Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90757
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡坤憲zh_TW
dc.contributor.advisorKun-Hsien Tsaien
dc.contributor.author林芳伶zh_TW
dc.contributor.authorFang-Ling Linen
dc.date.accessioned2023-10-03T17:29:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-04-30-
dc.identifier.citationAbbott WS. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol 18: 265-267.
Anthony DW, Chapman HC, Hazard EI. 1971. Scanning electron microscopy of the sporangia of species of Coelomomyces (Blastocladiales: Coelomomycetaceae). J Invertebr Pathol 17: 395-403.
Apostolov A. 1969. Copepoda Harpacticoida von Bulgarien. Crustaceana 16: 311-320.
Apperson CS, Federich BA, Tarver FR, Stewart W. 1992. Biotic and abiotic parameters associated with an epizootic of Coelomomyces punctatus in a larval population of the mosquito Anopheles quadrimaculatus. J Invertebr Pathol 60: 219-228.
Arêa Leão A, Pedroso MC. 1965. New species of the genus Coelomomyces parasites eggs of Phlebotomus. Mycopathologia et mycologia applicata 26: 305-307. (in Portuguese)
Barletta ABF, Silva MCLN, Sorgine MHF. 2012. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies. Parasites & vectors 5: 1-9.
Beerntsen BT, James AA, Christensen BM. 2000. Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64: 115-137.
Boxshall GA, Defaye D. 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195-207.
Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, Perkins TA, Reiner RC, Tusting LS, Sinka ME. 2016. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg 110: 107-117.
Catano-Lopez A, Rojas-Diaz D, Laniado H, Arboleda-Sánchez S, Puerta-Yepes ME, Lizarralde-Bejarano DP. 2019. An alternative model to explain the vectorial capacity using as example Aedes aegypti case in dengue transmission. Heliyon 5: e02577.
Chapman HC. 1974. Biological control of mosquito larvae. Annu Rev Entomol 19: 33-59.
Chu JY. 2017. Talk about dengue fever (2)—dengue fever in Taiwan hundreds of years ago and earlier. Taiw Med J 60(4): 25-30. (in Chinese)
Couch JN. 1945. Revision of the genus Coelomomyces, parasitic in insect larvae. Journal of the Elisha Mitchell Scientific Society 61: 124-136.
Couch JN. 1967. Sporangial germination of Coelomomyces punctatus and the conditions favoring the infection of Anopheles quadrimaculatus under laboratory conditions. Proceedings of: Joint US-Japan Seminar on Microbial Control of Insect Pests.
Couch JN, Bland CE. 1985. The genus Coelomomyces. Elsevier. pp.
Cuervo-Parra JA, Cortés TR, Ramirez-Lepe M. 2016. Mosquito-borne diseases, pesticides used for mosquito control, and development of resistance to insecticides. Insecticides resistance. Rijeka: InTechOpen: 111-134.
Deng S, Huang Q, Wei H, Zhou L, Yao L, Li D, Wu S, Chen J, Peng H. 2019. Beauveria bassiana infection reduces the vectorial capacity of Aedes albopictus for the Zika virus. Journal of Pest Science 92: 781-789.
Federici BA, Chapman HC. 1977. Coelomomyces dodgei: Establishment of an in vivo laboratory culture. J Invertebr Pathol 30: 288-297.
Folmer O, Black M, Hoen W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299.
Foster WA, Walker ED. 2019. Mosquitoes (Culicidae). pp. 261-325. Med Vet Entomol. Elsevier
Galassi DM, De Laurentiis P, Fiasca B. 2011. Systematics of the Phyllognathopodidae (Copepoda, Harpacticoida): re-examination of Phyllognathopus viguieri (Maupas, 1892) and Parbatocamptus jochenmartensi Dumont and Maas, 1988, proposal of a new genus for Phyllognathopus bassoti Rouch, 1972, and description of a new species of Phyllognathopus. ZooKeys: 1.
Garrett-Jones C. 1964. The human blood index of malaria vectors in relation to epidemiological assessment. Bull WHO 30: 241.
Garza-Hernández JA, Rodríguez-Pérez MA, Salazar MI, Russell TL, Adeleke MA, de Luna-Santillana EdJ, Reyes-Villanueva F. 2013. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae. PLoS neglected tropical diseases 7: e2013.
Gentile C, Lima J, Peixoto AA. 2005. Isolation of a fragment homologous to the rp49 constitutive gene of Drosophila in the Neotropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 100: 545-547.
Hillyer JF. 2010. Mosquito immunity. Invertebrate Immunity: 218-238.
James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98: 860-871.
Karanovic T, Reddy YR. 2004. First record of Phyllognathopus bassoti Rouch, 1972 from India, with remarks on the family Phyllognathopodidae Gurney, 1932 (Crustacea, Copepoda, Harpacticoida). Proceedings of Annales de Limnologie-International Journal of Limnology: EDP Sciences. pp. 121-132.
Keilin D. 1921. On a new type of fungus: Coelomomyces stegomyiae ng, n. sp., parasitic in the body-cavity of the larva of Stegomyia scutellaris Walker (Diptera, Nematocera, Culicidae). Parasitology 13: 225-234.
Kerwin JL, Petersen EE. 1997. Fungi: oomycetes and chytridiomycetes. pp. 251-268. Manual of techniques in insect pathology. Elsevier.
Khodami S, McArthur JV, Blanco-Bercial L, Martinez Arbizu P. 2017. RETRACTED ARTICLE: Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda). Scientific reports 7: 1-11.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120.
Kochanova E, Fefilova E, Sukhikh N, Velegzhaninov I, Shadrin D, Pylina YI, Alekseev V. 2018. Morphological and molecular-genetic polymorphism of Canthocamptus staphylinus Jurine (Harpacticoida, Copepoda, Crustacea). Inland Water Biology 11: 111-123.
Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S. 2018a. Mosquito innate immunity. Insects 9: 95.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018b. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547.
Laird M. 1959. Fungal parasites of mosquito larvae from the oriental and Australian regions, with a key to the genus Coelomomyces (Blastocladiales: Coelomomycetaceae). Canadian Journal of Zoology 37: 781-791.
Laird M, Nolan RA, Lien J. 1980. Coelomomyces stegomyiae var. chapmani var. nov. with new host and locality records for Coelomomyces from mosquitoes of Taiwan. Canadian Journal of Zoology 58: 1836-1844.
Lee DJ, Lee W. 2019. Arthropoda: Copepoda. pp. 761-780. Thorp and Covich's Freshwater Invertebrates. Elsevier
Lee S, Kim K, Lee W. 2014. A new species of Harpacticella Sars, 1908 (Copepoda, Harpacticoida), from a tidal pool on Jeju Island, Korea. ZooKeys: 13.
Lien J. 2004. Pictorial keys to the mosquitoes of Taiwan, Yi Hsien Publishing Co, Ltd. pp.
Lien J, Lin Y. 1990. The pathogens of Taiwan mosquitoes--Coelomomyces species. Gaoxiong yi xue ke xue za zhi= The Kaohsiung Journal of Medical Sciences 6: 350-359.
Liu Z, Zhang Z, Lai Z, Zhou T, Jia Z, Gu J, Wu K, Chen X-G. 2017. Temperature increase enhances Aedes albopictus competence to transmit dengue virus. Frontiers In Microbiology 8: 2337.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408.
Lucarotti CJ, Andreadis TG. 1995. Reproductive strategies and adaptations for survival among obligatory microsporidian and fungal parasites of mosquitoes: a comparative analysis of Amblyospora and Coelomomyces. J Am Mosq Control Assoc 11: 111-121.
Macdonald G. 1957. The epidemiology and control of malaria. The Epidemiology and Control of Malaria.
Mukherjee D, Das S, Begum F, Mal S, Ray U. 2019. The mosquito immune system and the life of dengue virus: what we know and do not know. Pathogens 8: 77.
Muspratt J. 1963. Destruction of the larvae of Anopheles gambiae Giles by a Coelomomyces fungus. Bull WHO 29: 81.
Nolan RA, Laird M, Chapman HC, Glenn Jr FE. 1973. A mosquito parasite from a mosquito predator. J Invertebr Pathol 21: 172-175.
Novikov A, Sharafutdinova D. 2022. Revision of the genus Canthocamptus (Copepoda: Harpacticoida) with a description of a new species from the Lena River Delta (North-eastern Siberia). European Journal of Taxonomy 826: 33-63.
Padua LE, Whisler HC, Gabriel BP, Zebold SL. 1986. In vivo culture and life cycle of Coelomomyces stegomyiae. J Invertebr Pathol 48: 284-288.
Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z. 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences 109: E23-E31.
Peng SH, Su CL, Chang MC, Hu HC, Yang SL, Shu PY. 2020. Genome analysis of a novel Tembusu virus in Taiwan. Viruses 12: 567.
Pillai J, Rakai I. 1970. Coelomomyces macleayae Laird, a parasite of Aedes polynesiensis marks in Fiji. J Med Entomol 7: 125-126.
Porter TM, Martin W, James TY, Longcore JE, Gleason FH, Adler PH, Letcher PM, Vilgalys R. 2011. Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA. Fungal Biology 115: 381-392.
Ramirez JL, Dunlap CA, Muturi EJ, Barletta AB, Rooney AP. 2018. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. Plos Neglected Tropical Diseases 12: e0006433.
Roberts DW. 1970. Coelomomyces, Entomophthora, Beauveria, and Metarrhizium as parasites of mosquitoes. Misc. Publs entomol. Soc. Am. 7: 140-155.
Rodgers FH, Gendrin M, Christophides GK. 2017. The mosquito immune system and its interactions with the microbiota: implications for disease transmission. Arthropod Vector: Controller of Disease Transmission, Volume 1: 101-122.
Scholte E-J, Knols BG, Samson RA, Takken W. 2004. Entomopathogenic fungi for mosquito control: a review. Journal of insect science 4: 19.
Service M. 1983. Biological-control of mosquitos-has it a future. Mosquito News 43: 113-120.
Service M. 2008. Introduction to mosquitoes (Culicidae). pp. 1-32. in: Service M (Ed.). Medical Entomology for Students, 4 ed. Cambridge University Press, Cambridge.
Shoulkamy M, Lucarotti C, El-Ktatny M, Hassan S. 1997. Factors affecting Coelomomyces stegomyiae infections in adult Aedes aegypti. Mycologia 89: 830-836.
Shu PY. 2016. Molecular epidemiology of dengue fever in Taiwan. pp. 9-18. in: Lin YS (Ed.). Taiwan's experience of dengue fever--a new perspective from epidemiology to clinical and basic science. National Science and Technology Council, Taipei.
Sim S, Jupatanakul N, Dimopoulos G. 2014. Mosquito immunity against arboviruses. Viruses 6: 4479-4504.
Sim S, Jupatanakul N, Ramirez JL, Kang S, Romero-Vivas CM, Mohammed H, Dimopoulos G. 2013. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS neglected tropical diseases 7: e2295.
Souza-Neto JA, Sim S, Dimopoulos G. 2009. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proceedings of the National Academy of Sciences 106: 17841-17846.
Souza-Neto JA, Powell JR, Bonizzoni M. 2019. Aedes aegypti vector competence studies: A review. Infect, Genet Evol 67: 191-209.
Tawidian P, Rhodes V, Michel K. 2019. Mosquito-fungus interactions and antifungal immunity. Insect Biochem Mol Biol 111: 103182.
Travland LB. 1979. Initiation of infection of mosquito larvae (Culiseta inornata) by Coelomomyces psorophorae. Journal of Invertebrate Pathology 33: 95-105.
Tsai KH, Huang CG, Wu WJ. 2012. Effects of climate change on vectors and vector-borne infectious diseases. J Formos Med Assoc 16(5): 479-488.
Wang YH, Hu Y, Xing LS, Jiang H, Hu SN, Raikhel AS, Zou Z. 2015. A critical role for CLSP2 in the modulation of antifungal immune response in mosquitoes. PLoS Path 11: e1004931.
Weng SC, Li HH, Li JC, Liu WL, Chen CH, Shiao SH. 2021. A thioester-containing protein controls dengue virus infection in Aedes aegypti through modulating immune response. Frontiers in immunology 12: 670122.
Whisler HC. 1985. Life history of species of Coelomomyces. pp. 9-22. The Genus Coelomomyces. Academic Press Inc New York
Whisler HC, Zebold SL, Shemanchuk JA. 1975. Life history of Coelomomyces psorophorae. Proceedings of the National Academy of Sciences 72: 693-696.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315-322.
WHO. 2012. Handbook for integrated vector management. World Health Organization. 67 pp.
Wu PC, Su HJ. 2007. Impact of climate change on infectious diseases. J Environ Eng Manage 18(3): 36-48. (in Chinese)
Xi Z, Ramirez JL, Dimopoulos G. 2008. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Path 4: e1000098.
Yassine H, Kamareddine L, Osta MA. 2012. The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana. PLoS Path 8: e1003029.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90757-
dc.description.abstract蚊蟲傳播多種蚊媒疾病,對人類的健康造成很大的威脅,過度依賴傳統的化學性殺蟲劑會造成蚊蟲抗藥性並對環境帶來負面影響,因此蚊蟲的綜合防治策略逐漸受到重視。專性寄生的體腔真菌,主要藉由在橈足類和蚊蟲族群間完成生活史,並常有高達 90% 以上的感染率,且會在宿主蚊蟲族群內發生流行病,使其具有防治蚊蟲的潛能。已知全球體腔真菌有 84 種,分類上主要依賴形態分類,國家生物技術資訊中心上發表的體腔真菌序列計有四種,臺灣尚缺整合形態與分子證據的研究報告。本研究藉由野外蚊蟲幼蟲的田野調查來研究體腔真菌,並通過掃描式電子顯微鏡和分子序列對體腔真菌進行形態和分子鑑定;透過實驗室感染白線斑蚊幼蟲以評估對體腔真菌的感受性,以及評估其防治蚊幼蟲的潛能,並藉由即時定量聚合酶連鎖反應去定量白線斑蚊幼蟲感染體腔真菌後的免疫調節機制。最後對感染體腔真菌的雌蟲餵食登革病毒,以即時定量聚合酶連鎖反應定量蚊蟲體內各個器官感染的病毒效價,以探討感染體腔真菌的成蟲,在體內與登革病毒的交互作用,及其感染體腔真菌後的病媒能力。田野調查於臺灣地區中北部的11個孳生源中,採集到被體腔真菌感染的白線斑蚊幼蟲,並以 18S SSU rDNA 序列和形態特徵鑑定出 Coelomomyces macleayae, C. stegomyiae var. stegomyiae 和 C. stegomyiae var. chapmani,和國家生物技術資訊中心上的 C. stegomyiae 序列相似度分別為88.77、95.58 和 99.59%,在實驗室中以白線斑蚊和異足猛水蚤建立體腔真菌族群 (C. macleayae)。幼蟲對於體腔真菌的感受性,在 102.69 RS/ml 濃度下的體腔真菌 (C. macleayae),一齡幼蟲感染率 (90.67±4.16%,136/150) 高於二齡幼蟲 (60.67±5.77%,91/150),三齡幼蟲在 103.12 RS/ml 濃度下,感染率為 46.67±6.67%。體腔真菌 (C. macleayae) 對於蚊蟲免疫基因的調控,Rel1 基因的表現量在感染後第八天顯著上升, Rel2 基因的表現量則是在感染後第四天顯著上升,顯示體腔真菌的感染會引起蚊蟲免疫反應的 Toll、IMD 路徑。感染體腔真菌 (C. macleayae) 的成蟲有壽命顯著縮短的現象,且使其短於登革病毒在白線斑蚊的體外潛伏期,並以這種縮短壽命的方式來降低白線斑蚊的病媒能力。zh_TW
dc.description.abstractMosquitoes are of great threat to human health because they transmit vector-borne diseases. Integrated vector management for mosquito control has gained interest rather than using chemical insecticides. Obligatory parasitic fungi, species of Coelomomyces (Blastocladiomycetes: Blastocladiales), have potential roles for mosquito control based on the advantages of high prevalence (often higher than 90%) and lethal effects. Four partial sequence data of Coelomomyces have been identified, however, data in Taiwan has not yet been available. Aedes albopictus were collected from northern Taiwan, and Coelomomyces were identified by both molecular method and scanning electron microscope. The potential of Coelomomyces on mosquito control was evaluated based on the survival rate of larvae. The modulation of antifungal immune responses in mosquito larvae to Coelomomyces infection was also estimated by RT-qPCR, including Rel1, Rel2, STAT, and TEP1. Interactions between Coelomomyces and dengue virus (DENV) in female adults were investigated by oral feeding of virus-infected blood. Vector competence and interactions between DENV and Coelomomyces in mosquito tissues were quantified by RT-qPCR. Ae. albopictus and Canthocamptus cf. kunzi were co-cultured in the laboratory to maintain Coelomomyces in vivo. Sequences of 18S SSU rDNA from three samples shows 88.77, 95.58, and 99.59% similarity to C. stegomyiae (Accession number: AF322406.1). The molecular and morphological data indicate that one novel strain of C. macleayae, and two strains of C. stegomyiae var. stegomyiae and C. stegomyiae var. chapmani were isolated. The infection rate of C. macleayae in the 1st instar larvae (90.67±4.16%, 136/150) was higher than the 2nd instar larvae (60.67±5.77%, 91/150) after incubating with 102.69 resting sporangia/ml solution for 2 days, and the mortality rates were 72.96±9.67% and 47.39±6.20%, respectively. In the 3rd instar larvae, the infection rate was 46.67±6.67%, and the mortality rate was 37.35±5.52% in 103.12 resting sporangia/ml solution (N=90). The expressions of Rel1 at 8d post-infection and Rel2 at 4d post-infection in the Ae. albopictus 3rd larvae infected by C. macleayae were significantly upregulated. It showed that the infection of Coelomomyces would activate the Toll and IMD pathway in the immune system of mosquito larvae. The life span of mosquitoes infected by C. macleayae significantly shortened to less than the EIP of dengue virus in Ae. albopictus and Coelomomyces may decrease the vectorial capacity through a shortening life span.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:29:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:29:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
Chapter 1. Introduction 1
1.1 Mosquito 1
1.2 Introduction and life cycle of Coelomomyces 4
1.3 Life cycle of Coelomomyces 6
1.4 Taxonomy of Coelomomyces 9
1.5 Mosquito immunity system 11
1.6 Vectorial capacity and vector competence 13
Chapter 2. Materials and methods 16
2.1 Mosquito rearing and maintenance 16
2.2 Field survey of Coelomomyces by collection of mosquito larva 17
2.3 Identification 18
2.3.1 Molecular identification of Coelomomyces 18
2.3.2 Morphological identification of Coelomomyces 19
2.3.3 Molecular identification of the copepods 20
2.3.4 Morphological identification of the copepods 21
2.4 Establish lab colony of Coeolomomyces macleayae 22
2.5 Larval susceptibility 23
2.6 Modulation of immune system 24
2.7 Vector competence 25
2.7.1 Coelomomyces infection of mosquitoes 25
2.7.2 Oral infection of mosquitoes 26
2.7.3 Life span of Coelomomyces-infected mosquitoes 26
2.7.4 RNA extraction and real-time quantitative polymerase chain reaction (RT-qPCR) analysis 27
Chapter 3. Results 29
3.1 Collection of Coelomomyces-infected mosquitoes 29
3.2 Molecular and morphological identification of Coelomomyces 29
3.3 Molecular and Morphological identification of copepods 31
3.4 Lab colony establishment of C. macleayae 34
3.5 Larval susceptibility and mortality to infection of Coelomomyces 34
3.6 Modulation of immune system 35
3.7 Life span of Coelomomyces-infected mosquitoes 36
Chapter 4. Discussion 37
References 48
Tables 59
Figures 65
-
dc.language.isoen-
dc.subject體腔真菌zh_TW
dc.subject病媒能力zh_TW
dc.subject生物防治zh_TW
dc.subject白線斑蚊zh_TW
dc.subjectAedes albopictusen
dc.subjectbiological controlen
dc.subjectCoelomomycesen
dc.subjectvectorial capacityen
dc.title體腔真菌對白線斑蚊病媒能力之影響zh_TW
dc.titleEffects of Coelomomyces spp. on Vectorial Capacity of Aedes albopictus (Diptera: Culicidae)en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor蕭旭峰zh_TW
dc.contributor.coadvisorShiuh-Feng Shiaoen
dc.contributor.oralexamcommittee黃旌集;吳立心zh_TW
dc.contributor.oralexamcommitteeChin-Gi Huang;Li-Hsin Wuen
dc.subject.keyword白線斑蚊,體腔真菌,生物防治,病媒能力,zh_TW
dc.subject.keywordAedes albopictus,Coelomomyces,biological control,vectorial capacity,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202300755-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-05-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
dc.date.embargo-lift2024-05-02-
Appears in Collections:昆蟲學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
5.39 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved