Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90744
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻zh_TW
dc.contributor.advisorTai-Horng Youngen
dc.contributor.author謝孟甫zh_TW
dc.contributor.authorMeng-Fu Hsiehen
dc.date.accessioned2023-10-03T17:25:48Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citation1. Gormley, M., et al., Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. British Dental Journal, 2022. 233(9): p. 780-786.
2. Health Promotion Administration, M., Incidence and mortality rates for the top 10 cancer in Taiwan, 2020. 2020, Health Promotion Administration, MOHW: Taiwan.
3. Leemans, C.R., P.J.F. Snijders, and R.H. Brakenhoff, The molecular landscape of head and neck cancer. Nat Rev Cancer, 2018. 18(5): p. 269-282.
4. Chantre-Justino, M., G. Alves, and L. Delmonico, Clinical applications of liquid biopsy in HPV-negative and HPV-positive head and neck squamous cell carcinoma: advances and challenges. Explor Target Antitumor Ther, 2022. 3(4): p. 533-552.
5. Kong, L. and A.C. Birkeland, Liquid Biopsies in Head and Neck Cancer: Current State and Future Challenges. Cancers (Basel), 2021. 13(8).
6. Canning, M., et al., Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front Cell Dev Biol, 2019. 7: p. 52.
7. Johnson, D.E., et al., Head and neck squamous cell carcinoma. Nature Reviews Disease Primers, 2020. 6(1): p. 92.
8. Wai, K.C., et al., Molecular Diagnostics in Human Papillomavirus-Related Head and Neck Squamous Cell Carcinoma. Cells, 2020. 9(2).
9. Lechner, M., et al., HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol, 2022. 19(5): p. 306-327.
10. Hirahata, T., et al., Liquid Biopsy: A Distinctive Approach to the Diagnosis and Prognosis of Cancer. Cancer Inform, 2022. 21: p. 11769351221076062.
11. Lin, G. and J. Li, Circulating HPV DNA in HPV-associated cancers. Clin Chim Acta, 2023. 542: p. 117269.
12. Nikanjam, M., S. Kato, and R. Kurzrock, Liquid biopsy: current technology and clinical applications. J Hematol Oncol, 2022. 15(1): p. 131.
13. Mishra, V., et al., Application of liquid biopsy as multi-functional biomarkers in head and neck cancer. Br J Cancer, 2022. 126(3): p. 361-370.
14. Alix-Panabières, C. and K. Pantel, Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov, 2021. 11(4): p. 858-873.
15. Gourdin, T. and G. Sonpavde, Utility of cell-free nucleic acid and circulating tumor cell analyses in prostate cancer. Asian J Androl, 2018. 20(3): p. 230-237.
16. Han, D.S.C. and Y.M.D. Lo, The Nexus of cfDNA and Nuclease Biology. Trends Genet, 2021. 37(8): p. 758-770.
17. Keller, L., et al., Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br J Cancer, 2021. 124(2): p. 345-358.
18. Song, P., et al., Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nature Biomedical Engineering, 2022. 6(3): p. 232-245.
19. Kojabad, A.A., et al., Droplet digital PCR of viral ‎DNA/RNA, current progress, challenges, and future perspectives. J Med Virol, 2021. 93(7): p. 4182-4197.
20. Siegel, R.L., et al., Cancer statistics, 2022. CA Cancer J Clin, 2022. 72(1): p. 7-33.
21. Hwang, T.Z., et al., Incidence trends of human papillomavirus-related head and neck cancer in Taiwan, 1995-2009. Int J Cancer, 2015. 137(2): p. 395-408.
22. Health Promotion Administration, M., Incidence and mortality rates for the top 10 cancer in Taiwan, 2019. 2019, Health Promotion Administration, MOHW: Taiwan.
23. Lorenzatti Hiles, G., et al., Understanding the impact of high-risk human papillomavirus on oropharyngeal squamous cell carcinomas in Taiwan: A retrospective cohort study. PLoS One, 2021. 16(4): p. e0250530.
24. Haring, C.T., et al., The future of circulating tumor DNA as a biomarker in HPV related oropharyngeal squamous cell carcinoma. Oral Oncol, 2022. 126: p. 105776.
25. Machczyński, P., et al., A review of the 8th edition of the AJCC staging system for oropharyngeal cancer according to HPV status. Eur Arch Otorhinolaryngol, 2020. 277(9): p. 2407-2412.
26. van Gysen, K., et al., Validation of the 8(th) edition UICC/AJCC TNM staging system for HPV associated oropharyngeal cancer patients managed with contemporary chemo-radiotherapy. BMC Cancer, 2019. 19(1): p. 674.
27. Satterwhite, C.L., et al., Sexually transmitted infections among US women and men: Prevalence and incidence estimates, 2008. Sexually Transmitted Diseases, 2013. 40(3): p. 187-193.
28. Bosch, F.X., et al., Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst, 1995. 87(11): p. 796-802.
29. Chera, B.S., et al., Plasma Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in HPV-Associated Oropharyngeal Cancer. J Clin Oncol, 2020. 38(10): p. 1050-1058.
30. Moody, C.A. and L.A. Laimins, Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 2010. 10(8): p. 550-60.
31. Kreimer, A.R., et al., Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol, 2013. 31(21): p. 2708-15.
32. Syrjänen, S., HPV infections and tonsillar carcinoma. J Clin Pathol, 2004. 57(5): p. 449-55.
33. Ndiaye, C., et al., HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol, 2014. 15(12): p. 1319-31.
34. Graham, S.V., The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond), 2017. 131(17): p. 2201-2221.
35. Van Doorslaer, K., et al., The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res, 2017. 45(D1): p. D499-d506.
36. Davy, C.E., et al., Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol, 2002. 76(19): p. 9806-18.
37. Huibregtse, J.M., M. Scheffner, and P.M. Howley, A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo j, 1991. 10(13): p. 4129-35.
38. Huh, K., et al., Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol, 2007. 81(18): p. 9737-47.
39. McLaughlin-Drubin, M.E., C.P. Crum, and K. Münger, Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A, 2011. 108(5): p. 2130-5.
40. McLaughlin-Drubin, M.E., D. Park, and K. Munger, Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci U S A, 2013. 110(40): p. 16175-80.
41. Soto, D.R., et al., KDM6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21CIP1 suppression of replication stress. PLoS Pathog, 2017. 13(10): p. e1006661.
42. Mirghani, H., et al., Diagnosis of HPV driven oropharyngeal cancers: Comparing p16 based algorithms with the RNAscope HPV-test. Oral Oncol, 2016. 62: p. 101-108.
43. Volpi, C.C., et al., In situ hybridization detection methods for HPV16 E6/E7 mRNA in identifying transcriptionally active HPV infection of oropharyngeal carcinoma: an updating. Hum Pathol, 2018. 74: p. 32-42.
44. Chaturvedi, A.K., et al., Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol, 2011. 29(32): p. 4294-301.
45. Li, W., et al., Human papillomavirus positivity predicts favourable outcome for squamous carcinoma of the tonsil. Int J Cancer, 2003. 106(4): p. 553-558.
46. Carlander, A.F., et al., A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. Viruses, 2021. 13(7).
47. Chen, T.C., et al., Clinical characteristics and treatment outcome of oropharyngeal squamous cell carcinoma in an endemic betel quid region. Sci Rep, 2020. 10(1): p. 526.
48. Lai, Y.H., et al., Impact of Alcohol and Smoking on Outcomes of HPV-Related Oropharyngeal Cancer. J Clin Med, 2022. 11(21).
49. Powles, T., et al., ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature, 2021. 595(7867): p. 432-437.
50. Provencio, M., et al., Overall Survival and Biomarker Analysis of Neoadjuvant Nivolumab Plus Chemotherapy in Operable Stage IIIA Non-Small-Cell Lung Cancer (NADIM phase II trial). J Clin Oncol, 2022. 40(25): p. 2924-2933.
51. van Dessel, L.F., et al., High-throughput isolation of circulating tumor DNA: a comparison of automated platforms. Mol Oncol, 2019. 13(2): p. 392-402.
52. Thierry, A.R., et al., Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res, 2010. 38(18): p. 6159-75.
53. Kumar, M., et al., Application and optimization of minimally invasive cell-free DNA techniques in oncogenomics. Tumour Biol, 2018. 40(2): p. 1010428318760342.
54. Norton, S.E., et al., A new blood collection device minimizes cellular DNA release during sample storage and shipping when compared to a standard device. J Clin Lab Anal, 2013. 27(4): p. 305-11.
55. Norton, S.E., et al., A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clin Biochem, 2013. 46(15): p. 1561-5.
56. Medina Diaz, I., et al., Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One, 2016. 11(11): p. e0166354.
57. Hidestrand, M., et al., Influence of temperature during transportation on cell-free DNA analysis. Fetal Diagn Ther, 2012. 31(2): p. 122-8.
58. Fernando, M.R., et al., A new methodology to preserve the original proportion and integrity of cell-free fetal DNA in maternal plasma during sample processing and storage. Prenat Diagn, 2010. 30(5): p. 418-24.
59. Barrett, A.N., et al., Implementing prenatal diagnosis based on cell-free fetal DNA: accurate identification of factors affecting fetal DNA yield. PLoS One, 2011. 6(10): p. e25202.
60. Lam, N.Y., et al., EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem, 2004. 50(1): p. 256-7.
61. Kopreski, M.S., et al., Detection of mutant K-ras DNA in plasma or serum of patients with colorectal cancer. Br J Cancer, 1997. 76(10): p. 1293-9.
62. Nesic, M., et al., Optimization of Preanalytical Variables for cfDNA Processing and Detection of ctDNA in Archival Plasma Samples. Biomed Res Int, 2021. 2021: p. 5585148.
63. Sozzi, G., et al., Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst, 2005. 97(24): p. 1848-50.
64. Mazurek, A.M., et al., Assessment of the total cfDNA and HPV16/18 detection in plasma samples of head and neck squamous cell carcinoma patients. Oral Oncol, 2016. 54: p. 36-41.
65. Chera, B.S., et al., Rapid Clearance Profile of Plasma Circulating Tumor HPV Type 16 DNA during Chemoradiotherapy Correlates with Disease Control in HPV-Associated Oropharyngeal Cancer. Clin Cancer Res, 2019. 25(15): p. 4682-4690.
66. Siravegna, G., et al., Cell-Free HPV DNA Provides an Accurate and Rapid Diagnosis of HPV-Associated Head and Neck Cancer. Clin Cancer Res, 2022. 28(4): p. 719-727.
67. O'Boyle, C.J., et al., Cell-free human papillomavirus DNA kinetics after surgery for human papillomavirus-associated oropharyngeal cancer. Cancer, 2022. 128(11): p. 2193-2204.
68. Yang, M., et al., Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol, 2018. 29(2): p. 311-323.
69. Rettig, E.M., et al., Association of Pretreatment Circulating Tumor Tissue–Modified Viral HPV DNA With Clinicopathologic Factors in HPV-Positive Oropharyngeal Cancer. JAMA Otolaryngology–Head & Neck Surgery, 2022. 148(12): p. 1120-1130.
70. Cao, H., et al., Quantitation of human papillomavirus DNA in plasma of oropharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys, 2012. 82(3): p. e351-8.
71. Cao, Y., et al., Early HPV ctDNA Kinetics and Imaging Biomarkers Predict Therapeutic Response in p16+ Oropharyngeal Squamous Cell Carcinoma. Clin Cancer Res, 2022. 28(2): p. 350-359.
72. Hsieh, C.C., et al., Circulating Cell-Free DNA Levels Could Predict Oncological Outcomes of Patients Undergoing Esophagectomy for Esophageal Squamous Cell Carcinoma. Int J Mol Sci, 2016. 17(12).
73. Hernádi, Z., et al., The prognostic significance of HPV-16 genome status of the lymph nodes, the integration status and p53 genotype in HPV-16 positive cervical cancer: a long term follow up. Bjog, 2003. 110(2): p. 205-9.
74. Chen, P., et al., Human Papillomavirus Status in Primary Lesions and Pelvic Lymph Nodes and Its Prognostic Value in Cervical Cancer Patients with Lymph Node Metastases. Med Sci Monit, 2019. 25: p. 1894-1902.
75. Noventa, M., et al., Usefulness, methods and rationale of lymph nodes HPV-DNA investigation in estimating risk of early stage cervical cancer recurrence: a systematic literature review. Clin Exp Metastasis, 2014. 31(7): p. 853-67.
76. Morrison, M.A., et al., Targeting the human papillomavirus E6 and E7 oncogenes through expression of the bovine papillomavirus type 1 E2 protein stimulates cellular motility. J Virol, 2011. 85(20): p. 10487-98.
77. Gray, E., et al., In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis. Cancer Res, 2010. 70(10): p. 4081-91.
78. Huang, S.H., et al., Natural course of distant metastases following radiotherapy or chemoradiotherapy in HPV-related oropharyngeal cancer. Oral Oncol, 2013. 49(1): p. 79-85.
79. Mehanna, H., et al., PET-CT Surveillance versus Neck Dissection in Advanced Head and Neck Cancer. N Engl J Med, 2016. 374(15): p. 1444-54.
80. Hanna, G.J., et al., Plasma HPV cell-free DNA monitoring in advanced HPV-associated oropharyngeal cancer. Ann Oncol, 2018. 29(9): p. 1980-1986.
81. Warlow, S.J., et al., Longitudinal measurement of HPV copy number in cell-free DNA is associated with patient outcomes in HPV-positive oropharyngeal cancer. Eur J Surg Oncol, 2022. 48(6): p. 1224-1234.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90744-
dc.description.abstract隨著HPV-associated OPSCC的發生率逐年提升與其獨特的臨床特徵,人們對於HPV-associated OPSCC的專注度也日漸上升,目前主要診斷及預測疾病復發的方法為組織切片檢查,然而此方法是侵入性且耗費人力的,進而導致樣品數量不足及耗費時間等等問題。
此篇研究想透過液態檢體發展一套非侵入式且減省時間的系統來補充組織切片的不足,採用的方法為萃取病人血漿中的循環DNA並用PCR技術偵測其中的循環腫瘤HPV E2 及E7 DNA再與病歷做連結,檢體方面從10位HPV-associated OPSCC的患者採集術中與術後的血漿與組織檢體,另外從台大醫院耳鼻喉科生物資料庫取37個來至HPV-associated OPSCC患者的術中血漿。
在癌症診斷方面,利用ddPCR偵測循環腫瘤HPV16 E7 DNA具有最好的敏感度及特異性,而與TNM臨床分期做連結後發現循環腫瘤 HPV16 E2 DNA與淋巴結分期有較強的關聯性,進一步的結果顯示淋巴結檢體中HPV16 E2的表現量較HPV16 E7高且HPV16 E2過度表現在HPV相關癌細胞會促進細胞遷移與侵犯的能力,最後評估循環腫瘤HPV16 DNA與疾病進程的關係,結果發現8位病人在治療完均無偵測到循環腫瘤HPV16 DNA或是已歸零且在臨床檢查上也沒有觀察到復發的現象,而在另外兩位病人的術後檢體中偵測到了循環腫瘤HPV16 E2 DNA,但由於追蹤時間過短而無法透過臨床檢查評估疾病的狀況。
總結來說,循環腫瘤HPV E7 DNA診斷能力較強而HPV E2 DNA有潛力預測疾病進程及淋巴結分期且有過表現於淋巴結腫瘤的現象並會促進癌細胞遷移、侵犯,未來希望透過更充足的樣品數量及搭配其他臨床因子來證明循環腫瘤HPV DNA在臨床癌症管理上的能力。
zh_TW
dc.description.abstractWith the incidence rate of HPV-associated OPSCC increasing and its unique characteristics, the importance of HPV-associated OPSCC management is gradually rising. The current method includes tissue biopsy or certain clinical factors. However, those methods are invasive and laborious. Hence, this study focuses on evaluating the clinical impact of different circulating tumor HPV DNA to develop a non-invasive and cost-effective method.
A total of 46 patients, including 40 with HPV-associated OPSCC and 6 with HPV-negative OPSCC were recruited. 69 plasma specimens including 24 follow-up samples were collected. cfDNA was extracted from plasma, and multiplex ddPCR and qPCR were used to detect ctHPV16 DNA by targeting HPV16 E2 and HPV16 E7.
In cancer diagnosis, detecting ctHPV16 E7 DNA by multiplex ddPCR exhibited the highest ability, with a sensitivity of 76.3% and specificity of 85.7%. When correlating ctHPV16 DNA with the TNM stage, the significance of ctHPV16 E2 DNA was stronger than ctHPV16 E7 DNA in the N stage. Further findings demonstrated that HPV16 E2 may be enriched in nodal tumors and induced HPV-associated cancer cell migration and invasion. For surveillance of disease progression, ctHPV E2 DNA can be detected before ctHPV16 E7 DNA, but the capacity to predict disease progression cannot be evaluated due to the short surveillance period.
In summary, circulating tumor HPV16 E7 DNA had the highest diagnostic capacity and it was comparable with p16 IHC, while circulating tumor HPV16 E2 DNA has the potential to predict disease progression and lymph node staging. The expression of HPV16 E2 is higher than HPV16 E7 in lymph node tumors and HPV16 E2 overexpression in HPV-associated cancer cells will promote cancer cell migration and invasion. In the future, it is hoped that the clinical ability of circulating tumor HPV16 DNA in cancer management can be demonstrated through a larger number of samples and in conjunction with other clinical factors.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:25:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:25:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口委審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
List of contents vi
List of Figures ix
List of Tables x
Chapter1 Introduction - 1 -
1.1 Head and neck cancer - 1 -
1.2 Circulating tumor DNA - 2 -
1.3 HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) - 5 -
1.4 Human Papillomavirus (HPV) - 6 -
1.5 The function of HPV genes - 8 -
1.6 Goal of this study - 9 -
Chapter2 Material and Methods - 10 -
2.1 Study enrollment - 10 -
2.2 Sample collection - 10 -
2.3 Multiplex ddPCR assay - 11 -
2.4 Multiplex real-time PCR assay - 11 -
2.5 Primer and Taqman probe design for both PCR assays - 12 -
2.6 Capillary electrophoresis for ctHPV DNA fragmentation. - 13 -
2.7 Centrifugal evaporator for ctHPV DNA concentration. - 13 -
2.8 Statistical analysis. - 13 -
2.9 Cell culture - 14 -
2.10 HPV16 E2 transfection - 14 -
2.11 Wound healing assay - 15 -
2.12 Transwell invasion assay - 15 -
Chapter3 Results - 16 -
3.1 Patient characteristics - 16 -
3.2 The quality of ctHPV16 DNA analysis. - 17 -
3.3 The sensitivity and specificity of ctHPV16 DNA - 20 -
3.4 The correlation between ctHPV DNA and clinical stage - 21 -
3.5 Tumour HPV16 DNA - 24 -
3.6 HPV16 E2 overexpression in HPV-positive cancer cell change cell motility - 25 -
3.7 Longitudinal track of ct HPV DNA - 26 -
Chapter4 Discussions - 29 -
4.1 The characteristic of HPV-associated OPSCC in Taiwan - 29 -
4.2 cfDNA quality in frozen sample - 30 -
4.3 The diagnostic ability of ctHPV16 DNA - 32 -
4.4 The correlation between ctHPV16 DNA and TNM stage - 34 -
4.5 The enrichment of HPV16 E2 gene in nodal tumor - 35 -
4.6 HPV16 E2 overexpression in HPV-positive cancer cell exchange cell motility - 36 -
4.7 Longitudinal measurement of ctHPV16 DNA in patients with OPSCC - 37 -
Chapter5 Conclusion - 40 -
References - 42 -
-
dc.language.isoen-
dc.subject數位化PCRzh_TW
dc.subject臨床癌症管理zh_TW
dc.subject口咽癌zh_TW
dc.subject人類乳突病毒zh_TW
dc.subject循環腫瘤DNAzh_TW
dc.subjecthuman papillomavirus (HPV)en
dc.subjectoropharyngeal canceren
dc.subjectcancer managementen
dc.subjectcirculating tumor HPV DNAen
dc.subjectdroplet digital PCRen
dc.title評估循環腫瘤HPV16 E2與E7基因於HPV+口咽癌病人之臨床效用zh_TW
dc.titleEvaluating clinical impact of circulating tumor HPV16 E2 and E7 DNA regions in HPV+ Oropharyngeal canceren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor婁培人zh_TW
dc.contributor.coadvisorPei-Jen Louen
dc.contributor.oralexamcommittee李亦淇zh_TW
dc.contributor.oralexamcommitteeI-Chi Leeen
dc.subject.keyword循環腫瘤DNA,人類乳突病毒,口咽癌,臨床癌症管理,數位化PCR,zh_TW
dc.subject.keywordcirculating tumor HPV DNA,droplet digital PCR,oropharyngeal cancer,human papillomavirus (HPV),cancer management,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202301918-
dc.rights.note未授權-
dc.date.accepted2023-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved