請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90750完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王翰聰 | zh_TW |
| dc.contributor.advisor | Han-Tsung Wang | en |
| dc.contributor.author | 黃瑞揚 | zh_TW |
| dc.contributor.author | Ruei-Yang Huang | en |
| dc.date.accessioned | 2023-10-03T17:27:19Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | 行政院農業委員會。2017。豬隻友善飼養系統定義及指南。台北。台灣
經濟部工業標準委員會。2021。中華民國國家標準。台北。台灣 AOAC. 2005. Office methods of analysis. 18th ed. Assoc. Off. Anal. Chem., Washington,DC. Aguirre, M., A. Eck, M.E. Koenen, P.H.M. Savelkoul, A.E. Budding, and K. Venema, 2015. Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. Jour. of Microbio. Meth. 117, 78 - 84, 2015. doi: 10.1016/j.mimet.2015.07.019 Awati, A., B. A. Williams, M. W. Bosch, W. J. J. Gerrits and M. W. A. Verstegen. 2006.Effect of inclusion of fermentable carbohydrates in the diet on fermentation endproduct profile in feces of weanling piglets. J.Anim. Sci. 84:2133-2140.doi:10.2527/jas.2004-676 Bedford, M., and A. Cowieson. 2012. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Technol. 173:76-85. doi: 10.1016/j.anifeedsci.2011.12.018 Bindelle, J., A. Buldgen, M. Delacollette, J. Wavreille, R. Agneessens, J. P. Destain, and P. Leterme. 2009. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. Anim. Sci. 2009 87:583-593. doi: 10.2527/jas.2007-0717 Boisen, S., and F. J. A. 1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses, Anim. Feed Sci. Technol. 1997 68:277-286. doi:10.1016/S03778401(97)00058-8 Canibe, N., O. Højberg, S. Højsgaard, and B. B. Jensen. 2005. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J. Anim. Sci. 83(6):1287-1302. doi: 10.2527/2005.8361287x Chaney, A. L., and E. P. Marbach. 1962.Modified reagents for determination of urea and ammonia. Clin. Chem.8:130-132. doi: 10.1093/clinchem/8.2.130 Chen, L., L. X. Gao, Q. H. Huang, Q. P. Lu, R. N. Sa, and H. F. Zhang. 2014. Prediction of digestible energy of feed ingredients for growing pigs using a computer-controlled simulated digestion system1. J. Anim. Sci. 92(9):3887-3894. doi: 10.2527/jas.2013-7092 Chen, L., H. G. Zhang, and F. Zhao. 2013. The vitro cell method evaluation of bioavailability of feeds in non-ruminants. Feed Industry. 1001-991X(2013)19-0058-04. doi:10.3969/j.issn.1001-991X.2013.19.016 Clunies, S., and S. Leeson . 1984.In vitro estimation of dry matter and crude protein digestibility. Poultry Sci. 63:89-96. doi: 10.3382/ps.0630089 Coles, L. T., P. J. Moughan, A. Awati, and A. J. Darragh. 2013. Optimization of inoculum concentration and incubation durationfor an in vitro hindgut dry matter digestibility assay. Food Chem. 2013 136:624-631. doi:10.1016/j.foodchem.2012.08.045 Corring. T. 1980. The adaptation of digestive enzymes to the diet: Its physiological significance.Reprod. Nutr. Dev. 1980 20:1217-1235. Dong, G., A. Zhou, F. Yang, K. Chen, K. Wang, and D. Dao. 1996. Effect of dietary protein levels on the bacterial breakdown of protein in the large intestine, and diarrhoea in the early weaned piglet. Acta. Vet. Zootech. Sin. 1996 27:293-302. doi:10.1097/00000542-199607000-00041 Fleury, Mickaël. 2015. Impact of antibiotics treatments on piglet gut microbiota : In vivo study and development of an in vitro fermentation system. Furuya, S., K. Sakamoto, and S. Takahashi. 1979.A new in vitro method for estimating digestibility using the pig's intestinal fluid. Br. J. Nutr. 1979 41:511-20. doi:10.1079/bjn19790066. Gauthier, S. F., C. Vachon, J. D. Jones, and L. Savoie. Assessment of protein digestibility by in vitro enzymatic hydrolysis with simultaneous dialysis. J. Nutr. 1982 112:1718-25.doi: 10.1093/jn/112.9.1718 Groot, J. C., J.W. Cone, B. A. Williams, F. M. Debersaques, and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996 64:77-89. doi: 10.1016/S0377-8401(96)01012-7 Hickson, J. C. D. 1970. The secretion of pancreatic juice in response to stimulation of the vagus nerves in the pig. J. Physiol. 1970 206:275-297. doi: 10.1113/jphysiol.1970.sp009013 Hsu, J. E., S. H. Lp, Y. Y. Lin, H. T. Wang, and C.Y.Chen. 2022. Effect of essential oil mixtures on nitrogen metabolism and odor emission via in vitro simulated digestion and in vivo growing pig experiments. J. Sci.Food Agric. 102:1939-1947. Hu, G. Y., F. Zhao, H. F. Zhang, Y. X. Zhong, and Z. K. Liu. 2010. Effects of the Source and Level of Dietary Protein on the Composition of Jejunal Fluid in Growing Pigs. China. J. Anim. Nutr.2010, 22( 5) :1220-1225 Jensen, B. B., and H. Jorgensen. 1994. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl. Environ. Microbiol. 60: 1897-1904.doi: 10.1128/aem.60.6.1897-1904.1994 Kass, M.L., P. J. Van Soest, and W. G. Pond. 1980. Utilization of Dietary Fiber from Alfalfa by Growing Swine. I. Apparent Digestibility of Diet Components in Specific Segments of the Gastrointestinal Tract. J. Anim. Sci. 1980 50:192-197. doi: 10.2527/jas1980.501175x Kim, H. B., K. Borewicz, B. A. White, R. S. Singer, S. Sreevatsan, Z. J. Tu, and R. E. Isaacson. 2011.Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet.Microbiol.153:124 133.doi:10.1016/j.vetmic.05.021. Konstantinov, S. R., A. A. Awati, B. A. Williams, B. G. Miller, P. Jones, and C. R. Stokes. Akkermans A.D.L., Smidt H., de Vos W.M. Post-natal development of the porcine microbiota composition and activities. Env. Microbiol. 2006;8:1191–1199. doi: 10.1111/j.1462-2920.2006.01009.x Lawrence, T. L. 1972. The effect of certain dietary factors on in vivo pH changes and pepsin activity in the stomach of the growing pig. Br. Vet. J. 1972 128:402-11. doi: 10.1016/S0007-1935(17)36834-3 Lo. S. H., C. Y. Chen, and H. T. Wang. 2022. Three-step in vitro digestion model for evaluating and predicting fecal odor emission from growing pigs with different dietary protein intakes. Anim. Biosci. 2022, 35(10):1592-1605. doi:10.5713/ab.21.0498. Mach, N., M. Berri, J. Estelle, F. Levenez, G. Lemonnier, C. Denis, J. J. Leplat, C.Chevaleyre, Y.Billon, and J. Dore. 2015. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12285 Macfarlane, G. T., and J. H. Cummings. 1991. The colonic flora, fermentation and large bowel digestive function. Physio. Patho. Disea.1991 51-92. Macfarlane, J., and G. T. Macfarlane. 1995. Proteolysis and amino acid fermentation. In: G. R. Gibson and G. T. Macfarlane (Ed.) Human Colonic Bacteria. pp 75−100. CRC Press, New York. Manzanilla, E. G., M. Nofrarías, M. Anguita, M. Castillo, J. F. Perez, S. M. Martín-Orúe, C. Kamel, and J. Gasa. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs1. J. Anim. Sci 84(10):2743-2751. doi 10.2527/jas.2005-509 Mauron, J., F. Mottu, E. Bujard, and R. H. Egli. 1955. The availability of lysine, methionine and tryptophan in condensed milk and milk powder. in vitro digestion studies.Arch. Biochem. Biophys. 1955 59:433-51. doi: 10.1016/0003-9861(55)90510-5 Meijers B. J. I., and P. Evenepoel. 2011. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrology Dialysis Transplantation. 26: 759-761 doi: 10.1093/ndt/gfq818 Meunier, J. P., E. G. Manzanilla, M. Anguita, S. Denis, J. F. Pe´rez, J. Gasa, J.-M. Cardot, F. Garcia, X. Moll, and M.Alric. 2008. Evaluation of a dynamic in vitro model to simulate the porcine ileal digestion of diets differing in carbohydrate composition. J. Anim. Sci. 86:11561163.doi:10.2527/jas.2007-0145 Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. L. Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. J. Mcclements, O. Ménard, I. Recio, C.N. Santos, R. P. Singh, G. E.Vegarud, M. S. J. Wickham, W. Weitschies, and A.Brodkorb. 2014. A standardized static in vitro digestion method suitable for food – an international consensus. Food Funct. 5: 1113–1124. doi:10.1039/c3fo60702j Minekus, M., M. Smeets-Peeters and A. Bernalier. Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, and Veld J. 1999. A computercontrolled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 1999 53:108- 114. doi: 10.1007/s002530051622 Mosenthin, R., and B. Zimmermann. 2000. Probiotics and prebiotics in pig nutrition–alternatives for antibiotics. Selected Topics in Animal Nutrition, Biochemistry and Physiology, R. Mosenthin, ed. University of Alberta, Edmonton, Alberta, Canada. 2000 29-50. doi: 10.1016/B978-0-12-802189-7.00008-3 O’Neill, H. M., J. Smith, and M.Bedford. 2014. Multicarbohydrase enzymes for nonruminants. Asian Australas. J. Anim. Sci.27:290. doi:10.5713/ajas.2013.13261 Partridge, I., A. Low, I. Sambrook, and T. Corring. 1982. The influence of diet on the exocrine pancreatic secretion of growing pigs. Br. J.Nutr. 1982 48:137 145. doi:10.1079/BJN19820096 Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy.2017. Gut microbiota functions metabolism of nutrients and other food components. Eur. J. Nutr, 57: 1–24. doi: 10.1007/s00394-017-1445-8 Savoie, L., 1984. Effect of protein treatment on the enzymatic hydrolysis of lysinoalanine and other amino acids. Adv. Exp. Med. Biol.1984 177:413-422.doi: 10.1007/978-1-4684-4790-3_19 Scheppach, W., M. E. Pascu, and F. Richter 1997. Ballaststoffe, kurzkettige Fettsäuren und Kolonkarzinom. Akt Ernähr Med. 1997 22:321-326 Sloat, D. A., D. C. Mahan, and K. L. Roehrig. 1985. Effect of pig weaning weight on postweaning body composition and digestive enzyme development. Nutr. Rep. Int. 31:627-634. Thanh, N. T., T. C. Loh, H. L. Foo, M. Hair-Bejo, and B. K. Azhar. 2009. Effects of feeding metabolite combinations produced by lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. Br. Poult. Sci. 50:298–306. doi:10.1080/00071660902873947. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAIlan, and I. France. 1994. A new gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. Thevenot, J., C. Cordonnier, A. Rougeron, O. G. Le, H. Nguyen, S. Denis, M. Alric, V. Livrelli, and S. Blanquet-Diot. 2015. Enterohemorrhagic Escherichia coli infection has donor-dependent effect on human gut microbiota and may be antagonized by probiotic yeast during interaction with Peyer’s patches. Appl. Microbiol. Biotechnol. 2015 99:9097-9110. Vardakou, M., A. Mercuri, S. A. Barker, D. Q. Craig, R. M. Faulks, and M. S. Wickham. 2011. Achieving Antral Grinding Forces in Biorelevant In vitro Models: Comparing the USP Dissolution Apparatus II and the Dynamic Gastric Model with Human In vivo Data. AAPS Pharmscitech 2011 12:620-626. Verhoeckx, K., P. Cotter, and I. López-Expósito. 2015. The Impact of Food Bioactives on Health. Springer. UK. Vermeiren J, P. Van den Abbeele, D. Laukens, LK. Vigsnaes, M. De Vos, N. Boon, and T. Van de Wiele. 2012. Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol. Ecol. 2012 79:685-696 Vervaeke, I. J., N. A. Dierick, D. I. Demeyer, and J. A. Decuypere.1989. Approach to the Energetic Importance of Fibre Digestion in Pigs. II. An Experimental Approach to Hindgut Digestion. Anim. Feed Sci. Technol. 23: 169-194.doi: 10.1016/0377-8401(89)90096-5 Vigsnaes LK, P. van den Abbeele, K. Sulek, HL. Frandsen, C. Steenholdt, J. Brynskov, J. Vermeiren, T. van de Wiele, and TR. Licht. 2013. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Sci. Rep. 2013 3:1110. Wang, M., S. Wichienchot, X.He, X. Fu, Q. Huang, and B. Zhang. 2019. In vivo colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 88:1-9. doi: 10.1016/j.tifs.2019.03.005 Wickham, M. J. S., R. M. Faulks, J. Mann, and G. Mandalari. 2012. The Design, Operation, and Application of a Dynamic Gastric Model. Diss. Tech. 19(3), 15 - 22, 2012 doi: 10.14227/DT190312P15 Williams, B. A., M. W. Bosch, H. Boer, M. W. A. Verstegen, and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123-124:445-462. doi: 10.1016/j.anifeedsci.2005.04.031 Wood, T. M., and K. M. Bhat. 1988. Methods for measuring cellulase activities, Methods Enzymol. 160:87-112. doi: 10.1016/0076-6879(88)60109-1 Yen, J. T. 2001. Anatomy of the digestive system and nutritional physiology. In swine nutrition. CRC Press, Boca Raton, Florida. 2001 32-53. doi:10.1201/9781420041842.ch3 Zhang, L. S., and S. S. Davies. 2016. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 8:46. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90750 | - |
| dc.description.abstract | 現今評定飼糧價值時,多透過近似分析來進行,但化學分析所得成分與實際上的消化吸收仍有差距,因此需透過更客觀的方式評定飼糧的養分效價,以達到提高飼料效率的目的。利用直接餵飼動物取得結果的方法為動物體內法(in vivo),可蒐集真實的消化代謝數據及其生理數值,但是此法相當耗時費力,尤其在同時比較多種飼糧時,需投入大量飼養成本與時間。利用動態體外消化法(dynamic in vitro digestion system)雖可省去飼養動物的負擔,並與體內法具有高度相似性,但是所需設備昂貴,無法同時進行多種飼糧間的比較,在實驗效率上較差。靜態體外消化法(static in vitro digestion system)簡化了吸收的過程,雖對於後腸發酵的模擬較不足,但有使用器材簡單、操作快速和同時可比較多種不同飼糧的特點,因此若能加以改良,則可有效發揮體外消化的優勢。
本研究利用三種體外消化來比較不同飼料之間的差異,分別以搖瓶法(shaking flask)、透析袋法(dialysis bag)以及搖瓶+透析袋法(shaking flask+ dialysis bag)來模擬胃部以及小腸的消化,並結合體外發酵(in vitro fermentation)過程,接種新鮮豬糞模擬豬隻後腸的發酵。試驗主要探討三種不同的消化方法之間對於消化率以及最終後腸發酵的影響,並且分析採食相對應飼糧之豬隻糞便所得的數據進行雙向驗證比較,以了解不同消化方法對於消化結果與臭味物質排放的影響,並建立較適合對應於豬隻的靜態體外消化方法。 利用不同豬場所蒐集的生長豬飼料以及肥育豬飼料進行測試,實驗結果顯示,不同的消化方法在胃以及小腸的乾物質和粗蛋白消化率之間具有顯著差異(p<0.05),不論生長豬飼料或是肥育豬飼料試驗之趨勢皆相同。在乾物質消化率方面,使用透析袋法與搖瓶搭配透析袋法相近,單獨使用搖瓶法時較低。蛋白質消化率方面則為以透析袋法高於搖瓶搭配透析袋法,單獨使用搖瓶法時最低。後腸發酵實驗結果顯示,發酵12小時的模擬後腸乾物質以及蛋白質消化率,以搖瓶法消化殘餘物為基質時最高,透析袋法與搖瓶搭配透析袋法之消化殘餘物較低。在發酵48小時的後腸乾物質以及蛋白質消化率,也和發酵12小時的模式相似。整合胃與小腸部分消化酵素模擬以及大腸發酵之全腸道消化率來看,三種模擬胃與小腸之體外消化的方法之間均有顯著差異。在臭味物質的排放方面,不論是發酵12小時或是發酵48小時在對甲酚(p-cresol)、吲哚(indole)、糞臭素(skatole)以及氨態氮(amonia nitrogen, NH3-N)這四種臭味物質以及揮發性脂肪酸(volatile fatty acids, VFA)的排放方面皆具有顯著差異(P<0.05)。以搖瓶搭配透析袋法之消化殘餘物為基質,經過48小時發酵的臭味物質,與豬隻糞便所得的數據進行比較,可發現臭味物質中的對甲酚、吲哚以及氨態氮之濃度上,在體外評估與活體糞便分析值間具有較高之相關性。 綜上所述,透過本研究了解不同消化方法對於消化率的影響,及利用體內實驗所蒐集的豬隻臭味排放數據,有助於建立出更適用於豬隻飼糧評估的靜態體外消化方法。 | zh_TW |
| dc.description.abstract | Presently, the assessment of feed value is often conducted through approximate analysis, which may not fully reflect the actual digestion and absorption in animals. To enhance feed efficiency, a more objective approach is needed to evaluate the nutrient effectiveness of animal feed. In vivo methods involve direct feeding of animals to collect real digestion and metabolic data, but they are time-consuming and labor-intensive, especially when comparing multiple feed types simultaneously. Dynamic in vitro digestion systems, though similar to in vivo methods, are costly and impractical for parallel comparisons of different feeds, leading to lower experimental efficiency. Static in vitro digestion systems, on the other hand, simplify the absorption process and enable easy and rapid comparison of multiple feed types, but they may lack accuracy in simulating hindgut fermentation. However, with appropriate modifications, they can still effectively leverage the advantages of in vitro digestion.
In this study, three in vitro digestion methods were employed to compare differences among various feeds. Three digestion techniques, namely shaking flask, dialysis bag, and a combination of shaking flask with a dialysis bag, were utilized to simulate gastric and small intestinal digestion. Furthermore, an in vitro fermentation process was integrated by inoculating fresh pig feces to simulate hindgut fermentation. The experiment focused on investigating the impact of these three digestion methods on digestibility rates and final hindgut fermentation. Data obtained from pig feces corresponding to the respective feed intake were subjected to bidirectional validation and comparison to understand the effects of different digestion methods on digestion outcomes and emission of odorous compounds. The goal was to establish a more suitable static in vitro digestion method applicable to pig feeding studies. Samples of growth pig feed and finishing pig feed from various pig farms were collected for testing. The results revealed significant differences (p<0.05) in dry matter and crude protein digestibility rates among the three digestion methods in both growth and finishing pig feed experiments. The dialysis bag method showed similar results to the shaking flask combined with dialysis bag method but performed lower when used alone. In terms of protein digestibility, the dialysis bag method outperformed the shaking flask combined with dialysis bag method, which, in turn, outperformed the shaking flask method used alone. The hindgut fermentation experiment indicated that the shaking flask digestion residues served as the best substrate for fermenting dry matter and protein after 12 hours, while the dialysis bag method and shaking flask combined with dialysis bag method exhibited lower digestion residues. The 48-hour hindgut fermentation results were similar to the 12-hour pattern. Analyzing the overall digestive rates, including enzyme simulations for gastric and small intestinal digestion and fermentation in the large intestine, significant differences were observed among the three in vitro digestion methods. Regarding the emission of odorous compounds, both the 12-hour and 48-hour fermentation showed significant differences (P<0.05) in the release of four odorants, namely p-cresol, indole, skatole, and ammonia nitrogen (NH3-N), as well as volatile fatty acids (VFA). Comparing the 48-hour fermentation results for odorants with pig feces data, the shaking flask combined with dialysis bag method displayed a higher correlation between in vitro assessment and in vivo fecal analysis for p-cresol, indole, and ammonia nitrogen concentrations. Overall, the study demonstrated that different static in vitro digestion methods significantly influence digestibility rates and fermentation characteristics in swine feeding. The shaking flask combined with dialysis bag method appears to be a promising approach for accurately evaluating nutrient digestibility and predicting odor emissions in pig feeding studies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:27:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:27:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 前言 1 第一章 文獻回顧 2 一、動物飼糧評估方法 2 (一) 近似分析(proximate analysis) 2 (二) 動物體內法(in vivo) 2 (三) 動態體外消化法(dynamic in vitro digestion) 3 (四) 靜態體外消化(static in vitro digestion system) 7 二、靜態體外消化之種類 10 (一) 胃-小腸消化 10 (二) 胃-小腸-大腸消化 11 (三) 消化產物移除考量 12 三、靜態體外消化參數選擇 13 (一) 消化道生理參數設定 13 (二) 模擬消化方法選擇 16 四、體外發酵(in vitro fermentation) 17 (一) 不同消化方式對於發酵產物的影響 17 (二) 發酵產物的種類 18 第二章 研究目的 21 第三章 實驗架構 22 第四章 材料與方法 23 一、飼糧來源及豬隻生長階段23 二、體外消化試驗 24 (一) 搖瓶法 24 (二) 透析袋法 27 (三) 搖瓶+透析袋法 30 三、體外發酵 .31 (一) 厭氧發酵液配製31 (二) 發酵基質來源 33 (三) 微生物接種來源 33 (四) 操作步驟 34 四、發酵產物及糞樣分析 35 (一) 糞樣蒐集 35 (二) 糞樣處理 36 (三) 微生物蛋白質測定 38 (四) 蛋白質濃度測定 39 (五) 纖維素酶活性 39 (六) 半纖維素酶活性 40 (七) 蛋白酶活性 41 (八) 酪胺酸酶活性 41 (九) 尿素酶活性 41 (十) 氨態氮 42 (十一) 揮發性脂肪酸分析 42 (十二) 臭味物質分析 43 (十三) 乾物質 45 (十四) 灰分 45 (十五) 鹽酸不溶物 45 (十六) 鹽酸不溶物做為內源性指示劑推估消化率 45 (十七) 粗纖維 45 (十八) 粗脂肪 45 (十九) 粗蛋白 46 (二十) 產氣動力學 46 (二十一) 游離胺基酸 47 五、不同消化參數改變對於胃部體外消化率之影響 47 (一) 消化方法 47 (二) 緩衝液配製 47 (三) 消化時間 47 (四) 酵素配製 47 (五) 消化環境pH 48 (六) 操作步驟 48 六、統計分析 48 (一) 體外消化實驗 48 (二) 不同消化參數改變對於胃部體外消化率之影響 49 第五章 結果與討論 50 一、體外消化實驗 50 (一) 胃-小腸消化 50 (二) 後腸發酵 53 二、 不同消化參數改變對於胃部體外消化率之影響 103 第六章 結論 107 第七章 參考文獻 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 體外發酵 | zh_TW |
| dc.subject | 靜態體外消化 | zh_TW |
| dc.subject | 三段式體外消化法 | zh_TW |
| dc.subject | 飼糧評估 | zh_TW |
| dc.subject | Static in vitro digestion | en |
| dc.subject | Three-stage digestion | en |
| dc.subject | Feed evaluationv | en |
| dc.subject | In vitro fermentation | en |
| dc.title | 豬隻高通量體外模擬消化平台之建立 | zh_TW |
| dc.title | Establishment of high throughput in vitro digestion simulation platform for pigs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉韋君;劉芳爵;李一泓;蕭士翔 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Jyun Liou;Fang-Jyue Liou;Yi-Hong Li;Shih-Siang Siao | en |
| dc.subject.keyword | 靜態體外消化,三段式體外消化法,體外發酵,飼糧評估, | zh_TW |
| dc.subject.keyword | Static in vitro digestion,Three-stage digestion,In vitro fermentation,Feed evaluationv, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202303354 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2026-08-15 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2026-08-15 | 5.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
