請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90755
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | zh_TW |
dc.contributor.advisor | Ming-Ju Chen | en |
dc.contributor.author | 劉世穩 | zh_TW |
dc.contributor.author | Esmond Sie Wen Lau | en |
dc.date.accessioned | 2023-10-03T17:28:36Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | A.O.A.C. (1980) Official Methods of Analysis, 13th ed. Association of Official Analytical Chemists. Washington D.C. 376-384.
Amin, A. B., & Mao, S. (2021). Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Animal Nutrition, 7(1), 31–41. https://doi.org/10.1016/j.aninu.2020.10.005 Amin, N., & Seifert, J. (2021). Dynamic progression of the calf’s microbiome and its influence on host health. Computational and Structural Biotechnology Journal, 19, 989–1001. https://doi.org/10.1016/j.csbj.2021.01.035 An, L., Wirth, U., Koch, D., Schirren, M., Drefs, M., Koliogiannis, D., Nieß, H., Andrassy, J., Guba, M., Bazhin, A. V., Werner, J., & Kühn, F. P. (2021). The role of gut-derived lipopolysaccharides and the intestinal barrier in fatty liver diseases. Journal of Gastrointestinal Surgery, 26(3), 671–683. https://doi.org/10.1007/s11605-021-05188-7 Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology, 5, 491. https://doi.org/10.3389%2Ffimmu.2014.00491 Araya-Kojima, T., Yaeshima, T., Ishibashi, N., Shimamura, S., & Hayasawa, H. (1995). Inhibitory effects of Bifidobacterium longum BB536 on harmful intestinal bacteria. Bifidobacteria and Microflora, 14(2), 59–66. https://doi.org/10.12938/bifidus1982.14.2_59 Arik, H. D., Gülşen, N., Hayirli, A., & Alataş, M. S. (2019). Efficacy of Megasphaera elsdenii inoculation in subacute ruminal acidosis in cattle. Journal of Animal Physiology and Animal Nutrition, 103(2), 416–426. https://doi.org/10.1111/jpn.13034 Ayad, M. A., Benallou, B., Saim, M. S., Smadi, M. A., & Meziane, T. (2013). Impact of feeding yeast culture on milk yield, milk components, and blood components in Algerian dairy herds. Journal of Veterinary Science Technology, 4(2), 1-5. https://doi.org/10.4172/2157- 7579.1000135 Azad, M. A. K., Sarker, M., & Wan, D. (2018). Immunomodulatory effects of probiotics on cytokine profiles. BioMed Research International, 2018. https://doi.org/10.1155/2018/8063647 Bartels, C. J., Holzhauer, M., Jorritsma, R., Swart, W. A., & Lam, T. J. (2010). Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Preventive Veterinary Medicine, 93(2-3), 162-169. https://doi.org/10.1016/j.prevetmed.2009.09.020 Bauman, D. E., & Griinari, J. M. (2001). Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livestock Production Science, 70(1–2), 15–29. https://doi.org/10.1016/s0301-6226(01)00195-6 Bhatia, R., Sharma, S., Bhadada, S. K., Bishnoi, M., & Kondepudi, K. K. (2022). Lactic acid bacterial supplementation ameliorated the lipopolysaccharide-induced gut inflammation and dysbiosis in mice. Frontiers in Microbiology, 13, 930928. https://doi.org/10.3389/fmicb.2022.930928 Bramley, E., Costa, N., Fulkerson, W. J., & Lean, I. J. (2013). Associations between body condition, rumen fill, diarrhoea and lameness and ruminal acidosis in Australian dairy herds. New Zealand Veterinary Journal, 61(6), 323–329. https://doi.org/10.1080/00480169.2013.806882 Bruijnis, M. R. N., Beerda, B., Hogeveen, H., & Stassen, E. N. (2012). Assessing the welfare impact of foot disorders in dairy cattle by a modeling approach. Animal, 6(6), 962-970. https://doi.org/10.1017/S1751731111002606 Buckley, A., & Turner, J. R. (2018). Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harbor Perspectives in Biology, 10(1), a029314. https://doi.org/10.1101/cshperspect.a029314 Candelli, M., Franza, L., Pignataro, G., Ojetti, V., Covino, M., Piccioni, A., Gasbarrini, A., & Franceschi, F. (2021). Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. International Journal of Molecular sciences, 22(12), 6242. https://doi.org/10.3390/ijms22126242 Caswell, J. L. (2014). Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. Veterinary Pathology, 51(2), 393–409. https://doi.org/10.1177/0300985813502821 Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8(2), 130–132. https://doi.org/10.1093/clinchem/8.2.130 Chang, H. W., Nam, Y. D., Sung, Y., Kim, K. H., Roh, S. W., Yoon, J. H., An, K. G. & Bae, J. W. (2007). Quantitative real time PCR assays for the enumeration of Saccharomyces cerevisiae and the Saccharomyces sensu stricto complex in human feces. Journal of Microbiological Methods, 71(3), 191-201. https://doi.org/10.1016/j.mimet.2007.08.013 Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology, 104(1), 15-25. https://doi.org/10.1002%2F0471142735.im1525s104 Chaucheyras-Durand, F., & Fonty, G. (2001). Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reproduction Nutrition Development, 41(1), 57–68. https://doi.org/10.1051/rnd:2001112 Chaucheyras-Durand, F., Masséglia, S., & Fonty, G. (2005). Effect of the Microbial Feed Additive Saccharomyces cerevisiae CNCM I-1077 on Protein and Peptide Degrading Activities of Rumen Bacteria Grown In Vitro. Current Microbiology, 50(2), 96–101. https://doi.org/10.1007/s00284-004-4433-1 Chen, C. T. (2021). Analysis of calf’s gastrointestinal microbiome between health and diarrhea for potential probiotic selection. National Taiwan University, Master Thesis. https://doi.org/10.6342/NTU202102149 Chen, L. Q., Shen, Y., Wang, C., Ding, L. Y., Zhao, F., Wang, M., Fu, J., & Wang, H. (2019a). Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00162 Chen, P., Jheng, T., Shyu, C., & Mao, F. C. (2013). Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. Journal of Dairy Science, 96(3), 1438–1446. https://doi.org/10.3168/jds.2012-6112 Chen, X., Fu, Y., Wang, L., Qian, W., Zheng, F., & Hou, X. (2019b). Bifidobacterium longum and VSL#3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. Developmental and Comparative Immunology, 92, 77–86. https://doi.org/10.1016/j.dci.2018.09.006 Cheng, W., & Han, S. K. (2020). Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review. Asian-Australasian Journal of Animal Sciences, 33(11), 1699–1713. https://doi.org/10.5713/ajas.20.0156 Chichlowski, M., Shah, N. P., Wampler, J. L., Wu, S. Y., & Vanderhoof, J. A. (2020). Bifidobacterium longum subspecies infantis (B. infantis) in pediatric nutrition: current state of knowledge. Nutrients, 12(6), 1581. https://doi.org/10.3390/nu12061581 Cho, Y. I., & Yoon, K. J. (2014). An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. Journal of Veterinary Science, 15(1), 1-17. https://doi. 10.4142/jvs.2014.15.1.1 Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology, 39(5), 517–528. https://doi.org/10.1007/s00281-017-0639-8 Chuang, S. T., Chen, C. T., Hsieh, J. C., Li, K. Y., Ho, S. T., & Chen, M. J. (2022). Development of next-generation probiotics by investigating the interrelationships between gastrointestinal Microbiota and Diarrhea in Preruminant Holstein Calves. Animals, 12(6), 695. https://doi.org/10.3390/ani12060695 Citi, S. (2018). Intestinal barriers protect against disease. Science, 359(6380), 1097-1098. Čobirka, M., Tančin, V., & Slama, P. (2020). Epidemiology and Classification of Mastitis. Animals, 10(12), 2212. https://doi.org/10.3390/ani10122212 Cochran, K. E., Lamson, N. G., & Whitehead, K. A. (2020). Expanding the utility of the dextran sulfate sodium (DSS) mouse model to induce a clinically relevant loss of intestinal barrier function. PeerJ, 8, e8681. https://doi.org/10.7717/peerj.8681 Cristofori, F., Dargenio, V. N., Dargenio, C., Miniello, V. L., Barone, M., & Francavilla, R. (2021). Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Frontiers in Immunology, 12, 578386. https://doi.org/10.3389/fimmu.2021.578386 Crooker, B. A., Sniffen, C. J., Hoover, W. H., & Johnson, L. L. (1978). Solvents for soluble nitrogen measurements in feedstuffs. Journal of Dairy Science, 61(4), 437-447. https://doi.org/10.3168/jds.S0022-0302(78)83618-2 De Vliegher, S., Fox, L. K., Piepers, S., McDougall, S., & Barkema, H. W. (2012). Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. Journal of Dairy Science, 95(3), 1025-1040. https://doi.org/10.3168/jds.2010-4074 Dec, M., Stępień-Pyśniak, D., Puchalski, A., Hauschild, T., Pietras-Ożga, D., Ignaciuk, S., & Urban-Chmiel, R. (2021). Biodiversity of Ligilactobacillus salivarius Strains from Poultry and Domestic Pigeons. Animals, 11(4), 972. https://doi.org/10.3390/ani11040972 Dias, A. L. G., Freitas, J. A., Micai, B., Azevedo, R. A., Greco, L. F., & Santos, J. E. P. (2018). Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. Journal of Dairy Science, 101(1), 201-221. https://doi.org/10.3168/jds.2017-13241 Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172(1–2), 22–33. https://doi.org/10.1016/j.anifeedsci.2011.12.005 Dong, J., Ping, L., Cao, T., Sun, L., Liu, D., Wang, S., Huo, G., & Li, B. (2022). Immunomodulatory effects of the Bifidobacterium longum BL-10 on lipopolysaccharide-induced intestinal mucosal immune injury. Frontiers in Immunology, 13, 947755. https://doi.org/10.3389/fimmu.2022.947755 Dong, P., Yang, Y., & Wang, W. (2010). The role of intestinal bifidobacteria on immune system development in young rats. Early Human Development, 86(1), 51–58. https://doi.org/10.1016/j.earlhumdev.2010.01.002 Donovan, G. A., Dohoo, I. R., Montgomery, D. M., & Bennett, F. L. (1998). Calf and disease factors affecting growth in female Holstein calves in Florida, USA. Preventive Veterinary Medicine, 33(1–4), 1–10. https://doi.org/10.1016/s0167-5877(97)00059-7 Ducarmon, Q. R., Zwittink, R. D., Hornung, B., Van Schaik, W., Young, V. B., & Kuijper, E. J. (2019). Gut microbiota and colonization resistance against bacterial enteric infection. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/mmbr.00007-19 Edwards, A. M., Dymock, D., & Jenkinson, H. F. (2003). From tooth to hoof: treponemes in tissue-destructive diseases. Journal of Applied Microbiology, 94(5), 767–780. https://doi.org/10.1046/j.1365-2672.2003.01901.x Endres, M. I. (2017). The relationship of cow comfort and flooring to lameness disorders in dairy cattle. Veterinary Clinics of North America-food Animal Practice, 33(2), 227–233. https://doi.org/10.1016/j.cvfa.2017.02.007 Er, M., & Cengiz, Ö. (2023). The effects of ration particle size and live yeast supplementation on dairy cows performance under heat stress conditions. Tropical Animal Health and Production, 55(2). https://doi.org/10.1007/s11250-023-03550-2 Farhana, A., & Khan, Y. S. (2021). Biochemistry, lipopolysaccharide. In StatPearls. StatPearls Publishing. Fedorak, R., Gill, A., Park, H., Keshteli, A. H., Ginter, R., Hotte, N., & Madsen, K. (2017). Oral acetate reduces a high sugar diet induced increased susceptibility to colitis. Gastroenterology, 152(5), S997. https://doi.org/10.1016/S0016-5085(17)33378-4 Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125(1), 1–15. https://doi.org/10.1086/284325 Fernández, S., Fraga, M., Castells, M., Colina, R., & Zunino, P. (2020). Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea, immune parameters and pathogen abundance in pre-weaned calves. Beneficial Microbes, 11(5), 477-488. https://doi.org/10.3920/bm2019.0167 Ferraretto, L. F., Shaver, R. D., & Bertics, S. (2012). Effect of dietary supplementation with live-cell yeast at two dosages on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows. Journal of Dairy Science, 95(7), 4017–4028. https://doi.org/10.3168/jds.2011-5190 Fiore, E. M., Faillace, V., Morgante, M., Armato, L., & Gianesella, M. (2020). A retrospective study on transabdominal ultrasound measurements of the rumen wall thickness to evaluate chronic rumen acidosis in beef cattle. BMC Veterinary Research, 16(1), 1–8. https://doi.org/10.1186/s12917-020-02561-7 Fonty, G., & Chaucheyras-Durand, F. (2006). Effects and modes of action of live yeasts in the rumen. Biologia, 61(6), 741–750. Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., & Ikeda, H. (2003). Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacology & Therapeutics, 100(2), 171–194. https://doi.org/10.1016/j.pharmthera.2003.08.003 Gao, J., Liu, Y., Wang, Y., Li, H., Wang, X., Wu, Y., Zhang, D., & Gao, S. (2020). Impact of yeast and lactic acid bacteria on mastitis and milk microbiota composition of dairy cows. AMB Express, 10(1), 1-12. https://doi.org/10.1186/s13568-020-0953-8 Gernand, E., König, S., & Kipp, C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. Journal of Dairy Science, 102(7), 6660–6671. https://doi.org/10.3168/jds.2018-16011 Gershwin, L. J., Van Eenennaam, A. L., Anderson, M. E., McEligot, H. A., Shao, M. X. G., Toaff-Rosenstein, R. L., Taylor, J. M. G., Neibergs, H. L., & Womack, J. E. (2015). Single pathogen challenge with agents of the bovine respiratory disease Complex. PLoS One, 10(11), e0142479. https://doi.org/10.1371/journal.pone.0142479 Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society, 4(2), bvz039. https://doi.org/10.1210/jendso/bvz039 Gibson, G. R., & Wang, X. F. (1994). Regulatory effects of bifidobacteria on the growth of other colonic bacteria. Journal of Applied Bacteriology, 77(4), 412–420. https://doi.org/10.1111/j.1365-2672.1994.tb03443.x Grimm, V., Radulovic, K., & Riedel, C. U. (2015). Colonization of C57BL/6 mice by a potential probiotic Bifidobacterium bifidum strain under germ-free and specific pathogen-free conditions and during experimental colitis. PLoS One, 10(10), e0139935. https://doi.org/10.1371/journal.pone.0139935 Guedes, C., Gonçalves, D., Rodrigues, M., & Dias-Da-Silva, A. (2008). Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Animal Feed Science and Technology, 145(1–4), 27–40. https://doi.org/10.1016/j.anifeedsci.2007.06.037 Guterbock, W. M. (2014). The impact of BRD: the current dairy experience. Animal Health Research Reviews, 15(2), 130–134. https://doi.org/10.1017/s1466252314000140 Halfen, J. A., Carpinelli, N. A., Del Pino, F. a. B., Chapman, J. D., Sharman, E., Anderson, J., & Osorio, J. S. (2021). Effects of yeast culture supplementation on lactation performance and rumen fermentation profile and microbial abundance in mid-lactation Holstein dairy cows. Journal of Dairy Science, 104(11), 11580–11592. https://doi.org/10.3168/jds.2020-19996 Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R. M. (2007). Review article: the role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics, 27(2), 104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.x Heinrichs, A. J., & Heinrichs, B. S. (2011). A prospective study of calf factors affecting first-lactation and lifetime milk production and age of cows when removed from the herd. Journal of Dairy Science, 94(1), 336–341. https://doi.org/10.3168/jds.2010-3170 Hsu, Y. T. (2020). Systematic investigation of mastitis in Holstein dairy cow through analyzing microbiomics and metabolomics. National Taiwan University, Master Thesis. https://doi.orh/10.6342/NTU202001672 Humer, E., Aschenbach, J. R., Neubauer, V., Kröger, I., Khiaosa-Ard, R., Baumgartner, W. H., & Zebeli, Q. (2018). Signals for identifying cows at risk of subacute ruminal acidosis in dairy veterinary practice. Journal of Animal Physiology and Animal Nutrition, 102(2), 380–392. https://doi.org/10.1111/jpn.12850 Hur, T. Y., Jung, Y. H., Choe, C. Y., Cho, Y. I., Kang, S. J., Lee, H. J., Ki, K. S., Baek, K. S., & Suh, G. H. (2013). The dairy calf mortality : the causes of calf death during ten years at a large dairy farm in Korea. Korean Journal of Veterinary Research, 53(2), 103–108. https://doi.org/10.14405/kjvr.2013.53.2.103 Ibrahim, R. A., Kelly, A., O’Grady, L., Gath, V., McCarney, C., & Mulligan, F. (2010). The effect of body condition score at calving and supplementation with Saccharomyces cerevisiae on milk production, metabolic status, and rumen fermentation of dairy cows in early lactation. Journal of Dairy Science, 93(11), 5318–5328. https://doi.org/10.3168/jds.2010-3201 Inturri, R., Stivala, A., Furneri, P. M., & Blandino, G. (2016). Growth and adhesion to HT-29 cells inhibition of Gram-negatives by Bifidobacterium longum BB536 e Lactobacillus rhamnosus HN001 alone and in combination. European. Review for Medical and Pharmacological Sciences, 20(23), 4943-4949. Izzo, M. M., Kirkland, P. D., Mohler, V. L., Perkins, N. R., Gunn, A. A., & House, J. K. (2011). Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Australian Veterinary Journal, 89(5), 167–173. https://doi.org/10.1111/j.1751-0813.2011.00692.x Jang, Y. J., Kim, W. K., Han, D. H., Lee, K., & Ko, G. (2019). Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes, 10(6), 696–711. https://doi.org/10.1080/19490976.2019.1589281 Jiao, P., Wei, C., Sun, Y., Xie, X., Zhang, Y., Wang, S., HU, G., AlZahal. O., & Yang, W. (2019). Screening of live yeast and yeast derivatives for their impact of strain and dose on in vitro ruminal fermentation and microbial profiles with varying media pH levels in high‐forage beef cattle diet. Journal of the Science of Food and Agriculture, 99(15), 6751–6760. https://doi.org/10.1002/jsfa.9957 Jin, B. R., Chung, K. S., Cheon, S. Y., Lee, M., Hwang, S., Noh Hwang, S., Rhee, K. J. & An, H. J. (2017). Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/srep46252 Johnzon, C. F., Dahlberg, J., Gustafson, A. M., Waern, I., Moazzami, A. A., Östensson, K., & Pejler, G. (2018). The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach. Frontiers in Immunology, 9, 1487. https://doi.org/10.3389/fimmu.2018.01487 Jones, G. M., & Bailey, T. L. (2009). Understanding the basics of mastitis. Virginia Cooperative Extension, Publication NO. 404-223. p.1-5 Jones, W. C., Hansen, L. B., & Chester-Jones, H. (1994). Response of health care to selection for milk yield of dairy cattle. Journal of Dairy Science, 77(10), 3137–3152. https://doi.org/10.3168/jds.s0022-0302(94)77257-x Jouany, J. (2006). Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science, 96(3–4), 250–264. https://doi.org/10.1016/j.anireprosci.2006.08.005 Jouany, J. P. (2001). A new look at yeast cultures as probiotics for ruminants. Feed Mix, 9(6), 17-19. Jouany, J. P., Fonty, G., Lassalas, B., Doré, J., Gouet, P., & Bertin, G. (1991). Effect of live yeast cultures on feed degradation in the rumen as assessed by in vitro measurements. Kalmus, P., Orro, T., Waldmann, A., Lindjärv, R., & Kask, K. (2009). Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows. Acta Veterinaria Scandinavica, 51(1), 1–7. https://doi.org/10.1186/1751-0147-51-32 Kamal, R., Dutt, T., Singh, M., Kamra, D. N., Patel, M., Choudhary, L. C., Agarwal, N., Kumar, S. & Islam, M. (2013). Effect of live Saccharomyces cerevisiae (NCDC-49) supplementation on growth performance and rumen fermentation pattern in local goat. Journal of Applied Animal Research, 41(3), 28–288. https://doi.org/10.1080/09712119.2013.782865 Kang, M., Lim, H., Oh, J., Lim, Y. J., Wuertz-Kozak, K., Harro, J. M., Shirtliff, M. E., & Achermann, Y. (2017). Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathogens and Disease, 75(2), ftx009. https://doi.org/10.1093/femspd/ftx009 Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. International Scholarly Research Notices, 2013. https://doi.org/10.5402/2013/481651 Kester, H., Sorter, D., & Hogan, J. M. (2015). Activity and milk compositional changes following experimentally induced Streptococcus uberis bovine mastitis. Journal of Dairy Science, 98(2), 999–1004. https://doi.org/10.3168/jds.2014-8576 Khalil, A., Batool, A., & Arif, S. (2022). Healthy cattle microbiome and dysbiosis in diseased phenotypes. Ruminants, 2(1), 134–156. https://doi.org/10.3390/ruminants2010009 Kikuchi, E., Miyamoto, Y., Narushima, S., & Itoh, K. (2002). Design of Species‐specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. Microbiology and Immunology, 46(5), 353-358. https://doi.org/10.1111/j.1348-0421.2002.tb02706.x Kim, E., Yang, S. M., Lim, B., Park, S. H., Rackerby, B., & Kim, H. Y. (2020). Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiology, 20, 1-14. https://doi.org/10.1186/s12866-020-01781-z Kim, K. T., Yang, S. J., & Paik, H. D. (2021). Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immune-enhancing activities. Food Science and Biotechnology, 30, 257-265. https://doi.org/10.1007/s10068-020-00853-0 Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/bf01731581 Krych, Ł., Kot, W., Bendtsen, K. M., Hansen, A. K., Vogensen, F. K., & Nielsen, D. S. (2018). Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. Journal of Microbiological Methods, 144, 1–7. https://doi.org/10.1016/j.mimet.2017.10.015 Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054 Kung, L., & Hession, A. O. (1995). Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. Journal of Animal Science, 73(1), 250–256. https://doi.org/10.2527/1995.731250x Lara-Villoslada, F., Sierra, S., Diaz-Ropero, M. P., Olivares, M., & Xaus, J. (2007). Safety assessment of the human milk-isolated probiotic Lactobacillus salivarius CECT5713. Journal of Dairy Science, 90(8), 3583–3589. https://doi.org/10.3168/jds.2006-685 Li, Y., Shen, Y., Niu, J., Guo, Y., Pauline, M., Zhao, X., Qiufeng, L., Cao, Y., Bi, C., Zhang, X., Wang, Z., Gao, Y., & Li, J. (2021). Effect of active dry yeast on lactation performance, methane production, and ruminal fermentation patterns in early-lactating Holstein cows. Journal of Dairy Science, 104(1), 381–390. https://doi.org/10.3168/jds.2020-18594 Liang, D., Leung, R. K. K., Guan, W., & Au, W. W. (2018). Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 10(1). https://doi.org/10.1186/s13099-018-0230-4 Liu, E., Hanigan, M. D., & VandeHaar, M. J. (2021). Importance of considering body weight change in response to dietary protein deficiency in lactating dairy cows. Journal of Dairy Science, 104(11), 11567–11579. https://doi.org/10.3168/jds.2020-19566 Loesche, W. J. (1969). Oxygen sensitivity of various anaerobic bacteria. Applied Microbiology, 18(5), 723–727. https://doi.org/10.1128/aem.18.5.723-727.1969 Lucy, M. C. (2001). Reproductive loss in high-producing dairy cattle: where will it end? Journal of Dairy Science, 84(6), 1277–1293. https://doi.org/10.3168/jds.s0022-0302(01)70158-0 Lundborg, G., Svensson, E. C., & Oltenacu, P. A. (2005). Herd-level risk factors for infectious diseases in Swedish dairy calves aged 0–90 days. Preventive Veterinary Medicine, 68(2–4), 123–143. https://doi.org/10.1016/j.prevetmed.2004.11.014 M’hamdi, N., Bouallegue, M., Frouja, S., Ressaissi, Y., Brar, S. K., & Hamouda, M. B. (2012). Effects of environmental factors on milk yield, lactation length and dry period in Tunisian Holstein cows. In Milk Production-An Up-to-Date Overview of Animal Nutrition, Management and Health. IntechOpen. https://doi.org/ 10.5772/50803 Ma, C., Sun, Z., Zeng, B., Huang, S., Zhao, J., Zhang, Y., Su, X., Xu, J., Wei, H., & Zhang, H. (2018). Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0578-1 Maldonado, N. C., Chiaraviglio, J., Bru, E., De Chazal, L., Santos, V., & Nader-Macías, M. E. (2018). Effect of milk fermented with lactic acid bacteria on diarrheal incidence, growth performance and microbiological and blood profiles of newborn dairy calves. Probiotics and Antimicrobial Proteins, 10(4), 668–676. https://doi.org/10.1007/s12602-017-9308-4 Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021. https://doi.org/10.3390%2Fnu9091021 Marlida, Y., Harnentis, H., Nur, Y. S., & Ardani, L. R. (2023). New probiotics (Lactobacillus plantarum and Saccharomyces cerevisiae) supplemented to fermented rice straw-based rations on digestibility and rumen characteristics in vitro. Journal of Advanced Veterinary and Animal Research, 10(1), 96. https://doi.org/10.5455/javar.2023.j657 Matsuda, K., Tsuji, H., Asahara, T., Kado, Y., & Nomoto, K. (2007). Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Applied and Environmental Microbiology, 73(1), 32–39. https://doi.org/10.1128/aem.01224-06 Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T., Matsumoto, K., & Tanaka, R. (2004). Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal Bifidobacteria. Applied and Environmental Microbiology, 70(1), 167–173. https://doi.org/10.1128/aem.70.1.167-173.2004 Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H. & Tanaka, R. (2002). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Applied and Environmental Microbiology, 68(11), 5445–5451. https://doi.org/10.1128/aem.68.11.5445-5451.2002 Matsuoka, K., & Kanai, T. (2015). The gut microbiota and inflammatory bowel disease. Seminars in Immunopathology, 37(1), 47–55. https://doi.org/10.1007/s00281-014-0454-4 Maxwell, P. J., Coulter, J., Walker, S. M., McKechnie, M., Neisen, J., McCabe, N., Kennedy, R. D., Salto-Tellez, M., Albanese, C. & Waugh, D. J. (2013). Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma. European Urology, 64(2), 177–188. https://doi.org/10.1016/j.eururo.2012.08.032 McAllister, T. A., Beauchemin, K. A., Alazzeh, A. Y., Baah, J., Teather, R. M., & Stanford, K. (2011). The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Canadian Journal of Animal Science, 91(2), 193-211. https://doi.org/10.1017/S1751731113002085 McEwen, S. A., & Fedorka-Cray, P. J. (2002). Antimicrobial Use and Resistance in animals. Clinical Infectious Diseases, 34(s3), S93–S106. https://doi.org/10.1086/340246 Mentschel, J., Leiser, R., Mülling, C., Pfarrer, C., & Claus, R. (2001). Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Archiv Für Tierernährung, 55(2), 85–102. https://doi.org/10.1080/17450390109386185 Miglior, F., Fleming, A. R., Malchiodi, F., Brito, L. G. O., Martin, P. L., & Baes, C. F. (2017). A 100-year review: Identification and genetic selection of economically important traits in dairy cattle. Journal of Dairy Science, 100(12), 10251–10271. https://doi.org/10.3168/jds.2017-12968 Moallem, U., Lehrer, H., Livshitz, L., Zachut, M., & Yakoby, S. (2009). The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. Journal of Dairy Science, 92(1), 343–351. https://doi.org/10.3168/jds.2007-0839 Moon, J. M., Lee, H. J., Han, K., Kim, D. H., Hong, S. W., Soh, H., Park, S., Kang, E. A., Lee, J., Koh, S., Im, J. P. & Kim, J. S. (2021). Occult blood in feces is associated with an increased risk of ischemic stroke and myocardial infarction: a nationwide population study. Journal of the American Heart Association, 10(1), e017783. https://doi.org/10.1161/jaha.120.017783 Morales-Piñeyrúa, J. T., Damián, J. P., Banchero, G., & Anna, A. C. S. (2022). The effects of heat stress on milk production and the grazing behavior of dairy Holstein cows milked by an automatic milking system. Journal of Animal Science, 100(9), skac225. https://doi.org/10.1093/jas/skac225 Moss, A. R., Jouany, J., & Newbold, J. E. (2000). Methane production by ruminants: its contribution to global warming. Annales De Zootechnie, 49(3), 231–253. https://doi.org/10.1051/animres:2000119 Muhammad, W., Zhu, J., Zhai, Z., Xie, J., Zhou, J., Feng, X., Feng, B. J., Pan, Q., Li, S., Venkatesan, R., Li, P., Cao, H., & Gao, C. (2022). ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomaterialia, 148, 258–270. https://doi.org/10.1016/j.actbio.2022.06.024 Mukhopadhyay, S., & Aich, P. (2020). Comparative severity analysis of colitis in C57BL/6 than BALB/c mice: A novel and rapid model of DSS induced colitis. bioRxiv, 2020–05. doi.org/10.1101/2020.05.07.082669 Munyaka, P. M., Rabbi, M. F., Khafipour, E., & Ghia, J. E. (2016). Acute dextran sulfate sodium (DSS)‐induced colitis promotes gut microbial dysbiosis in mice. Journal of Basic Microbiology, 56(9), 986–998. https://doi.org/10.1002/jobm.201500726 Namba, K., Yaeshima, T., Ishibashi, N., Hayasawa, H., & Yamazaki, S. 2003. Inhibitory effects of Bifidobacterium longum on enterohemorrhagic Escherichia coli O157: H7. Bioscience and Microflora, 22:85-91. https://doi.org/10.12938/bifidus1996.22.85 Nasiri, A., Towhidi, A., Shakeri, M., Zhandi, M., Dehghan-Banadaky, M., Pooyan, H., Sehati, F., Rostami, F., Karamzadeh, A., Khani, M., & Ahmadi, F. (2019). Effects of saccharomyces cerevisiae supplementation on milk production, insulin sensitivity and immune response in transition dairy cows during hot season. Animal Feed Science and Technology, 251, 112–123. https://doi.org/10.1016/j.anifeedsci.2019.03.007 O’Hara, E., Neves, A. A., Song, Y., & Guan, L. L. (2020). The role of the gut microbiome in cattle production and health: driver or passenger? Annual Review of Animal Biosciences, 8(1), 199–220. https://doi.org/10.1146/annurev-animal-021419-083952 Oeztuerk, H. (2009). Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. Journal of Animal and Feed Sciences, 18(1), 142–150. https://doi.org/10.22358/jafs/66378/2009 Oeztuerk, H., Schroeder, B., Beyerbach, M., & Breves, G. (2005). Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. Journal of Dairy Science, 88(7), 2594–2600. https://doi.org/10.3168/jds.s0022-0302(05)72935-0 Ollivett, T. (2020). How does housing influence bovine respiratory disease in dairy and veal calves? Veterinary Clinics of North America-food Animal Practice, 36(2), 385–398. https://doi.org/10.1016/j.cvfa.2020.03.012 Oltenacu, P. A., & Algers, B. (2005). Selection for increased production and the welfare of dairy cows: are new breeding goals needed? AMBIO: A Journal of the Human Environment, 34(4), 311–315. https://doi.org/10.1579/0044-7447-34.4.311 Østerås, O., Gjestvang, M. S., Vatn, S., & Sølverød, L. (2007). Perinatal death in production animals in the Nordic countries – incidence and costs. Acta Veterinaria Scandinavica, 49(S1). https://doi.org/10.1186/1751-0147-49-s1-s14 Parameswaran, N., & Patial, S. (2010). Tumor necrosis factor-α signaling in macrophages. Critical Reviews™ in Eukaryotic Gene Expression, 20(2), 87–103 https://doi.org/10.1615/critreveukargeneexpr.v20.i2.10 Perdomo, M., Marsola, R., Favoreto, M. G., Adesogan, A. T., Staples, C., & Santos, J. E. P. (2020). Effects of feeding live yeast at 2 dosages on performance and feeding behavior of dairy cows under heat stress. Journal of Dairy Science, 103(1), 325–339. https://doi.org/10.3168/jds.2019-17303 Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J., McKinnon, J. J., & McAllister, T. A. (2013). Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLOS ONE, 8(12), e83424. https://doi.org/10.1371/journal.pone.0083424 Phesatcha, K., Phesatcha, B., Wanapat, M., & Cherdthong, A. (2021a). The effect of yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native beef cattle. Animals, 12(1), 53. https://doi.org/10.3390/ani12010053 Phesatcha, K., Wanapat, M., Chunwijitra, K., Wanapat, M., & Cherdthong, A. (2021b). Changed rumen fermentation, blood parameters, and microbial population in fattening steers receiving a high concentrate diet with Saccharomyces cerevisiae improve growth performance. Veterinary Sciences, 8(12), 294. https://doi.org/10.3390/vetsci8120294 Reisinger, N., Wendner, D., Schauerhuber, N., & Mayer, E. (2021). Effect of lipopolysaccharides (lps) and lipoteichoic acid (lta) on the inflammatory response in rumen epithelial cells (rec) and the impact of lps on claw explants. Animals, 11(7), 2058. https://doi.org/10.3390/ani11072058 Rinttilä, T., Kassinen, A., Malinen, E., Krogius, L., & Palva, A. (2004). Development of an extensive set of 16S rDNA‐targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real‐time PCR. Journal of Applied Microbiology, 97(6), 1166–1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x Rolando, P. L., Sandoval-Monzón, R. S., Montenegro, M. P., & Ruiz-García, L. F. 2022. Temperature-humidity index and reproductive performance of dairy cattle farms in Lima, Peru. Open Veterinary Journal, 12(3), 399–406. https://doi.org/10.5455/OVJ.2022.v12.i3.14 Sadiq, M. B., Ramanoon, S. Z., Shaik Mossadeq, W. M. M., Mansor, R., & Syed-Hussain, S. S. (2021). Preventive Hoof Trimming and Animal-Based Welfare Measures Influence the Time to First Lameness Event and Hoof Lesion Prevalence in Dairy Cows. Frontiers in Veterinary Science, 8, 631844. https://doi.org/10.3389/fvets.2021.631844 Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 Salguero, M. V., Al Obaide, M. A., Singh, R., Siepmann, T., & Vasylyeva, T. L. (2019). Dysbiosis of Gram negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease. Experimental and therapeutic medicine, 18(5), 3461–3469. https://doi.org/10.3892/etm.2019.7943 Sanchez, M. G., Passot, S., Campoy, S., Olivares, M., & Fonseca, F. C. (2021). Ligilactobacillus salivarius functionalities, applications, and manufacturing challenges. Applied Microbiology and Biotechnology, 106(1), 57–80. https://doi.org/10.1007/s00253-021-11694-0 Schepers, A., Lam, T. J., Schukken, Y. H., Wilmink, J., & Hanekamp, W. (1997). Estimation of Variance Components for Somatic Cell Counts to Determine Thresholds for Uninfected Quarters. Journal of Dairy Science, 80(8), 1833–1840. https://doi.org/10.3168/jds.s0022-0302(97)76118-6 Schingoethe, D. J., Linke, K., Kalscheur, K., Hippen, A., Rennich, & Yoon, I. (2004). Feed Efficiency of Mid-Lactation Dairy Cows Fed Yeast Culture During Summer. Journal of Dairy Science, 87(12), 4178–4181. https://doi.org/10.3168/jds.s0022-0302(04)73561-4 Seegers, H., Fourichon, C., & Beaudeau, F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research, 34(5), 475-491. https://doi.org/10.1051/vetres:2003027 Sharafi, H., Derakhshan, V., Paknejad, M., Alidoust, L., Tohidi, A., Pornour, M., Hajfarajollah, H., Zahiri, H. S., & Noghabi, K. A. (2015). Lactobacillus crustorum KH: Novel prospective probiotic strain isolated from Iranian traditional dairy products. Applied Biochemistry and Biotechnology, 175, 2178-2194. https://doi.org/10.1007/s12010-014-1404-2 Shen, Z., Zhu, C., Quan, Y., Yang, Z., Wu, S., Luo, W., Tan, B., & Wang, X. (2018). Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World Journal of Gastroenterology, 24(1), 5–14. https://doi.org/10.3748/wjg.v24.i1.5 Shi, Y., & Weimer, P. J. (1992). Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Applied and Environmental Microbiology, 58(8), 2583-2591. https://doi.org/10.1128%2Faem.58.8.2583-2591.1992 Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology, 235, 60–76. https://doi.org/10.1016/j.anifeedsci.2017.11.010 Singh, S. K., Bhatia, R., Khare, P., Sharma, S., Rajarammohan, S., Bishnoi, M., Bhadada, S. K., Sharma, S. S., Kaur, J., & Kondepudi, K. K. (2020). Anti-inflammatory Bifidobacterium strains prevent dextran sodium sulfate induced colitis and associated gut microbial dysbiosis in mice. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75702-5 Slanzon, G. S., Ridenhour, B. J., Moore, D. A., Sischo, W. M., Parrish, L., Trombetta, S. C., & McConnel, C. S. (2022). Fecal microbiome profiles of neonatal dairy calves with varying severities of gastrointestinal disease. PLoS ONE, 17(1), e0262317. https://doi.org/10.1371/journal.pone.0262317 Solano, L., Barkema, H. W., Pajor, E. A., Mason, S., LeBlanc, S. J., Zaffino Heyerhoff, J. C., Nash, C. G., Haley, D. B., Vasseur, E., Pellerin, D., Rushen, J., de Passillé, A. M., & Orsel, K. (2015). Prevalence of lameness and associated risk factors in Canadian Holstein-Friesian cows housed in freestall barns. Journal of Dairy Science, 98(10), 6978–6991. https://doi.org/10.3168/jds.2015-9652 Steimle, A., Autenrieth, I. B., & Frick, J. (2016). Structure and function: lipid A modifications in commensals and pathogens. International Journal of Medical Microbiology, 306(5), 290–301. https://doi.org/10.1016/j.ijmm.2016.03.001 Sugahara, H., Odamaki, T., Fukuda, S., Kato, T., Xiao, J., Abe, F., Kikuchi, J., & Ohno, H. (2015). Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Scientific Reports, 5(1), 1-11. https://doi.org/10.1038/srep13548 Sun, K. Y., Xu, D. H., Xie, C., Plummer, S., Tang, J., Yang, X. F., & Ji, X. H. (2017). Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine, 92, 1-11. https://doi.org/10.1016/j.cyto.2017.01.003 Taha-Abdelaziz, K., Astill, J., Kulkarni, R. R., Read, L. R., Najarian, A., Farber, J. M., & Sharif, S. (2019). In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-54494-3 Takahashi, N., Kitazawa, H., Iwabuchi, N., Xiao, J., Miyaji, K., Iwatsuki, K., & Saito, T. (2006). Oral Administration of an Immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Bioscience, Biotechnology, and Biochemistry, 70(8), 2013–2017. https://doi.org/10.1271/bbb.60260 Takemura, K., Shingu, H., Ikuta, K., Sato, S., & Kushibiki, S. (2020). Effects of Saccharomyces cerevisiae supplementation on growth performance, plasma metabolites and hormones, and rumen fermentation in Holstein calves during pre‐ and post‐weaning periods. Animal Science Journal, 91(1). https://doi.org/10.1111/asj.13402 Tong, L. C., Wang, Y., Wang, Z. B., Liu, W. Y., Sun, S., Li, L., Su, D. F., & Zhang, L. C. (2016). Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Frontiers in Pharmacology, 7, 253. https://doi.org/10.3389/fphar.2016.00253 Torii, T., Kanemitsu, K., Wada, T., Itoh, S. I., Kinugawa, K., & Hagiwara, A. (2010). Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Annals of Clinical Biochemistry, 47(5), 447–452. https://doi.org/10.1258/acb.2010.010047 Toumi, R., Soufli, I., Rafa, H., Belkhelfa, M., Biad, A., & Touil-Boukoffa, C. (2014). Probiotic bacteria Lactobacillus and Bifidobacterium attenuate inflammation in dextran sulfate sodium-induced experimental colitis in mice. International Journal of Immunopathology and Pharmacology, 27(4), 615–627. https://doi.org/10.1177/039463201402700418 Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M., & Roy, N. C. (2011). Regulation of tight junction permeability by intestinal bacteria and dietary components 1,2. Journal of Nutrition, 141(5), 769–776. https://doi.org/10.3945/jn.110.135657 Ungerfeld, E. M. (2020). Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Frontiers in Microbiology, 11, 589. https://doi.org/10.3389%2Ffmicb.2020.00589 Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126–132. https://doi.org/10.1264/jsme2.me14176 Van der Fels-Klerx, H. J., J. T. Sørensen, A. W. Jalvingh, and R. B. M. Huirne. "An economic model to calculate farm-specific losses due to bovine respiratory disease in dairy heifers." Preventive Veterinary Medicine 51, no. 1-2 (2001): 75-94. https://doi.org/10.1016/s0167-5877(01)00208-2 Van Gastelen, S., Westerlaan, B., Houwers, D. J., & Van Eerdenburg, F. (2011). A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials. Journal of Dairy Science, 94(10), 4878–4888. https://doi.org/10.3168/jds.2010-4019 Van Soest, P., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.s0022-0302(91)78551-2 Varada, V. V., Kumar, S., Chhotaray, S., & Tyagi, A. K. (2022a). Host-specific probiotics feeding influence growth, gut microbiota, and fecal biomarkers in buffalo calves. AMB Express, 12(1), 118. https://doi.org/10.1186/s13568-022-01460-4 Varada, V. V., Kumar, S., Tyagi, N., & Tyagi, A. K. (2022b). Effects of compound lyophilized probiotics on selected faecal microbiota, immune response, and antioxidant status in newborn buffalo calves. Current Research in Biotechnology, 4, 493–502 https://doi.org/10.1016/j.crbiot.2022.10.003 Viennois, E., & Chassaing, B. (2018). First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes, 9(3), 1–4. https://doi.org/10.1080/19490976.2017.1421885 Wallace, R., Onodera, R., & Cotta, M. A. (1997). Metabolism of nitrogen-containing compounds. In Springer eBooks, 283–328. https://doi.org/10.1007/978-94-009-1453-7_7 Wang, K., Xiong, B., & Zhao, X. (2023). Could propionate formation be used to reduce enteric methane emission in ruminants? Science of the Total Environment, 855, 158867. https://doi.org/10.1016/j.scitotenv.2022.158867 Wang, Y., Nan, X., Zhao, Y., Jiang, L., Wang, M., Wang, H., Zhang, F., Xue, F., Hua, D., Liu, J., Yao, J., & Xiong, B. (2021). Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. Journal of Animal Science and Biotechnology, 12(1), 1-21. https://doi.org/10.1186/s40104-020-00543-1 Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World Journal of Microbiology Biotechnology, 24:1313– 1325. https://doi.org/10.1007/s11274-007-9604-3 Watanabe, Y., Kim, Y., Kushibiki, S., Ikuta, K., Ichijo, T., & Sato, S. (2019). Effects of active dried Saccharomyces cerevisiae on ruminal fermentation and bacterial community during the short-term ruminal acidosis challenge model in Holstein calves. Journal of Dairy Science, 102(7), 6518–6531. https://doi.org/10.3168/jds.2018-15871 Wei, X., Wang, W., Dong, Z., Cheng, F., Zhou, X., Li, B., & Zhang, J. (2021). Detection of infectious agents causing neonatal calf diarrhea on two large dairy farms in Yangxin County, Shandong Province, China. Frontiers in Veterinary Science, 7, 589126. https://doi.org/10.3389/fvets.2020.589126 White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. Wong, C. B., Odamaki, T., & Xiao, J. Z. (2019). Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: Modulation of gut microbiome as the principal action. Journal of Functional Foods, 54, 506-519. https://doi.org/10.1016/j.jff.2019.02.002 Wong, J. M., De Souza, R., Kendall, C. W., Emam, A., & Jenkins, D. J. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235-243. https://doi.org/10.1097/00004836-200603000-00015 Xiaojuan, W., Wang, W., Dong, Z., Cheng, F., Zhou, X., Li, B., & Zhang, J. (2021). Detection of infectious agents causing neonatal calf diarrhea on two large dairy farms in Yangxin County, Shandong Province, China. Frontiers in Veterinary Science, 7, 589126. https://doi.org/10.3389/fvets.2020.589126 Yan, S., Yang, B., Ross, R. P., Stanton, C., Zhang, H., Zhao, J., & Chen, W. (2020). Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. Journal of Functional Foods, 73, 104153. https://doi.org/10.1016/j.jff.2020.104153 Yoon, I. K., & Stern, M. D. (1995). Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants–A Review. Asian-Australasian Journal of Animal Sciences, 8(6), 533–555. https://doi.org/10.5713/ajas.1995.553 Zhang, C., Yu, Z., Zhao, J., Zhang, H., & Zhai, Q. (2019). Colonization and probiotic function of Bifidobacterium longum. Journal of Functional Foods, 53, 157–165. https://doi.org/10.1016/j.jff.2018.12.022 Zhang, X., Dong, X., Wanapat, M., Shah, A. M., Luo, X., Khan, N. A., Kang, K. U., Hu, R., Guan, J., & Wang, Z. (2022). Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle. Animal Bioscience, 35(2), 184–195. https://doi.org/10.5713/ab.21.0200 Zinicola, M., Lima, F. B., Lima, S., Machado, V., Gomez, M. S., Döpfer, D., Guard, C. L., & Bicalho, R. C. (2015). Altered microbiomes in bovine digital dermatitis lesions, and the gut as a pathogen reservoir. PLoS ONE, 10(3), e0120504. https://doi.org/10.1371/journal.pone.0120504 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90755 | - |
dc.description.abstract | 益生菌的精準餵食方法可以解決益生菌菌株、宿主及其微生物組中固有的異質性。實驗室先前研究發現,Bifidobacterium longum 和 Ruminococcus flavefaciens 在腸道中的相對豐富度對牛隻的健康有顯著的影響。然而,目前 R. flavefaciens 並非行政院農委會所認可的飼料添加劑。先前有研究顯示餵食牛隻 Saccharomyces cerevisiae 可以顯著提高其瘤胃中 R. flavefaciens 的相對豐富度。因此,S. cerevisiae 和 B. longum 可能是促進牛隻健康之潛力益生菌。
首先,我們從健康仔牛糞便中分離出乳酸菌及從水果中分離出 S. cerevisiae。從仔牛糞便中分離出共 57 株乳酸菌,並透過 16S rRNA 基因序列進行定序。 初步篩選乳酸菌菌株的條件為具有抑制牧場常見之病原菌。結果顯示,共 10 個菌株分别具有抑制 Salmonella enterica 及 Staphylococcus aureus 的能力。但其中只有 6 株乳酸菌目前是被行政院農委會認可的飼料添加劑。接續使用 RAW264.7 细胞在脂多糖刺激之下與乳酸菌菌株共培養作為篩選潛力益生菌株。結果發現,Ligilactobacillus salivarius K108 具有同時抑制兩個病原菌及免疫調節的能力。此外,從水果中分離出57株酵母菌,經由 18S-26S ITS來進行鑑定。結果顯示其中 14 株被鑑定為 S. cerevisiae。進一步進行瘤胃體外發酵試驗來進行篩選 S. cerevisiae。在 24 小時的體外發酵過程中,S. cerevisiae T15 表現出較高的 pH 值和產生較多的微生物菌體蛋白。另外,本實驗室先前分離出 5 株 B. longum,其中 B. longum APL 30具有較好的免疫調節和抑制病原菌之能力。在進行益生菌單株篩選後,將 B. longum APL 30、L. salivarius K108 和 S. cerevisiae T15 組合並檢測其對免疫調節及瘤胃體外發酵之影響。結果發現,細胞在LPS 刺激之下,組合益生菌顯示出較高的 IL-10 和較低的 TNF-α 分泌量。在 24 小時瘤胃體外發酵後,有較高的丁酸產生;而在 48 小時瘤胃體外發酵後,有較高的丙酸和较低的乙酸/丙酸比例。 接著,使用 DSS 誘導小鼠結腸炎模式來釐清組合益生菌對抗發炎的能力。結果顯示,組合益生菌有能力緩解 DSS 誘導造成的下痢、糞便潛血及腸道通透性等症狀。給予高劑量組合益生菌可以增加抗發炎細胞素 IL-10 的分泌量、提高腸道中 Bifidobacterium 的菌數及腸道中丙酸的含量。此外,給予低劑量組合益生菌可以降低腸道中 Clostridium perfringens 的菌數。未來還需在乳牛場進行試驗,以進一步驗證此混合菌株對乳牛健康益處的影響。 | zh_TW |
dc.description.abstract | A targeted method towards probiotics could effectively tackle the natural diversity present in probiotic strains, the hosts, and their microbiomes. Our previous research found that the abundance of Bifidobacterium longum and Ruminococcus flavefaciens in intestinal tracts positively affects dairy cattle health. However, R. flavefaciens is not yet allowed to be applied as a feed supplement by the Council of Agriculture, Taiwan. Several studies indicated that supplementation of Saccharomyces cerevisiae could significantly increase R. flavefaciens relative abundance. Thus, S. cerevisiae and B. longum might be potential probiotics for promoting dairy cows’ health.
First, we aimed to isolate lactic acid bacteria (LAB) from healthy dairy calf feces and S. cerevisiae from fruits. Fifty-seven LAB were isolated and identified through the sequencing of 16S rRNA gene from calves’ feces. Isolates with the ability to inhibit common pathogens in dairy farms as the preliminary screening criteria. The results showed that 10 strains have the ability to inhibit Salmonella enterica and Staphylococcus aureus, respectively. Only 6 strains of LAB were allowed to be applied as feed supplements by the Council of Agriculture, Taiwan. In the in vitro screening, RAW264.7 cells stimulated by lipopolysaccharide (LPS) were used as a model. We found that Ligilactobacillus salivarius K108 has the ability to inhibit pathogens and immunomodulation. Besides, 57 isolates were obtained from fruits, using the 18S-26S ITS region to identify them. The results showed that 14 strains were confirmed as S. cerevisiae. We further evaluated the functionality of S. cerevisiae by in-vitro rumen fermentation. S. cerevisiae T15 showed higher pH value and microbial crude protein (MCP) production in 24-hour period fermentation. Additionally, 5 strains of B. longum were previously isolated in our lab, and B. longum APL 30 showed better immunomodulatory and anti-pathogen properties. After single strain screening, the combination of B. longum APL30, L. salivarius K108, and S. cerevisiae T15 was tested for their effects on immunomodulatory and in-vitro rumen fermentation. The probiotic mixture showed a higher IL-10 production and lower TNF-α when stimulated by LPS, higher butyrate after 24-hour in-vitro rumen fermentation, and a higher propionate and lower acetate/propionate ratio after 48-hour in-vitro rumen fermentation. Moreover, to clarify the ability of anti-inflammatory of the probiotic mixture, the induction of colitis using DSS was carried out in the mouse model. The findings indicated that the probiotic mixture has the ability to alleviate symptoms such as diarrhea, fecal bleeding, and gut leakage, which were induced by DSS. Administration of a high-dosage probiotic mixture has been shown to enhance the secretion of the anti-inflammatory cytokine IL-10, increase the bacterial count of Bifidobacterium, and elevate the level of propionic acid in the colon content of DSS-induced mice. However, administration of a low-dosage probiotic mixture has been shown to decrease the bacterial count of Clostridium perfringens. The field trial in dairy farms is also needed to verify the health benefits in dairy cattle. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:28:36Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:28:36Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgments i
中文摘要 iii Abstract v Table of Contents vii List of Figures xi List of Tables xiii Chapter 1 Literature review 1 1.1 Common dairy cattle disease related to inflammation 1 1.1.1 Mastitis 1 1.1.2 Diarrhea 2 1.1.3 Lameness 3 1.1.4 Pneumonia 3 1.2 Factors affecting dairy cattle’s health 5 1.2.1 Nutrition 5 1.2.2 Genetics 6 1.2.3 Housing 6 1.2.4 Environmental conditions 7 1.2.5 Gut microbiota 7 1.3 Lipopolysaccharide 10 1.3.1 Interaction between LPS and gut microbiota dysbiosis 13 1.3.2 Interaction between LPS and intestinal barrier function 13 1.4 The role of selected probiotics strain 16 1.4.1 Bifidobacterium longum 17 1.4.1.1 Intestinal barrier function 17 1.4.1.2 Immunomodulatory 18 1.4.1.3 Antimicrobial activity 19 1.4.1.4 Interactions among microorganisms influencing gut microbial metabolism 19 1.4.2 Saccharomyces cerevisiae 22 1.4.2.1 Effect on rumen microbial composition 24 1.4.2.2 Rumen volatile fatty acid composition 24 1.4.2.3 Milk quality and production performance 25 1.4.2.4 Nitrogen metabolism 26 1.4.3 Ligilactobacillus salivarius 29 Chapter 2 Research Motivation and Objectives 30 2.1 Objectives 30 2.2 Experimental design 31 Chapter 3 Materials and Methods 32 3.1 Materials 32 3.1.1 Chemicals and reagents 32 3.1.2 Biological medium 35 3.1.3 Antibody 36 3.1.4 Kits 36 3.1.5 Equipment 37 3.1.6 Cell line 39 3.1.7 Animal 39 3.1.8 Software 39 3.2 Isolation, purification, and identification of target microorganism 42 3.2.1 Isolation of Saccharomyces cerevisiae 42 3.2.2 Isolation of lactic acid bacteria 42 3.2.3 Microorganism purification 42 3.2.4 Microorganism preservation 43 3.2.5 DNA extraction 43 3.2.6 Microorganism identification 44 3.2.7 Phylogenetic tree construction 44 3.3 In-vitro screening experiment 50 3.3.1 Preparation of microorganism strain 50 3.3.2 Antimicrobial activity 51 3.3.3 Coculture of isolated strain with RAW 264.7 cells 54 3.3.4 In-vitro rumen fermentation 56 3.4 Dextran sodium sulfate (DSS) induced intestine inflammation mice model 59 3.4.1 Bacterial strain and culture condition 59 3.4.2 Animal experimental design 59 3.4.3 Disease activity index (DAI) 60 3.4.4 Fecal bleeding assessment 60 3.4.5 Colon length measurement 60 3.4.7 Measurement of intestinal permeability 62 3.4.8 Preparation of colonic homogenates 62 3.4.9 Measurement of cytokine and immunoglobulin 63 3.4.10 Measurement of tight junction proteins and myeloperoxidase 63 3.4.11 Short-chain fatty acid analysis 64 3.4.12 DNA extraction of cecum content 65 3.4.13 Analysis of cecum microbiota 66 3.5 Statistical analysis 66 Chapter 4 Results 70 4.1 Isolation and identification of lactic acid bacteria from the feces of healthy dairy calves 70 4.2 Identification of Saccharomyces cerevisiae 74 4.3 Screening of lactic acid bacteria 77 4.3.1 Antimicrobial activity 77 4.3.2 Immunomodulatory effect 81 4.4 Screening of Saccharomyces cerevisiae 85 4.4.1 In-vitro rumen fermentation 85 4.4.2 Antimicrobial activity 90 4.4.3 Immunomodulatory effect 92 4.5 Screening of Bifidobacterium longum 95 4.5.1 Antimicrobial activity 95 4.5.2 Immunomodulatory effect 97 4.6 The effect of probiotic mixture in-vitro 100 4.6.1 Immunomodulatory effect 100 4.6.2 In-vitro rumen fermentation of the probiotic mixture 102 4.6.3 In-vitro rumen fermentation of the single strain 107 4.7 The effect of the probiotic mixture on DSS-induced mice colitis 112 4.7.1 Average daily weight gain (ADG) 112 4.7.2 Disease activity index (DAI) 112 4.7.3 Incidence of hemoccult 112 4.7.4 Gut permeability 117 4.7.5 Colon length 117 4.7.6 Immunomodulatory 117 4.7.7 H&E staining 121 4.7.8 Myeloperoxidase (MPO) 121 4.7.9 Tight junction protein 121 4.7.10 Cecal microbiota 122 4.7.11 Short-chain fatty acid 122 Chapter 5 Discussion 128 5.1 Isolation of microorganisms 128 5.2 In-vitro experiment for screening potential probiotic strains 129 5.3 In-vitro experiment for selecting the optimal combination of a probiotic mixture 131 5.4 The effect of probiotic mixture in-vivo 133 Chapter 6 Conclusion 136 References 138 | - |
dc.language.iso | en | - |
dc.title | 利用體外及小鼠試驗篩選促進乳牛健康之潛力益生菌組合 | zh_TW |
dc.title | Screening potential probiotic mixture in vitro and in vivo for promoting dairy cattle health | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王翰聰;莊士德;陳詠宗;謝睿純 | zh_TW |
dc.contributor.oralexamcommittee | Han-Tsung Wang;Shih-Te Chuang;Yung-Tsung Chen;Jui-Chun Hsieh | en |
dc.subject.keyword | 乳牛,益生菌組合,腸道屏障保護,結腸炎, | zh_TW |
dc.subject.keyword | Dairy cattle,Probiotic mixture,Intestinal barrier protection,Colitis, | en |
dc.relation.page | 158 | - |
dc.identifier.doi | 10.6342/NTU202304094 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-08-01 | 25.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。