Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻zh_TW
dc.contributor.advisorChih-Hung Chenen
dc.contributor.author彭源旭zh_TW
dc.contributor.authorYuan-Xu Pengen
dc.date.accessioned2023-10-03T17:26:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationH. Fathiannasab, “Multi-Physics Modeling of Lithium-Ion Battery Electrodes,” 2020.
C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang, and Q. Zhang, “Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries,” Angewandte Chemie, vol. 130, no. 43, pp. 14 251–14 255, 2018.
T. Tatsuma, M. Taguchi, and N. Oyama, “Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation,” Electrochimica acta, vol. 46, no. 8, pp. 1201–1205, 2001.
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, “Lithium metal anodes for rechargeable batteries,” Energy & Environmental Science, vol. 7, no. 2, pp. 513–537, 2014.
A. Manthiram, “A reflection on lithium-ion battery cathode chemistry,” Nature communications, vol. 11, no. 1, pp. 1–9, 2020.
J. Xie and Y.-C. Lu, “A retrospective on lithium-ion batteries,” Nature communications, vol. 11, no. 1, p. 2499, 2020.
B. Liu, J.-G. Zhang, and W. Xu, “Advancing lithium metal batteries,” Joule, vol. 2, no. 5, pp. 833–845, 2018.
M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, and J. Tübke, “Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells,” Advanced Energy Materials, vol. 5, no. 16, p. 1401986, 2015.
X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, “Toward safe lithium metal anode in rechargeable batteries: a review,” Chemical reviews, vol. 117, no. 15, pp. 10 403–10 473, 2017.
X.-Q. Zhang, X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen, C. Yan, J.-Q. Huang, and Q. Zhang, “Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes,” Angewandte Chemie International Edition, vol. 57, no. 19, pp. 5301–5305, 2018.
R. Zhang, X.-B. Cheng, C.-Z. Zhao, H.-J. Peng, J.-L. Shi, J.-Q. Huang, J. Wang, F. Wei, and Q. Zhang, “Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth,” Advanced Materials, vol. 28, no. 11, pp. 2155–2162, 2016.
C. Cao, I. I. Abate, E. Sivonxay, B. Shyam, C. Jia, B. Moritz, T. P. Devereaux, K. A. Persson, H.-G. Steinrück, and M. F. Toney, “Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries,” Joule, vol. 3, no. 3, pp. 762–781, 2019.
W. Cai, Y.-X. Yao, G.-L. Zhu, C. Yan, L.-L. Jiang, C. He, J.-Q. Huang, and Q. Zhang, “A review on energy chemistry of fast-charging anodes,” Chemical Society Reviews, vol. 49, no. 12, pp. 3806–3833, 2020.
Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai, J.-Q. Huang, and Q. Zhang, “Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte,” Angewandte Chemie International Edition, vol. 60, no. 8, pp. 4090–4097, 2021.
X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, and Q. Zhang, “A review of solid electrolyte interphases on lithium metal anode,” Advanced science, vol. 3, no. 3, p. 1500213, 2016.
Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, “An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes,” Advanced Materials, vol. 29, no. 10, p. 1605531, 2017.
N.-W. Li, Y. Shi, Y.-X. Yin, X.-X. Zeng, J.-Y. Li, C.-J. Li, L.-J. Wan, R. Wen, and Y.-G. Guo, “A flexible solid electrolyte interphase layer for long-life lithium metal anodes,” Angewandte Chemie, vol. 130, no. 6, pp. 1521–1525, 2018.
X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, and Q. Zhang, “Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries,” Advanced Functional Materials, vol. 27, no. 10, p. 1605989, 2017.
H. Zhang, G. G. Eshetu, X. Judez, C. Li, L. M. Rodriguez-Martínez, and M. Armand, “Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives,” Angewandte Chemie International Edition, vol. 57, no. 46, pp. 15 002–15 027, 2018.
Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, and Y. Cui, “Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode,” Nature communications, vol. 9, no. 1, p. 3656, 2018.
L. Suo, W. Xue, M. Gobet, S. G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, and J. Li, “Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries,” Proceedings of the National Academy of Sciences, vol. 115, no. 6, pp. 1156–1161, 2018.
J. Fu, X. Ji, J. Chen, L. Chen, X. Fan, D. Mu, and C. Wang, “Lithium nitrate regulated sulfone electrolytes for lithium metal batteries,” Angewandte Chemie, vol. 132, no. 49, pp. 22 378–22 385, 2020.
Q. Zhao, N. W. Utomo, A. L. Kocen, S. Jin, Y. Deng, V. X. Zhu, S. Moganty, G. W. Coates, and L. A. Archer, “Upgrading Carbonate Electrolytes for Ultra-stable Practical Lithium Metal Batteries,” Angewandte Chemie, vol. 134, no. 9, p. e202116214, 2022.
M. S. Ding, K. Xu, and T. R. Jow, “Liquid-solid phase diagrams of binary carbonates for lithium batteries,” Journal of the Electrochemical Society, vol. 147, no. 5, p. 1688, 2000.
A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, and M. R. Palacin, “In search of an optimized electrolyte for Na-ion batteries,” Energy & Environmental Science, vol. 5, no. 9, pp. 8572–8583, 2012.
L. Ellis, I. Hill, K. L. Gering, and J. Dahn, “Synergistic effect of LiPF6 and LiBF4 as electrolyte salts in lithium-ion cells,” Journal of The Electrochemical Society, vol. 164, no. 12, p. A2426, 2017.
S. U. Kim and V. Srinivasan, “A method for estimating transport properties of concentrated electrolytes from self-diffusion data,” Journal of The Electrochemical Society, vol. 163, no. 14, p. A2977, 2016.
B. Ravikumar, M. Mynam, and B. Rai, “Effect of salt concentration on properties of lithium ion battery electrolytes: a molecular dynamics study,” The Journal of Physical Chemistry C, vol. 122, no. 15, pp. 8173–8181, 2018.
T. Hou, K. D. Fong, J. Wang, and K. A. Persson, “The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries,” Chemical science, vol. 12, no. 44, pp. 14 740–14 751, 2021.
J. Zheng, J. A. Lochala, A. Kwok, Z. D. Deng, and J. Xiao, “Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications,” Advanced Science, vol. 4, no. 8, p. 1700032, 2017.
A. I. Vakis, V. A. Yastrebov, J. Scheibert, L. Nicola, D. Dini, C. Minfray, A. Almqvist, M. Paggi, S. Lee, G. Limbert et al., “Modeling and simulation in tribology across scales: An overview,” Tribology International, vol. 125, pp. 169–199, 2018.
O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt, A. Tkatchenko, and K.-R. Müller, “Machine learning force fields,” Chemical Reviews, vol. 121, no. 16, pp. 10 142–10 186, 2021.
N. Yao, X. Chen, Z.-H. Fu, and Q. Zhang, “Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries,” Chemical Reviews, vol. 122, no. 12, pp. 10 970–11 021, 2022.
W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters,” The Journal of chemical physics, vol. 76, no. 1, pp. 637–649, 1982.
A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: a reactive force field for hydrocarbons,” The Journal of Physical Chemistry A, vol. 105, no. 41, pp. 9396–9409, 2001.
K. Xu, “Electrolytes and interphases in Li-ion batteries and beyond,” Chemical reviews, vol. 114, no. 23, pp. 11 503–11 618, 2014.
G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.-M. Tarascon, and S. Laruelle, “Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries,” Journal of Power Sources, vol. 178, no. 1, pp. 409–421, 2008.
Y. Yamada, M. Yaegashi, T. Abe, and A. Yamada, “A superconcentrated ether electrolyte for fast-charging Li-ion batteries,” Chemical Communications, vol. 49, no. 95, pp. 11 194–11 196, 2013.
Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, and A. Yamada, “Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries,” Journal of the American Chemical Society, vol. 136, no. 13, pp. 5039–5046, 2014.
I. Mills et al., Quantities, units and symbols in physical chemistry/prepared for publication by Ian Mills...[et al.]. Oxford; Boston: Blackwell Science; Boca Raton, Fla.: CRC Press [distributor]„ 1993.
E. Gőbel, I. Mills, and A. Wallard, “The international system of units (SI),” pp. 114–15, 2006.
L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: A package for building initial configurations for molecular dynamics simulations,” Journal of computational chemistry, vol. 30, no. 13, pp. 2157–2164, 2009.
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comp. Phys. Comm., vol. 271, p. 108171, 2022.
M. M. Islam, V. S. Bryantsev, and A. C. Van Duin, “ReaxFF reactive force field simulations on the influence of teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium-sulfur batteries,” Journal of the Electrochemical Society, vol. 161, no. 8, p. E3009, 2014.
X. Zhang, F. Niu, D. Liu, S. Yang, Y. Yang, and Z. Tong, “Molecular dynamics simulations of Y (iii) coordination and hydration properties,” RSC advances, vol. 9, no. 55, pp. 32 085–32 096, 2019.
E. Crabb, A. France-Lanord, G. Leverick, R. Stephens, Y. Shao-Horn, and J. C. Grossman, “Importance of equilibration method and sampling for ab initio molecular dynamics simulations of solvent–lithium-salt systems in lithium-oxygen batteries,” Journal of Chemical Theory and Computation, vol. 16, no. 12, pp. 7255–7266, 2020.
G. Kumar, T. R. Kartha, and B. S. Mallik, “Novelty of lithium salt solution in sulfone and dimethyl carbonate-based electrolytes for lithium-ion batteries: A classical molecular dynamics simulation study of optimal ion diffusion,” The Journal of Physical Chemistry C, vol. 122, no. 46, pp. 26 315–26 325, 2018.
P. Kumar, A. D. Kulkarni, and S. Yashonath, “Influence of a Counterion on the Ion Atmosphere of an Anion: A Molecular Dynamics Study of LiX and CsX (X= F–, Cl–, I–) in Methanol,” The Journal of Physical Chemistry B, vol. 119, no. 34, pp. 10 921–10 933, 2015.
A. Wettstein, D. Diddens, and A. Heuer, “Controlling Li+ transport in ionic liquid electrolytes through salt content and anion asymmetry: a mechanistic understanding gained from molecular dynamics simulations,” Physical Chemistry Chemical Physics, vol. 24, no. 10, pp. 6072–6086, 2022.
L. Costigliola, D. M. Heyes, T. B. Schrøder, and J. C. Dyre, “Revisiting the Stokes-Einstein relation without a hydrodynamic diameter,” The Journal of chemical physics, vol. 150, no. 2, p. 021101, 2019.
M. T. Ong, O. Verners, E. W. Draeger, A. C. Van Duin, V. Lordi, and J. E. Pask, “Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics,” The Journal of Physical Chemistry B, vol. 119, no. 4, pp. 1535–1545, 2015.
I. Skarmoutsos, V. Ponnuchamy, V. Vetere, and S. Mossa, “Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes,” The Journal of Physical Chemistry C, vol. 119, no. 9, pp. 4502–4515, 2015.
A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool,” MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, vol. 18, no. 1, JAN 2010.
T. M. Project, “Materials Data on LiNO3 by Materials Project,” 7 2020.
K. Wang, W. Ni, L. Wang, L. Gan, J. Zhao, Z. Wan, W. Jiang, W. Ahmad, M. Tian, M. Ling et al., “Lithium nitrate regulated carbonate electrolytes for practical Li-metal batteries: Mechanisms, principles and strategies,” Journal of Energy Chemistry, 2022.
Y. Liu, Q. Sun, P. Yu, Y. Wu, L. Xu, H. Yang, M. Xie, T. Cheng, and W. A. Goddard III, “Effects of high and low salt concentrations in electrolytes at lithium–metal anode surfaces using DFT-ReaxFF hybrid molecular dynamics method,” The Journal of Physical Chemistry Letters, vol. 12, no. 11, pp. 2922–2929, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90745-
dc.description.abstract近年,科技對於各式儲能設備的續航力要求飛速成長,傳統以石墨作為負極主要材料的鋰離子電池(lithium ion battery, LIB)已難以滿足需求,因此許多團隊轉而研究開發穩定的高電容量電池。以鋰金屬作為負極的鋰金屬電池(lithium metal battery, LMB)成為近期的熱門話題,由於其理論電容量高出鋰離子電池的10倍之多,達到3860mAh/g之譜。儘管如此,LMB尚未有良好的商業化,由於其潛在的問題仍需解決,如在鋰金屬負極表面經過多次的充放電循環後產生的枝晶(dendrite)問題,將造成庫倫效率(Coulombic efficiency, CE)降低,甚至枝晶持續生長後將可能刺穿隔離膜(separator)而導致短路的風險,因此如何良好抑制枝晶生長是LMB朝向商業化的一大關鍵。
枝晶的生長,可歸因於電解液與鋰金屬負極表面自發性還原反應所生成的固態電解質介面(solid electrolyte interphase, SEI),其機械性質不穩定所致,進一步使得鋰原子不均勻的沉積。因此電解液的配方將會大幅影響SEI生成後的成分與性質。近年已有許多研究表明在電解液中加入不同的鋰鹽或鹽添加劑可以改變鋰原子沉積時的型態,其原因在於電解液中的鋰離子溶劑殼結構發生改變,使得SEI成分由溶劑分子主導轉為以鋰鹽為主導,達到抑制枝晶生長的效果。本研究使用反應分子動力學(reactive molecular dynamics, RMD)模擬由碳酸乙烯酯(ethylene carbonate, EC)為電解液,當中添加六氟磷酸鋰(lithium hexafluorophosphate, LiPF6)與硝酸鋰(lithium nitrate, LiNO3)兩者在電解液中的動態表現,並探討不同配方之下所形成的鋰離子溶劑殼結構。此外,溶劑殼結構的改變,意味著鋰離子在電解液中的移動行為會受到影響,其牽涉到電解液中重要的性能表現---離子擴散係數與離子電導率。因此本研究也開發了一套針對不同溶劑殼結構進行分類並量化的篩選模型,最終以數值化的方式來探討不同鋰鹽所形成之溶劑殼結構對於鋰離子擴散行為的影響。
結果顯示在EC+LiPF6的電解液中鋰離子周圍的EC分子會形成一個主要與兩個次要的特徵結構,主要特徵結構來自於溶劑分離離子對(solvent-separated ion pairs, SSIP)的形成,兩個次要的特徵結構是由反應分子動力學模擬參數表造成EC分子分解並與鋰離子結合後產生的副產物所造成。溶劑殼結構隨著鋰鹽濃度產生變化,低濃度下溶劑殼中溶劑分子較多,隨後隨著濃度上升而降低,由於負離子進入溶劑殼當中而替代了溶劑分子;EC+LiNO3的電解液中則並不具有明顯的溶劑結構,由於LiNO3於本研究的模擬系統的電解液中並未解離,因而無法形成溶劑殼。儘管如此,透過本團隊開發的篩選模型,可將不同鋰鹽濃度下的各個溶劑結構型態量化成比例,並且將比例、離子擴散係數、離子電導率三者進行比較。結果表明在低濃度下,儘管鋰鹽解離比例較高,也具有較高的離子擴散係數,但最佳的離子電導率並不在越低的濃度,這是因為離子電導率是由電荷載子數量、帶電量以及遷移能力三者最佳化後的結果。本研究以鋰離子溶劑殼結構的角度出發,探討不同配方所造成的現象,從而理解電解液的組成對於SEI成分或是離子電導率的影響,並對於電解液中鋰鹽濃度最佳化有更進一步的了解。
zh_TW
dc.description.abstractThe development of stable high-capacity lithium metal battery (LMB) become hot topic since its anode is composed of lithium metal with a theoretical capacity of up to 3860mAh/g. However, LMB has not yet been commercialized well due to safety issues such as dendrite problem generated on the surface of the lithium metal anode, which will result in a decrease in Coulombic efficiency (CE) and high possibility that may pierce the separator and cause the risk of short circuit. Therefore, inhibiting the dendrite growth is a key to the commercialization of LMB.
The growth of dendrites can be attributed to unstable mechanical properties of the solid electrolyte interphase (SEI). Previous studies have shown that adding different Li-salts or salt additives can change deposition of lithium ions on anode. The reason is that the structure of the solvation shell changes, which also affects the composition of SEI and achieves the goal which inhibiting dendrite growth. In this study, reactive molecular dynamics (RMD) was used to simulate two system: ethylene carbonate (EC) with lithium hexafluorophosphate (LiPF6) and lithium nitrate (LiNO3) separately, and discuss the lithium ion solvation shell structure formed under two kind of electrolyte condition. In addition, the change of solvation shell structure will affect the ion diffusivity & conductivity. Therefore, this study also developed a model to classify and quantify solvation shell structure, and numerically explored the influence of solvation shell structure on the transport properties of lithium ions.
The results show that there is a main characteristic structure formed by solvent-separated ion pairs (SSIP) and two minor structures caused by the byproducts of EC molecules decomposition in EC+LiPF6 electrolyte, and the structure changes with the concentration of Li-salt due to exchanging of anions and solvent molecules inside solvation shell. EC+LiNO3 electrolyte did not have an obvious solvation shell owing to LiNO3 has not been dissociated. Through the developed model, the various solvation shell types are quantified into proportion, and further compared with ion diffusivity & conductivity. The results show that ion transport properties are optimized by the number of charge carriers, charge capacity and mobility. From the perspective of solvation shell effects, this study discussed different solvation shell structure and the influence on ion transport properties, and have better understanding of optimizing the concentration of Li-salt in electrolyte.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:26:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:26:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iv
Contents vi
List of Figures ix
List of Tables xii
Chapter 1 研究背景與動機 1
1.1 鋰離子電池與鋰金屬電池 1
1.1.1 鋰金屬電池之優勢與劣勢 2
1.1.2 鋰金屬電池的問題 3
1.2 固態電解液界面(Solid Electrolyte Interphase, SEI) 4
1.2.1 改善SEI 成分與結構 5
1.2.2 鹽添加劑之溶解度問題 8
1.3 離子擴散係數與離子電導率 10
1.3.1 鹽添加劑的影響 10
1.3.2 鋰鹽的影響 11
1.4 溶劑殼效應 12
1.4.1 溶劑殼對SEI 成分的影響 13
1.4.2 溶劑殼對離子電導率、離子擴散係數的影響 14
Chapter 2 研究方法 17
2.1 分子動力學模擬 17
2.1.1 反應分子動力學(Reactive Molecular Dynamics) 18
2.1.2 分子動力學模擬系統設置 20
2.1.3 模擬系統系綜(Ensemble) 的選用 23
2.2 徑向分佈函數(Radial Distribution Function, RDF) 24
2.3 離子擴散係數與電導率 26
Chapter 3 研究結果與討論 29
3.1 鋰鹽與鹽添加劑的溶劑化現象 29
3.1.1 鋰鹽分子結構 29
3.1.1.1 造成Li OC三個峰值結構的原因 33
3.1.1.2 Li OE的溶劑結構 34
3.1.1.3 鋰鹽濃度對於溶劑結構的影響 37
3.1.2 鹽添加劑分子結構 40
3.1.2.1 鹽添加劑於溶劑中之結構探討 41
3.1.2.2 Li N 原子對的結構探討 42
3.2 溶劑化型態、離子擴散係數及離子電導率的關係 45
3.2.1 溶劑化型態 46
3.2.2 定量溶劑化型態比例 49
3.2.3 鋰鹽濃度對於離子擴散係數之影響 50
3.2.4 鋰鹽濃度對於溶劑化型態比例之影響 51
3.2.5 離子電導率與離子擴散係數 53
Chapter 4 結論與未來展望 56
4.1 結論 56
4.2 未來展望 58
4.2.1 不同ReaxFF 的參數所造成的差異 59
References 63
-
dc.language.isozh_TW-
dc.title分子動力學探討溶劑殼對碳酸酯電解液中離子傳輸性質的影響zh_TW
dc.titleMolecular Dynamics Study of Effects of Solvation Shell on Ionic Transport Properties in Carbonate Electrolytesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建彰;包淳偉zh_TW
dc.contributor.oralexamcommitteeJian-Zhang Chen;Chun-Wei Paoen
dc.subject.keyword鋰金屬電池,碳酸酯電解液,溶劑殼,離子擴散係數與電導率,反應分子動力學,zh_TW
dc.subject.keywordLithium metal battery,Carbonate electrolytes,Solvation shell,Ion diffusivity and conductivity,Reactive molecular dynamics,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202302227-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
14.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved