anagen VI in post waxing day 11 (PWD11) 47 3.2 Responses of HFs after exposure to high doses of IR are diverse 49 3.2.1 After being exposed to 25Gy of IR, HFs undergo significant changes, but it's still difficult to observe the disconnection of the ES 49 3.2.2 Increasing the IR dose from 25Gy to 30Gy made the disconnection of hair follicles or ES more noticeable 53 3.2.3 Five other common phenotypes of HF morphology are observed during regression after HFs are exposed to high dose IR 59 3.2.4 Five common phenotypes of DP morphology are observed during regression after HFs are exposed to high dose IR 63 3.2.5 Although HFs in the telogen exhibit lower sensitivity to IR than in the anagen or catagen, they are still affected by IR 67 3.3 After HFs are injured by different IR doses, the cell dynamics have different responses 70 3.3.1 In the 2Gy group, hair follicles may have a segmental contraction pattern during regression 70 3.3.2 In the 2Gy group, movement of ORS cells near the bulb is not readily apparent 71 3.3.3 In the 25Gy group, some ORS cells move up, but virtually no cells move down 72 3.3.4 The upper ORS cells have more obvious lateral movements than the lower ORS cells (lower proximal cup cells) in the 25 Gy group 73 3.3.5 The abnormal morphology of the hair follicles might be influenced by RISRs 74 Chapter 4 Disscusion 75 4.1 Characterize and define the morphological changes of the ORS and the damage response of the DP following exposure of HFs to high dose IR 75 4.2 Possible types of cell death for DP cells 77 4.3 Why does the group receiving 25Gy IR in anagen VI exhibit more drastic morphological changes than the 30Gy group? 78 4.4 Low dose IR seems to interfere with the HF regression model 79 4.5 The Research limitations and difficulties 80 Chapter 5 Conclusion 81 REFERENCE 83 | - |
| dc.language.iso | en | - |
| dc.subject | 活體細胞動態 | zh_TW |
| dc.subject | 毛囊 | zh_TW |
| dc.subject | 游離輻射 | zh_TW |
| dc.subject | 放射治療引起的落髮 | zh_TW |
| dc.subject | 毛囊再生 | zh_TW |
| dc.subject | 雙光子顯微鏡 | zh_TW |
| dc.subject | Hair follicle regeneration | en |
| dc.subject | Ionizing radiation | en |
| dc.subject | Radiotherapy-induced alopecia | en |
| dc.subject | Hair follicles | en |
| dc.subject | In vivo cell dynamics | en |
| dc.subject | Two-photon microscopy | en |
| dc.title | 生長期與休止期毛囊以高低劑量游離輻射照射後之活體細胞動態 | zh_TW |
| dc.title | In vivo cell dynamics of anagen and telogen hair follicles exposed to high and low doses of ionizing radiation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡素宜;蔡沛學 | zh_TW |
| dc.contributor.oralexamcommittee | Su-Yi Tsai;Pei-Shiue Tsai | en |
| dc.subject.keyword | 毛囊,游離輻射,放射治療引起的落髮,毛囊再生,雙光子顯微鏡,活體細胞動態, | zh_TW |
| dc.subject.keyword | Hair follicles,Ionizing radiation,Radiotherapy-induced alopecia,Hair follicle regeneration,Two-photon microscopy,In vivo cell dynamics, | en |
| dc.relation.page | 147 | - |
| dc.identifier.doi | 10.6342/NTU202303661 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2028-08-14 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-08-14 | 6.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
