請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90746完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | zh_TW |
| dc.contributor.advisor | Chi-An Dai | en |
| dc.contributor.author | 李璉瑋 | zh_TW |
| dc.contributor.author | Lien-Wei Lee | en |
| dc.date.accessioned | 2023-10-03T17:26:19Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 1. Uyama, H. and S. Kobayashi, Enzymatic synthesis of polyesters via polycondensation. Enzyme-Catalyzed Synthesis of Polymers, 2006: p. 133-158.
2. Ueda, M., et al., Synthesis of sequential polyamide by direct polycondensation. Polymer journal, 1991. 23(3): p. 167-176. 3. Yokoyama, A., R. Miyakoshi, and T. Yokozawa, Chain-growth polymerization for poly (3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules, 2004. 37(4): p. 1169-1171. 4. Yokoyama, A. and T. Yokozawa, Converting step-growth to chain-growth condensation polymerization. Macromolecules, 2007. 40(12): p. 4093-4101. 5. Yokozawa, T. and Y. Ohta, Transformation of step-growth polymerization into living chain-growth polymerization. Chemical reviews, 2016. 116(4): p. 1950-1968. 6. Ohta, Y., et al., Chain‐growth condensation polymerization approach to synthesis of well‐defined polybenzoxazole: Importance of higher reactivity of 3‐amino‐4‐hydroxybenzoic acid ester compared to 4‐amino‐3‐hydroxybenzoic acid ester. Journal of Polymer Science Part A: Polymer Chemistry, 2014. 52(12): p. 1730-1736. 7. Yokozawa, T. and A. Yokoyama, Chain-growth polycondensation: The living polymerization process in polycondensation. Progress in polymer science, 2007. 32(1): p. 147-172. 8. Grisorio, R. and G.P. Suranna, Intramolecular catalyst transfer polymerisation of conjugated monomers: from lessons learned to future challenges. Polymer Chemistry, 2015. 6(45): p. 7781-7795. 9. Facchetti, A., π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chemistry of Materials, 2011. 23(3): p. 733-758. 10. Kiriy, A., V. Senkovskyy, and M. Sommer, Kumada Catalyst‐Transfer Polycondensation: Mechanism, Opportunities, and Challenges. Macromolecular rapid communications, 2011. 32(19): p. 1503-1517. 11. Tamao, K., K. Sumitani, and M. Kumada, Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. Journal of the American Chemical Society, 1972. 94(12): p. 4374-4376. 12. McCullogh, R.D., et al., The first synthesis and new properties of regioregular, head-to-tail coupled polythiophenes. Synthetic Metals, 1995. 69(1-3): p. 279-282. 13. Loewe, R.S., S.M. Khersonsky, and R.D. McCullough, A simple method to prepare head‐to‐tail coupled, regioregular poly (3‐alkylthiophenes) using Grignard metathesis. Advanced materials, 1999. 11(3): p. 250-253. 14. Geng, Y., et al., Kumada chain-growth polycondensation as a universal method for synthesis of well-defined conjugated polymers. Science China Chemistry, 2010. 53: p. 1620-1633. 15. Sheina, E.E., et al., Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules, 2004. 37(10): p. 3526-3528. 16. Verswyvel, M., F. Monnaie, and G. Koeckelberghs, AB block copoly (3-alkylthiophenes): synthesis and chiroptical behavior. Macromolecules, 2011. 44(24): p. 9489-9498. 17. Tkachov, R., et al., Random catalyst walking along polymerized poly (3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation. Journal of the American Chemical Society, 2010. 132(22): p. 7803-7810. 18. Nanashima, Y., et al., Investigation of catalyst‐transfer condensation polymerization for the synthesis of n‐type π‐conjugated polymer, poly (2‐dioxaalkylpyridine‐3, 6‐diyl). Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(17): p. 3628-3640. 19. Senkovskyy, V., et al., Chain-growth polymerization of unusual anion-radical monomers based on naphthalene diimide: a new route to well-defined n-type conjugated copolymers. Journal of the American Chemical Society, 2011. 133(49): p. 19966-19970. 20. Govaerts, S., et al., Synthesis of Highly Fluorescent All-Conjugated Alternating Donor–Acceptor (Block) Copolymers via GRIM Polymerization. Macromolecules, 2016. 49(17): p. 6411-6419. 21. Bhatt, M.P., et al., Role of the transition metal in Grignard metathesis polymerization (GRIM) of 3-hexylthiophene. Journal of Materials Chemistry A, 2013. 1(41): p. 12841-12849. 22. Neo, W.T., et al., Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. Journal of Materials Chemistry C, 2016. 4(31): p. 7364-7376. 23. Cheng, S., R. Zhao, and D.S. Seferos, Precision synthesis of conjugated polymers using the Kumada methodology. Accounts of Chemical Research, 2021. 54(22): p. 4203-4214. 24. Chua, M.H., et al., Synthesis of Conjugated Polymers via Transition Metal Catalysed C− H Bond Activation. Chemistry–An Asian Journal, 2021. 16(19): p. 2896-2919. 25. Xu, S., et al., Pd-and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Science and Technology of Advanced Materials, 2014. 26. Heravi, M.M., et al., Advances in Kumada–Tamao–Corriu cross-coupling reaction: an update. Monatshefte für Chemie-Chemical Monthly, 2019. 150: p. 535-591. 27. Kaloni, T.P., et al., Polythiophene: From fundamental perspectives to applications. Chemistry of Materials, 2017. 29(24): p. 10248-10283. 28. Jen, K.-Y., et al., Highly-conducting, poly (2, 5-thienylene vinylene) prepared via a soluble precursor polymer. Journal of the Chemical Society, Chemical Communications, 1987(4): p. 309-311. 29. Yoshino, K., S. Hayashi, and R.-i. Sugimoto, Preparation and properties of conducting heterocyclic polymer films by chemical method. Japanese journal of applied physics, 1984. 23(12A): p. L899. 30. Tourillon, G. and F. Garnier, New electrochemically generated organic conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982. 135(1): p. 173-178. 31. Osaka, I. and R.D. McCullough, Advances in molecular design and synthesis of regioregular polythiophenes. Accounts of chemical research, 2008. 41(9): p. 1202-1214. 32. Lohwasser, R.H. and M. Thelakkat, Toward perfect control of end groups and polydispersity in poly (3-hexylthiophene) via catalyst transfer polymerization. Macromolecules, 2011. 44(9): p. 3388-3397. 33. Iovu, M.C., et al., Experimental evidence for the quasi-“living” nature of the grignard metathesis method for the synthesis of regioregular poly (3-alkylthiophenes). Macromolecules, 2005. 38(21): p. 8649-8656. 34. Krasovskiy, A. and P. Knochel, A LiCl‐mediated Br/Mg exchange reaction for the preparation of functionalized aryl‐and heteroarylmagnesium compounds from organic bromides. Angewandte Chemie International Edition, 2004. 43(25): p. 3333-3336. 35. Krasovskiy, A., B.F. Straub, and P. Knochel, Highly efficient reagents for Br/Mg exchange. Angewandte Chemie International Edition, 2006. 45(1): p. 159-162. 36. Ren, H., A. Krasovskiy, and P. Knochel, Stereoselective Preparation of Functionalized Acyclic Alkenylmagnesium Reagents Using i-PrMgCl⊙ LiCl. Organic letters, 2004. 6(23): p. 4215-4217. 37. Wu, S., et al., LiCl-promoted chain growth Kumada catalyst-transfer polycondensation of the “reversed” thiophene monomer. Macromolecules, 2011. 44(19): p. 7558-7567. 38. Miyakoshi, R., A. Yokoyama, and T. Yokozawa, Synthesis of poly (3‐hexylthiophene) with a narrower polydispersity. Macromolecular rapid communications, 2004. 25(19): p. 1663-1666. 39. Iraqi, A., J.A. Crayston, and J.C. Walton, Covalent binding of redox active centres to preformed regioregular polythiophenes. Journal of Materials Chemistry, 1998. 8(1): p. 31-36. 40. Zhai, L., et al., A simple method to generate side-chain derivatives of regioregular polythiophene via the GRIM metathesis and post-polymerization functionalization. Macromolecules, 2003. 36(1): p. 61-64. 41. Kudret, S., et al., Synthesis of ester side chain functionalized all-conjugated diblock copolythiophenes via the Rieke method. Polymer Chemistry, 2014. 5(6): p. 1832-1837. 42. Liu, J. and R.D. McCullough, End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules, 2002. 35(27): p. 9882-9889. 43. Jeffries‐EL, M., G. Sauvé, and R.D. McCullough, In‐situ end‐group functionalization of regioregular poly (3‐alkylthiophene) using the Grignard metathesis polymerization method. Advanced materials, 2004. 16(12): p. 1017-1019. 44. Monnaie, F., et al., Synthesis of end-group functionalized P3HT: general protocol for P3HT/nanoparticle hybrids. Macromolecules, 2013. 46(21): p. 8500-8508. 45. Handa, N.V., et al., Exploring the synthesis and impact of end‐functional poly (3‐hexylthiophene). Journal of Polymer Science Part A: Polymer Chemistry, 2015. 53(7): p. 831-841. 46. Liu, S.-P., et al., Efficient p-doping of P3HT for hole transporting materials in perovskite solar cells. Rare Metals, 2022. 41(8): p. 2575-2581. 47. Guo, J., et al., Revealing the Electrophilic‐Attack Doping Mechanism for Efficient and Universal p‐Doping of Organic Semiconductors. Advanced Science, 2022. 9(32): p. 2203111. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90746 | - |
| dc.description.abstract | 本研究聚焦於開發可撓式生質導電複合薄膜,並透過本實驗所研發之新型乳化融合法,將兩種不同乳液直接混合形成核殼型複合乳膠顆粒。本論文分為兩部分,其中第一部分為利用格林那合成法聚合聚噻吩(P3HT)導電高分子,作為生質複合薄膜之導電高分子的來源。第二部份則利用十二烷基硫酸鈉(SDS)將高分子P3HT/甲苯混合物分散於水中形成P3HT水乳液,並結合本實驗室自行開發之生質乳液,製備成核殼型複合乳膠顆粒,並探討其塗佈成膜後之光電特性。
於本研究之第一部份中,我們從分子設計、聚合技術和反應條件等方面,合成了正規序列的聚噻吩,並使用格林那合成法進行末端官能化反應,接著再以核磁共振儀來計算高分子之規整度以及確認其分子結構、凝膠滲透層析儀以及基質輔助雷射脫附游離/飛行時間質譜儀分析來鑑定合成高分子之分子量及其末端官能基團,接著再透過差示掃描分析儀、X光繞射儀來分析高分子之結晶情形。 於第二部份複合膜製備實驗研究上,我們開發了將兩種不同乳液直接混合之乳液融合方法,從穿透式電子顯微鏡可以清楚觀察到P3HT借助甲苯之作用使得高分子吸附於乳膠顆粒之表面,因此形成P3HT在殼層,生質乳膠在核層之核殼型結構。本研究發現,此過程中只需添加固含量5%之P3HT即可形成連續之導電網路結構,並藉由DMSO溶劑處理之過程,使得複合膜內部之P3HT得以重新排列,進而使導電度得到提升,而後續透過紫外線/可見光分光光譜儀及差示掃描量熱儀之結果得到證實。於動態機械分析儀表明P3HT之添加可以使得複合膜之機械性質提升,且透過複合薄膜之負重摺疊實驗,發現經折疊後薄膜表面電阻之恢復,顯示此複合膜具有柔軟及自我修復之特性。 本研究將導電高分子引入材料中,並借助高分子本身獨特之光電性質,使複合膜具有導電特性,並透過對複合材料性質的深入探討,期許為開發具有優異性能和多功能性的複合膜奠定基礎,開啟複合材料領域的新可能性。 | zh_TW |
| dc.description.abstract | This research focuses on the development of flexible bio-based conductive composite films, and through the new emulsion fusion method developed in this experiment, two different emulsions are directly mixed to form core-shell composite emulsion particles. This thesis is divided into two parts, the first part of which is to use the Grignard Metathesis method to polymerize polythiophene (P3HT) conductive polymers as the source of conductive polymers for bio-based composite films. The second part uses SDS to disperse the polymer P3HT/toluene mixture in water to form a P3HT emulsion, and combines the bio-based emulsion developed by our laboratory to prepare core-shell composite latex particles, and discusses the photoelectric characteristics of composite films.
In the first part of this study, we synthesized polythiophenes with regular sequences from the aspects of molecular design, polymerization techniques, and reaction conditions, and used the Grignard Metathesis method for terminal functionalization reactions. Then use nuclear magnetic resonance to calculate the regularity of the polymer and confirm its molecular structure, gel permeation chromatography and matrix-assisted laser desorption/time-of-flight mass spectrometer analysis to identify the molecular weight and terminal function of the synthesized polymer group. Then, analyze the crystallization of the polymer through differential scanning analyzer and X-ray diffractometer. In the second part of the experimental research on the preparation of composite membranes, we developed an emulsion fusion method that directly mixes two different emulsions. From the transmission electron microscope, it can be clearly observed that P3HT makes polymers adsorb on the surface of latex particles through the action of toluene. Therefore, a core-shell structure is formed in which P3HT is in the shell layer and biomass latex is in the core layer. This study found that a continuous conductive network structure can be formed only by adding P3HT with a solid content of 5% in this process. And through the process of DMSO solvent treatment, the P3HT inside the composite film can be rearranged, thereby improving the conductivity. The improvement was confirmed by the results of ultraviolet/visible light spectrometer and differential scanning calorimeter. The dynamic mechanical analyzer shows that the addition of P3HT can improve the mechanical properties of the composite film. And through the load folding experiment of the composite film, it is found that the surface resistance of the film after folding is restored, indicating that the composite film has softness and self-recovery properties. In this study, conductive polymers are introduced into the material, and the composite film has conductive properties by virtue of the unique photoelectric properties of the polymer itself. And through the in-depth discussion on the properties of composite materials, it is expected to lay the foundation for the development of composite membranes with excellent performance and multifunctionality, and open up new possibilities in the field of composite materials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:26:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:26:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vii 圖目錄 x 表目錄 xiv Chapter1 緒論 1 Chapter2 文獻回顧 2 2-1 鏈增長縮合聚合反應 2 2-2 由逐步增長聚合轉變為鏈增長聚合 2 2-2-1 基本概念 2 2-2-2 取代基效應 4 2-2-3 觸媒在分子內轉移 7 2-3 共軛高分子 15 2-3-1 共軛高分子之常見合成 15 2-3-2 聚噻吩 17 2-3-3 聚合物末端功能化 23 Chapter3 實驗藥品及儀器 26 3-1 實驗藥品 26 3-1-1 P3HT導電高分子合成實驗 26 3-1-2 P3HT/PIMID複合膜製備實驗 28 3-2 實驗儀器 28 3-2-1 P3HT導電高分子合成實驗 28 3-2-2 P3HT/PIMID複合膜製備實驗 29 Chapter4 尾端官能化之高分子合成方法與其結果討論 30 4-1 P3HT導電高分子之合成方法 30 4-1-1 樣品製備之前處理 30 4-1-2 單體2,5-二溴-3-己基噻吩的合成 30 4-1-3 正規序列之P3HT聚合 32 4-1-4 尾端H/Br之P3HT聚合 33 4-1-5 尾端乙烯化之P3HT聚合 34 4-2 P3HT 導電高分子之性質量測 35 4-2-1 1H核磁共振 (1H NMR) 35 4-2-2 凝膠滲透色譜儀 (GPC) 35 4-2-3 傅立葉轉換紅外光譜 (FTIR) 35 4-2-4 基質輔助雷射脫附游離/飛行時間質譜儀分析 (MALDI-TOF MS) 35 4-2-5 差示掃描分析儀 (DSC) 36 4-2-6 X光繞射儀 (XRD) 36 4-3 P3HT 高分子合成之鑑定結果 37 4-3-1 1H 核磁共振光譜分析 (1H NMR) 37 4-3-2 凝膠滲透層析分析(GPC) 44 4-3-3 傅立葉轉換紅外光譜 (FTIR) 45 4-3-4 基質輔助雷射脫附游離/飛行時間質譜儀分析 (MALDI-TOF MS) 46 4-3-5 差示掃描熱分析(DSC) 48 4-3-6 X光繞射儀圖譜分析(XRD) 49 Chapter5 P3HT/PIMLD複合膜之製備方法與其結果討論 50 5-1 P3HT/PIMLD複合膜之製備 50 5-1-1 P3HT水乳液製作方法 50 5-1-2 P3HT/PIMLD複合膜製作方法 51 5-2 複合膜之性質量測 52 5-2-1 P3HT/PIMLD複合膜表面電阻之量測 52 5-2-2 P3HT/PIMLD複合膜之光學性質分析 52 5-2-3 P3HT/PIMID複合膜型態學之觀察及粒徑大小分析 53 5-2-4 P3HT/PIMID複合膜之熱性質分析 53 5-2-5 X光繞射儀 (XRD) 54 5-3 P3HT/PIMLD複合乳液之製備條件 55 5-3-1 甲苯對PIMLD乳膠顆粒之影響 55 5-4 P3HT/PIMLD複合膜之性質檢測 58 5-4-1 複合膜之表面電阻 58 5-4-2 P3HT/PIMLD複合膜之光學性質分析 75 5-4-3 P3HT/PIMLD複合膜之形態學及粒徑尺寸之分析 77 5-4-4 P3HT/PIMLD複合膜之熱性質分析 81 5-4-5 X光繞射儀圖譜分析(XRD) 85 Chapter6 結論 86 6-1 尾端官能化之高分子合成實驗 86 6-2 P3HT/PIMLD複合膜之製備實驗 86 Chapter7 Reference 88 Appendix 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 格林那聚合反應 | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | 導電複合膜 | zh_TW |
| dc.subject | Conductive Composite Film | en |
| dc.subject | Grignard method | en |
| dc.subject | Composite material | en |
| dc.subject | Conductive polymer | en |
| dc.title | 以乳液融合法製備導電核殼型奈米顆粒及其性質研究 | zh_TW |
| dc.title | Fabrication and Property Investigation of Flexible Conducting Core-shell Latex Nanoparticles via Emulsion Fusion Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱文英;正如忠;曹恆光;楊長謀 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yen Chiu;Ru-Jong Jeng;Heng-Kwong Tsao;Chang-Mou Yang | en |
| dc.subject.keyword | 格林那聚合反應,導電高分子,複合材料,導電複合膜, | zh_TW |
| dc.subject.keyword | Grignard method,Conductive polymer,Composite material,Conductive Composite Film, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202302481 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2028-07-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
