Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90782
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李尉彰zh_TW
dc.contributor.advisorWei-Chang Lien
dc.contributor.author黃藝軒zh_TW
dc.contributor.authorYi-Hsuan Huangen
dc.date.accessioned2023-10-03T17:35:50Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] S.J. Hayward, K. van Lopik, C. Hinde, A.A. West, "A Survey of Indoor Location Technologies, Techniques and Applications in Industry," Internet of Things, Volume 20, Nov. 2022.
[2] T. Kim Geok, et al., "Review of Indoor Positioning: Radio Wave Technology," Applied Sciences, vol. 11, no. 1, p. 279, Dec. 2020.
[3] V. R, V. Mittal and H. Tammana, "Indoor Localization in BLE using Mean and Median Filtered RSSI Values," 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2021, pp. 227-234.
[4] S. G. Kumar, S. Prince and B. M. Shankar, "Smart Tracking and Monitoring in Supply Chain Systems using RFID and BLE," 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 2021, pp. 757-760.
[5] S. Li, et al., "TDOA-based passive localization of standard WiFi devices," 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 2018, pp. 1-5.
[6] Wei Zhang, Xianghong Hua, Kegen Yu, Weining Qiu and Shoujian Zhang, "Domain clustering based WiFi indoor positioning algorithm," 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 2016, pp. 1-5.
[7] M. Sasikala, J. Athena and A. S. Rini, "Received Signal Strength based Indoor Positioning with RFID," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), Delhi, India, 2021, pp. 260-263.
[8] L. Yang et al., "Intensive positioning method based on RFID technology," 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2016, pp. 140-144.
[9] M. Uradzinski, H. Guo, X. Liu, and M. Yu, "Advanced indoor positioning using zigbee wireless technology," Wireless Personal Communications, vol. 97, no. 4, pp. 6509-6518, 2017.
[10] K. Gill, S. -H. Yang, F. Yao and X. Lu, "A zigbee-based home automation system," in IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp. 422-430.
[11] Kian Meng Tan and Choi Look Law, "GPS and UWB Integration for indoor positioning," 2007 6th International Conference on Information, Communications & Signal Processing, Singapore, 2007, pp. 1-5.
[12] G. Schroeer, "A Real-Time UWB Multi-Channel Indoor Positioning System for Industrial Scenarios," 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 2018, pp. 1-5.
[13] S. Naik, R. Phadnis, N. Sharma and M. Parmar, "Real Time Asset Tracking using BLE Beacons," 2019 Global Conference for Advancement in Technology (GCAT), Bangalore, India, 2019, pp. 1-4.
[14] G. Shipkovenski, T. Kalushkov, E. Petkov and V. Angelov, "A Beacon-Based Indoor Positioning System for Location Tracking of Patients in a Hospital," 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 2020, pp. 1-6.
[15] H. Torii, S. Ibi and S. Sampei, "Indoor Positioning and Tracking by Multi-Point Observations of BLE Beacon Signal," 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 2018, pp. 1-5.
[16] C. -P. Tsai, Y. -Y. Liao and W. -C. Li, "A 125-KHZ CMOS-MEMS Resoswitch Embedded Zero Quiescent Power OOK/FSK Receiver," 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 2020, pp. 106-109.
[17] C. -P. Tsai, H. -W. Wang and W. -C. Li, "Tapping Bandwidth Widening of CMOS-MEMS Vibro-Impacting Resonators Based on Double-Sided Stopper Structures," 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 2021, pp. 1387-1391.
[18] Kun Wang and Clark T. -C. Nguyen, "High-order medium frequency micromechanical electronic filters," in Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 534-556, Dec. 1999.
[19] Clark T. -C. Nguyen and R. T. Howe, "An integrated CMOS micromechanical resonator high-Q oscillator," in IEEE Journal of Solid-State Circuits, vol. 34, no. 4, pp. 440-455, April 1999.
[20] B. V. Derjaguin, M. V. Müller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interf. Sci., vol. 53, no. 2, pp. 314–326, 1975.
[21] S.-C. Lu, C.-P. Tsai, Y.-C. Huang, W.-R. Du, and W.-C. Li, “Surface Condition Influence on the Nonlinear Response of MEMS CC-Beam Resoswitches,” IEEE Electron Device Letters (EDL), vol. 39, no. 10, pp. 1600-1603, Oct. 2018.
[22] H. -S. Zheng, C. -P. Tsai, T. -Y. Chen and W. -C. Li, "Cmos-Mems Resonators with Sub-100-Nm Transducer Gap Using Stress Engineering," 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 2022, pp. 13-16.
[23] R. Lourens, "Low Frequency Magnetic Transmitter Design," Microchip Documentation, pp. 1-12, 2008.
[24] J.-F. Pons, J.-J. Brault, and Y. Savaria, “Modeling, design and implementation of a low-power FPGA based asynchronous wake-up receiver for wireless applications,” Analog Integrated Circuits and Signal Processing, vol. 77, no. 2, pp. 169–182, Sep. 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90782-
dc.description.abstract本論文提出一個基於輕敲模式之共振開關之無限信號強度接收指示器(Resoswitch based Received Signal Strength Indicator, RSSI),利用共振開關待機零功耗的特性與操作在輕敲模式下其輕敲帶寬(Tapping bandwidth)之大小與輸入電壓有線性關係之效果,建立一套事件觸發的定位系統,為特定情況發生時使用。此外為了使該系統有較大的偵測範圍,本研究使用弧形樑作為阻擋塊窄化共振開關器之梭子與阻擋塊之間的間隙,以增加無限信號強度接收指示的偵測範圍。
本論文所使用的測試元件為委託國家晶片中心在CMOS-MEMS 0.35 µm 2P4M製程平台製作,晶片製作完成後在國立臺灣大學工學院暨電機資訊學院奈米機電系統研究中心完成晶片的後製程(濕蝕刻),並於完成後製程後交由則葳實業有限公司進行陶瓷封裝。此外本研究也利用環形天線與LabView 軟體驗證無限信號強度接收指示系統之系統功能。最後本論文將於最後討論基於共振開關之無限信號強度接收指示符之系統目前的問題與未來研究發展方向。
zh_TW
dc.description.abstractThis thesis presents a Resoswitch-based Received Signal Strength Indicator (RSSI) system utilizing the characteristics of zero quiescent power of the resoswitch and the linear relationship between tapping bandwidth and input voltage in tapping mode. This system is designed for event-triggered positioning in specific situations. Additionally, to achieve a larger detection region, an arc-beam structure is used as a stopper to narrow the gap spacing between the shuttle of resoswitch and the stopper.
The chip fabrication was supported by Taiwan Semiconductor Research Institute (TSRI) and realized on a 0.35-µm 2-polu-4-metal (2P4M) CMOS-MEMS process platform. The post-processing (wet etching) was completed at the NEMS Research Center at National Taiwan University (NTU). The chip was sent to SensorMate enterprise CO., LTD. for ceramic packaging after the post-processing. In addition, a loop antenna and LabView software were developed for verify the functionality of the resoswitch-based RSSI system. Finally, this thesis concludes by discussing the current issues and future research directions of the resoswitch-based RSSI system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:35:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:35:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
ABSTRACT iii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1-1 研究動機 1
1-1-1 室內定位需求 1
1-2 文獻回顧 2
1-2-1 室內定位技術 2
1-2-2 Beacon定位系統 2
1-2-3 摺疊樑梳狀微機電共振開關 4
第二章 系統架構 6
2-1 振動衝擊摺疊樑梳狀電極微機電共振器運作原理 7
2-2 摺疊樑梳狀微機電共振器數學模型及弧形樑阻擋塊設計 8
2-2-1 摺疊樑梳狀微機電共振器數學模型 8
2-2-2 輕敲模式之數學模型 17
2-2-3 弧形樑阻擋塊設計 19
2-3 天線之數學模型與頻率調節 20
2-3-1 天線之數學模型 20
2-3-2 天線共振頻率調整 21
2-4 LabView 21
2-4-1 LabView 軟體簡介 22
2-4-2 電腦與儀器通訊之環境架設 23
2-4-3 可程式儀器標準命令(SCPI) 24
2-4-4 自動化監測微機電元件之輕敲帶寬曲線 25
2-4-5 基於摺疊樑梳狀微機電共振器之RSSI系統功能驗證 26
第三章 元件製程步驟 28
3-1 CMOS-MEMS 0.35 µm標準製程 28
3-2 濕蝕刻製程步驟 29
3-2-1 濕蝕刻製程結果與討論 30
3-3 陶瓷封裝流程 32
第四章 量測結果與討論 34
4-1 天線共振頻率調整結果 34
4-2 監測輕敲帶寬曲線 35
4-3 標準阻擋塊與弧形樑阻擋塊之輕敲帶寬曲線 36
4-4 陶瓷封裝結果與討論 38
4-4-1 使用已封裝元件與天線量測輕敲帶寬 40
第五章 結論與未來展望 41
5-1 結論 41
5-2 未來展望 41
參考文獻 42
-
dc.language.isozh_TW-
dc.subject輕敲模式zh_TW
dc.subjectRF-MEMSzh_TW
dc.subjectRSSIzh_TW
dc.subject共振開關zh_TW
dc.subject弧形樑zh_TW
dc.subjectVibro-impact modeen
dc.subjectRF-MEMSen
dc.subjectArc beamen
dc.subjectResoswitchen
dc.subjectRSSIen
dc.title基於CMOS-MEMS共振開關之接收信號強度指示器之檢測區域提升zh_TW
dc.titleDetection Region Enhancement for CMOS-MEMS Resoswitch based Received Signal Strength Indicator (RSSI)en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張培仁;李銘晃zh_TW
dc.contributor.oralexamcommitteePei-Zen Chang;Ming-Huang Lien
dc.subject.keywordRF-MEMS,RSSI,共振開關,輕敲模式,弧形樑,zh_TW
dc.subject.keywordRF-MEMS,RSSI,Resoswitch,Vibro-impact mode,Arc beam,en
dc.relation.page43-
dc.identifier.doi10.6342/NTU202303597-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-08
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved