請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林維怡 | zh_TW |
| dc.contributor.advisor | Wei-yi Lin | en |
| dc.contributor.author | 楊欣妮 | zh_TW |
| dc.contributor.author | Hsin-Ni Yang | en |
| dc.date.accessioned | 2023-10-03T17:24:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | 吳添益、蔡正賢、張素貞 (2008)。水稻合理化施肥技術。苗栗區農業專訊 42,1-4。
賀新生、劉超洋、林琦、鄭俊娟、竹文坤、商圓圓、霍存祿 (2011)。竹類煤煙病大型病原菌——海綿膠煤炱菌的分子鑑定,福建林學院學報 4,363-367。 黃守宏、鄭清煥、陳秋男、吳文哲 (2016)。台灣水稻褐飛蝨生物小種之調查。台灣農業研究 65,84-91。 Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., and Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 10, 520. Ahmad, M., Adil, Z., Hussain, A., Mumtaz, M., Nafees, M., Ahmad, I., and Jamil, M. (2019). Potential of phosphate solubilizing bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pakistan Journal of Agricultural Sciences 56, 283-289. Almeida, O. A. C., de Araujo, N. O., Mulato, A. T. N., Persinoti, G. F., Sforça, M. L., Calderan-Rodrigues, M. J., & Oliveira, J. V. C. (2023). Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. Frontiers in Plant Science 13, 1056082. Alori, E.T., Glick, B.R., and Babalola, O.O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology 8, 971. Aluja, M., et al. (2023). Assessment of the molecular responses of an ancient angiosperm against atypical insect oviposition: The case of hass avocados and the tephritid fly Anastrepha ludens. International Journal of Molecular Sciences 24, 2060. Ames, B.N. (1966). Assay of inorganic phosphate, total phosphate and phosphatases. In Methods in enzymology (Elsevier), 115-118. Audrain, B., Farag, M.A., Ryu, C.-M., and Ghigo, J.-M. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews 39, 222-233. Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., and Weisskopf, L. (2014). The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. The Plant Journal 80, 758-771. Balint-Kurti P. (2019) The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology 20, 1163-1178. Bashan, Y., and de-Bashan, L.E. (2010). Chapter Two - How the plant growth-promoting bacterium azospirillum promotes plant growth—A critical assessment. In Advances in Agronomy, 77-136. Bavaresco, L., Osco, L., Araujo, A., Mendes, L., and Araujo, F. (2020). Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theoretical and Experimental Plant Physiology 32, 99-108. Bernabeu, P.R., Pistorio, M., Torres-Tejerizo, G., Estrada-De los Santos, P., Galar, M.L., Boiardi, J.L., and Luna, M.F. (2015). Colonization and plant growth-promotion of tomato by Burkholderia tropica. Scientia Horticulturae 191, 113-120. Bhattacharyya, D., Garladinne, M., and Lee, Y.H. (2015). Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. Journal of Plant Growth Regulation 34, 158-168. Bin Rahman, A.N.M.R., and Zhang, J. (2022). Trends in rice research: 2030 and beyond. Food and Energy Security 12, 390. Bing, L., Hongxia, D., Maoxin, Z., Di, X., and Jingshu, W. (2007). Potential resistance of tricin in rice against brown planthopper Nilaparvata lugens (Stål). Acta Ecologica Sinica 27, 1300-1306. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. Brock, A.K., Berger, B., Schreiner, M., Ruppel, S., and Mewis, I. (2018). Plant growth-promoting bacteria Kosakonia radicincitans mediate anti-herbivore defense in Arabidopsis thaliana. Planta 248, 1383-1392. Catindig, J., Arida, G., Baehaki, S., Bentur, J., Cuong, L., Norowi, M., Rattanakarn, W., Sriratanasak, W., Xia, J., and Lu, Z. (2009). Situation of planthoppers in Asia. Planthoppers: new threats to the sustainability of intensive rice production systems in Asia, 191-220. Chane, T. (2018). Defense mechanisms of plants to insect pests: From morphological to biochemical approach. Trends in Technical & Scientific Research 2, 30-38 Choudhary, D.K., Johri, B.N., and Prakash, A. (2008). Volatiles as priming agents that initiate plant growth and defence responses. Current Science, 595-604. De Vleesschauwer, D., and Höfte, M. (2009). Rhizobacteria-induced systemic resistance. Advances in Botanical Research 51, 223-281. De Vleesschauwer, D., Djavaheri, M., Bakker, P.A., and Höfte, M. (2008). Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiology 148, 1996-2012. Duan, C., Yu, J., Bai, J., Zhu, Z., and Wang, X. (2014). Induced defense responses in rice plants against small brown planthopper infestation. The Crop Journal 2, 55-62. Duarte, C.F.D., Cecato, U., Hungria, M., Fernandes, H.J., Biserra, T.T., Galbeiro, S., Toniato, A.K.B., and da Silva, D.R. (2020). Morphogenetic and structural characteristics of Urochloa species under inoculation with plant-growth-promoting bacteria and nitrogen fertilisation. Crop and Pasture Science 71, 82-89. Dyck, V., Misra, B., Alam, S., Chen, C., Hsieh, C., and Rejesus, R. (1979). In Brown planthopper: threat to rice production in Asia (61-98). Philippines: International Rice Research Institute. Effmert, U., Kalderás, J., Warnke, R., and Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology 38, 665-703. Egamberdiyeva, D. (2005). Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. Journal of Plant Nutrition and Soil Science 168, 94-99. Erb, M., Meldau, S., and Howe, G.A. (2012). Role of phytohormones in insect-specific plant reactions. Trends in Plant Science 17, 250-259. Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., and Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124, 62-66. Feng, L.; Sun, J.; Jiang, Y.; Duan, X. (2022). Role of reactive oxygen species against pathogens in relation to postharvest disease of papaya fruit. Horticulturae 8, 205. Fernando, W.D., Nakkeeran, S., and Zhang, Y. (2005). Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases.. In: Siddiqui, Z.A. (eds) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht. 67-109. Fitzgerald, M.A., McCouch, S.R., and Hall, R.D. (2009). Not just a grain of rice: the quest for quality. Trends in Plant Science 14, 133-139. García de Salamone, I.E., Hynes, R.K., and Nelson, L.M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology 47, 404-411. Garg, N. (2007). Symbiotic nitrogen fixation in legume nodules: process and signaling: A review. Agronomy of Sustainable Development 27, 59-68. Gomez-Ramirez, L.F., and Uribe-Velez, D. (2021). Phosphorus solubilizing and mineralizing Bacillus spp. contribute to rice growth promotion using soil amended with rice straw. Current Microbiology 78, 932-943. Grayston, S.J., Vaughan, D., and Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5, 29-56. Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S., and Weisskopf, L. (2013). Production of bioactive volatiles by different Burkholderia ambifaria strains. Journal of Chemical Ecology 39, 892-906. Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., and Nain, L. (2021). PGPR mediated alterations in root traits: way toward sustainable crop production. Frontiers in Sustainable Food Systems 4, 618230. Gutiérrez-Luna, F.M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., de la Cruz, H.R., and Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51, 75-83. Gutiérrez‐Mañero, F.J., Ramos‐Solano, B., Probanza, A.n., Mehouachi, J., R. Tadeo, F., and Talon, M. (2001). The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111, 206-211. Hadj Brahim, A., Jlidi, M., Hmani, H., Daoud, L., Manel, B., Akremi, I., Feto, N.A., Bejar, S., and Ali, M. (2019). Halotolerant PGPB seed biopriming induces wheat salinity tolerance. MOL2NET: From molecules to networks 4 (1-6). Spain: University of Basque Country Hao, H., Yan, R., Miao, Z., Wang, B., Sun, J., & Sun, B. (2022). Volatile organic compounds mediated endogenous microbial interactions in Chinese baijiu fermentation. International Journal of Food Microbiology 383, 109955. Harrod, V.L., Groves, R.L., Guillemette, E.G., and Barak, J.D. (2022). Salmonella enterica changes Macrosteles quadrilineatus feeding behaviors resulting in altered S. enterica distribution on leaves and increased populations. Scientific Reports 12, 1-13. Harun-Or-Rashid, M., Kim, H.J., Yeom, S.I., Yu, H.A., Manir, M.M., Moon, S.S., Kang, Y.J., and Chung, Y.R. (2018). Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Frontiers in Plant Science 9, 1904. He, AL., Zhao, LY., Ren, W. et al. (2023). A volatile producing Bacillus subtilis strain from the rhizosphere of haloxylon ammodendron promotes plant root development. Plant and Soil 486, 661–680 Hereward, J.P., Cai, X.H., Matias, A.M., Walter, G.H., and Wang, Y. (2020). Migration dynamics of an important rice pest: the brown planthopper (Nilaparvata lugens) across Asia – insights from population genomics. Evolutionary Applications 13, 2449-2459 Hernández-Forte, I., Pérez-Pérez, R., Taulé-Gregorio, C.B., Fabiano-González, E., Battistoni-Urrutia, F., and Nápoles-García, M.C. (2022). New bacteria genera associated with rice (Oryza sativa L.) in Cuba promote the crop growth. Agronomía Mesoamericana 33, 47223. Huang, H., Ullah, F., Zhou, D.-X., Yi, M., Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10, 800. IRRI. (2002). Standard evaluation system. International Rice Research Institute, Manila, Philippines, 11-30. Iwanaga, K., and Tojo, S. (1986). Effects of juvenile hormone and rearing density on wing dimorphism and oocyte development in the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology 32, 585-590. Jayasimha, G., Nalini, R., Chinniah, C., Muthamilan, M., and Mini, M. (2015). Evaluation of biochemical constituents in healthy and brown planthopper, Nilaparvata lugens (Stal.) (Hemiptera: Delphacidae) damaged rice plants. Current Biology 9, 129-136. Jena, K.K., and Kim, S.-M. (2010). Current status of brown planthopper (BPH) resistance and genetics. Rice 3, 161-171. Jiang, C.-H., Xie, Y.-S., Zhu, K., Wang, N., Li, Z.-J., Yu, G.-J., and Guo, J.-H. (2019). Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regulation 87, 317-328. Kadiyala, D. M., Rao, A.U., Dunna, V., Sridhar, T.V. (2015). Effect of levels of nitrogen, phosphorus and potassium on performance of rice. Indian Journal of Agricultural Research 49, 83-87. Kamle, M., Borah, R., Bora, H., Jaiswal, A.K., Singh, R.K., and Kumar, P. (2020). Fungal Biotechnology and Bioengineering (457-470). Switzerland: Springer Cham. Kazan, K., and Manners, J.M. (2009). Linking development to defense: auxin in plant–pathogen interactions. Trends in Plant Science 14, 373-382. Kerchev, P.I., Fenton, B., Foyer, C.H., and Hancock, R.D. (2012). Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant, Cell & Environment 35, 441-453. Kiprovski, B., Malenčić, Đ., Djuric, S., Bursac, M., Cvejic, J., and Sikora, V. (2016). Isoflavone content and antioxidant activity of soybean inoculated with plant-growth promoting rhizobacteria. Journal of the Serbian Chemical Society 81, 70-70. Kisimoto, R., and Sogawa, K. (1995). Insect migration: tracking resources through space and time (67-92). New York : Cambridge University Press. Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885-886. Kour, D., Rana, K.L., Yadav, N., Yadav, A.N., Kumar, A., Meena, V.S., Singh, B., Chauhan, V.S., Dhaliwal, H.S., and Saxena, A.K. (2019). Plant growth promoting rhizobacteria for agricultural sustainability. Microorganisms 11, 1088. Lagrimini, L.M. (1991). Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiology 96, 577-583. Lan, W., Lu, F., Regner, M., Zhu, Y., Rencoret, J., Ralph, S.A., Zakai, U.I., Morreel, K., Boerjan, W., and Ralph, J. (2015). Tricin, a flavonoid monomer in monocot lignification. Plant Physiology 167, 1284-1295. Lee, B., Lee, S., and Ryu, C.-M. (2012). Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Annals of Botany 110, 281-290. Lee, J.-H., and Lee, J. (2010). Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews 34, 426-444. Li, C., Luo, C., Zhou, Z., Wang, R., Ling, F., Xiao, L., Lin, Y., and Chen, H. (2017). Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. BMC Plant Biology 17, 57. Li, Y., Huang, Y.-F., Huang, S.-H., Kuang, Y.-H., Tung, C.-W., Liao, C.-T., and Chuang, W.-P. (2019). Genomic and phenotypic evaluation of rice susceptible check TN1 collected in Taiwan. Botanical Studies 60, 19. Liu, H., and Brettell, L.E. (2019). Plant defense by VOC-induced microbial priming. Trends in Plant Science 24, 187-189. Liu, Y., He, J., Jiang, L., Wu, H., Xiao, Y., Liu, Y., Li, G., Du, Y., Liu, C., and Wan, J. (2011). Nitric oxide production is associated with response to brown planthopper infestation in rice. Journal of Plant Physiology 168, 739-745. Londo, J.P., Chiang, Y.-C., Hung, K.-H., Chiang, T.-Y., and Schaal, B.A. (2006). Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences of the United States of America 103, 9578-9583. Luna, M.F., Aprea, J., Crespo, J.M., and Boiardi, J.L. (2012). Colonization and yield promotion of tomato by Gluconacetobacter diazotrophicus. Applied Soil Ecology 61, 225-229. Ma, C., Gui, W., Zhang, Y., Shah, A.Z., Xu, G., and Yang, G. (2022). Combined physio-biochemical and transcriptome analyses illuminate the resistance response of rice priming with decoyinine against Nilaparvata lugens. Agronomy 12, 3098. Machado, R.A.R., Robert, C.A.M., Arce, C.C.M., Ferrieri, A.P., Xu, S., Jimenez-Aleman, G.H., Baldwin, I.T., and Erb, M. (2016). Auxin is rapidly induced by herbivore attack and regulates a subset of systemic, jasmonate-dependent defenses. Plant Physiology 172, 521-532. Meldau, D.G., Meldau, S., Hoang, L.H., Underberg, S., Wünsche, H., and Baldwin, I.T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. The Plant Cell 25, 2731-2747. Narayanan Z, Glick BR. (2022) Secondary metabolites produced by plant growth-promoting bacterial endophytes. Microorganisms 10, 2008. Niu, D.-D., Liu, H.-X., Jiang, C.-H., Wang, Y.-P., Wang, Q.-Y., Jin, H.-L., and Guo, J.-H. (2011). The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions 24, 533-542. Niu, H., Sun, Y., Zhang, Z., Zhao, D., Wang, N., Wang, L., and Guo, H. (2022). The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiological Research 256, 126956. Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L., and López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior 4, 701-712. Pathak, P., and Heinrichs, E. (1982). Bromocresol green indicator for measuring feeding activity of Nilaparvata lugens on rice varieties. Philipine Entomologists 5, 209-212. Pathak, P.K., Saxena, R.C., and Heinrichs, E.A. (1982). Parafilm sachet for measuring honeydew excretion by Nilaparvata lugens on rice. Journal of Economic Entomology 75, 194-195. Prieto, P., Schilirò, E., Maldonado-González, M.M., Valderrama, R., Barroso-Albarracín, J.B., and Mercado-Blanco, J. (2011). Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microbial Ecology 62, 435-445. Quiroga, M.n., Guerrero, C., Botella, M.A., Barceló, A., Amaya, I., Medina, M.a.I., Alonso, F.J., de Forchetti, S.M., Tigier, H., and Valpuesta, V. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology 122, 1119-1128. Radhakrishnan, R., and Lee, I.-J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry 109, 181-189. Rashid, M., Jahan, M., and Islam, K. (2017). Effects of nitrogen, phosphorous and potassium on host-choice behavior of brown planthopper, Nilaparvata lugens (Stål) on rice cultivar. Journal of Insect Behavior 30, 1-15 Rashid, M.H.-O., and Chung, Y.R. (2017). Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Frontiers in Plant Science 8, 1816. Remans, R., Beebe, S., Blair, M., Manrique, G., Tovar, E., Rao, I., Croonenborghs, A., Torres-Gutierrez, R., El-Howeity, M., Michiels, J., and Vanderleyden, J. (2008). Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil 302, 149-161. Sangha, J.S., Chen, Y.H., Kaur, J., Khan, W., Abduljaleel, Z., Alanazi, M.S., Mills, A., Adalla, C.B., Bennett, J., Prithiviraj, B., Jahn, G.C., and Leung, H. (2013). Proteome analysis of rice (Oryza sativa L.) mutants reveals differentially induced proteins during brown planthopper (Nilaparvata lugens) infestation. International Journal of Molecular Sciences 14, 3921-3945. Santoyo, G., Gamalero, E., and Glick, B.R. (2021). Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Frontiers in Sustainable Food Systems 5, 672881 Saxena, R., & Barrion, A. (1985). Biotypes of the brown planthopper Nilaparvata lugens (Stål) and strategies in deployment of host plant resistance. International Journal of Tropical Insect Science 6, 271-289. Seethepalli, A., Guo, H., Liu, X., Griffiths, M., Almtarfi, H., Li, Z., Liu, S., Zare, A., Fritschi, F.B., Blancaflor, E.B., Ma, X.-F., and York, L.M. (2020). RhizoVision Crown: an integrated hardware and software platform for root crown phenotyping. Plant Phenomics 2020, 3074916 Senthil-Nathan, S. (2021). Effects of elevated CO2 on resistant and susceptible rice cultivar and its primary host, brown planthopper (BPH), Nilaparvata lugens (Stål). Scientific Reports 11, 8905. Sharifi, R., and Ryu, C.M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany 122, 349-358. Silva Dias, B. H., Jung, S. H., Castro Oliveira, J. V., & Ryu, C. M. (2021). C4 bacterial volatiles improve plant health. Pathogens 10, 682. Silva, J.F., Barbosa, R.R., Souza, A.N., Motta, O.V., Teixeira, G.N., Carvalho, V., Souza, A.L.S.R., and de souza filho, G. (2015). Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion. Genetics and Molecular Research 14, 15301-15311. Smirnov, V. V., Osadchaia, A. I., Kudriavtsev, V. A., and Safronova, L. A. (1993). The growth and sporulation of Bacillus subtilis under different aeration conditions. Mikrobiologicheskii Zhurnal 55, 38–44. Sogawa, K., and Cheng, C. (1979). Brown Planthopper: Threat to rice production in Asia. (125-142). Philippines: International Rice Research Institute. Sōgawa, K. (1982). The rice brown planthopper: feeding physiology and host plant interactions. Annual Review of Entomology 27, 49-73. Song, G.C., Jeon, J.-S., Sim, H.-J., Lee, S., Jung, J., Kim, S.-G., Moon, S.Y., and Ryu, C.-M. (2021). Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. Journal of Experimental Botany 73, 571-583. Sticher, L., Mauch-Mani, B., & Métraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology 35, 235–270. Suman, A., Shukla, L., Marag, P.S., Verma, D.P., Gond, S., and Prasad, J. (2020). Potential use of plant colonizing Pantoea as generic plant growth promoting bacteria for cereal crops. Journal of Environmental Biology 41, 987-994. Sytykiewicz, H., Łukasik, I., Goławska, S., and Chrzanowski, G. (2019). Aphid-triggered changes in oxidative damage markers of nucleic acids, proteins, and lipids in maize (Zea mays L.) seedlings. International Journal of Molecular Sciences 20, 3742 Tiwari, S., Prasad, V., Chauhan, P.S., and Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science 8, 1510. Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9, 1963-1971. Valenzuela-Soto, J.H., Estrada-Hernández, M.G., Ibarra-Laclette, E., and Délano-Frier, J.P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231, 397. van de Mortel, J.E., de Vos, R.C., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K., van Loon, J.J., Dicke, M., and Raaijmakers, J.M. (2012). Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiology 160, 2173-2188. Vespermann, A., Kai, M., and Piechulla, B. (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Applied and Environmental Microbiology 73, 5639-5641. Walling, L.L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19, 195-216. Wang, J., Cai, J., Zhao, J., Guo, Z., Pan, T., Yu, Y., and She, W. (2022). Enzyme activities in the lignin metabolism of chinese olive (Canarium album) with different flesh characteristics. Horticulturae 8, 408. Wei, Z., Hu, W., Lin, Q., Cheng, X., Tong, M., Zhu, L., Chen, R., and He, G. (2009). Understanding rice plant resistance to the brown planthopper (Nilaparvata lugens): A proteomic approach. Proteomics 9, 2798-2808. Wu, Y., Zhou, J., Li, C., and Ma, Y. (2019). Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen 8, e00813. Xu, J., Wang, X., Zu, H., Zeng, X., Baldwin, I.T., Lou, Y. and Li, R. (2021), Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore. New Phytologist 230, 1639-1652. Yan, S.-P., Zhang, Q.-Y., Tang, Z.-C., Su, W.-A., and Sun, W.-N. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular Proteomics 5, 484-496. Yang, L., Han, Y., Li, P., Li, F., Ali, S., and Hou, M. (2017). Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Scientific Reports 7, 4232. Yano, T., Miyahara, Y., Morii, N., Okano, T., & Kubota, H. (2016). Pentanol and benzyl alcohol attack bacterial surface structures differently. Applied and Environmental Microbiology 82, 402-408. Ye, M., Luo, S.M., Xie, J.F., Li, Y.F., Xu, T., Liu, Y., Song, Y.Y., Zhu-Salzman, K., and Zeng, R.S. (2012). Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE 7, e36214. Zamioudis, C., and Pieterse, C.M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions 25, 139-150. Zebelo, S.A., and Maffei, M.E. (2015). Role of early signalling events in plant–insect interactions. Journal of Experimental Botany 66, 435-448. Zehra, A., Raytekar, N.A., Meena, M., and Swapnil, P. (2021). Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Current Research in Microbial Sciences 2, 100054. Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M.A., Ryu, C.-M., Allen, R., and Melo, I.S. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839-851. Zhang, Q., Li, T., Gao, M., Ye, M., Lin, M., Wu, D., Guo, J., Guan, W., Wang, J., and Yang, K. (2022). Transcriptome and metabolome profiling reveal the resistance mechanisms of rice against brown planthopper. International Journal of Molecular Sciences 23, 4083. Zou, C.-S., Mo, M.-H., Gu, Y.-Q., Zhou, J.-P., and Zhang, K.-Q. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry 39, 2371-2379. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90739 | - |
| dc.description.abstract | 促進植物生長細菌 (plant growth promoting bacteria;PGPB) 為有益植物生長的細菌,有些還能增強植物對逆境的耐受性。細菌的揮發性有機化合物 (volatile organic compounds;VOCs) 已被證實可引發植物荷爾蒙之生合成,也可能參與植物根系結構的重塑;然而,PGPB協助植物抵禦刺吸式昆蟲之機制尚未明瞭。本研究檢測具有促進植物生長潛力之細菌分離株對水稻生長和抗蟲能力的效益,試驗選用易感品種—台中在來1號 (TN1) 作為材料,發現接種分離株NO.11、NO.13和NO.16皆能提升水稻生物量累積,也發現NO.16所釋放之VOC可刺激根部IAA累積,促進幼苗根系發展;在抗蟲能力分析上,選擇水稻嚴重害蟲之一—褐飛蝨 (Nilaparvata lugens Stål) 進行測試,以褐飛蝨抗性秧苗期檢定法 (Standard Seedbox Screening Test;SSST) 發現接種NO.16的水稻能延緩蟲害,選擇試驗 (choice test) 結果顯示褐飛蝨成蟲較偏好以未接種分離株的對照組為食,推測接種NO.16會減少植株對褐飛蝨的吸引力;此外,與對照組相比,吸食接種處理組的褐飛蝨較少分泌因吸食韌皮部而產生的蜜露,也有較多未成功孵化的卵,顯示NO.16分離株具緩解水稻受褐飛蝨侵害之潛力,與改變褐飛蝨之生理表現;進一步測試葉與葉鞘抗氧化酵素活性,發現在褐飛蝨侵咬後,接種NO.16能維持水稻葉鞘中的過氧化物酶與葉片的膜穩定性,可能延緩褐飛蝨所造成的脅迫,植物荷爾蒙含量分析顯示,接種分離株能使水稻提前降低吲哚乙酸 (indole-3-acetic acid;IAA)、茉莉酸 (jasmonic acid;JA) 與茉莉酸-異亮氨酸 (jasmonoyl isoleucine;JA-Ile) 濃度,並維持水楊酸 (salicylic acid;SA) 濃度,因此推測接種分離株能使水稻提前應對褐飛蝨所造成的逆境。未來將從分子層次了解PGPB對水稻減緩褐飛蝨侵害的生理機制,探勘其對抵禦刺吸式昆蟲之調控,以提升生物農藥之應用潛力。 | zh_TW |
| dc.description.abstract | Plant growth promoting bacteria (PGPB) are beneficial bacteria that enhance plant growth and stress tolerance. Volatile organic compounds (VOCs) released by PGPB have potential to influence plant hormone responses and root architecture. However, the underlying mechanisms of PGPB-mediated plant tolerance to insect infection are still not clear. In this study, we tested the effects of bacterial isolates which exhibit PGP features on the growth and tolerance to brown planthopper (BPH) infestation in a susceptible rice cultivar, Taichung Native 1. The results showed that inoculation with isolate NO.11, NO.13, and NO.16 increased rice biomass. In addition, VOCs released by isolate NO.16 promoted root development, probably via the enhancement of IAA accumulation. Standard Seedbox Screening Test (SSST) was performed to evaluate the effects of isolates on rice tolerance to BPH. Inoculation of NO.16 delayed damage by BPH. In the choice test, adult BPH exhibited a preference for the mock-treated plants over the inoculated ones, indicating that the presence of NO.16 made the plants less attractive to BPH. Moreover, BPH feeding on inoculated plants secreted less honeydew derived from the phloem and had more unhatched eggs, implying the potential of NO.16 to alleviate the impacts of BPH infestation. In addition, inoculation with NO.16 maintained the membrane integrity and peroxidase activity after BPH feeding. The results of hormone analysis showed that the changes of IAA, JA, and JA-Ile accumulation in response to BPH infestation were earlier in inoculated- than mock-treated plants, suggesting that inoculation with NO.16 induced hormone responses to BPH infestation earlier in rice plants. Future research will be performed to elucidate the underlying molecular mechanisms of PGPB-mediated defense responses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:24:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:24:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 ix 表目錄 x 附錄目錄 xi 縮寫字對照表 xii 前言 1 I. 褐飛蝨對水稻生產的危害 1 II. 植物對刺吸式蟲害之防禦機制 2 III. 促進植物生長細菌 (Plant Growth-Promoting bacteria;PGPB) 4 IV. PGPB產生之揮發性有機化合物(Volatile Organic Compounds, VOC)及對植物生長的影響 5 V. 研究動機與目的 7 材料方法 8 1 水稻生長條件 8 1.1 水稻材料 8 1.2 水稻消毒與催芽 8 1.3 水稻生長條件 8 2 接種源製備及水稻幼苗接種 9 2.1 接種源製備 9 2.2 水稻幼苗處理 9 3 褐飛蝨飼養與管理 10 4 褐飛蝨蟲害處理試驗 11 4.1 褐飛蝨抗性秧苗期檢定法 (Standard Seedbox Screening Test, SSST) 11 4.2 選擇性試驗 (Choice test) 11 4.3 雌蟲蜜露排泄試驗 12 4.4 雌蟲產卵數與若蟲孵化率試驗 13 5 生理指標測定 13 5.1 磷酸含量測定 13 5.2 根系結構量測 14 5.3 蛋白質定量 14 5.4 總可溶性醣 (Total soluble sugar)含量測定 14 5.5 抗氧化酵素活性測定 15 5.6 離子滲漏率測定 16 6 GUS染色 16 7 氣體分子鑑定 17 8 分離株型態觀察 17 9 水稻葉鞘植物荷爾蒙測定 18 9.1 材料準備 18 9.2 萃取流程 18 9.3 LC-MS/MS分析 19 10 統計分析 19 結果 20 第一節 分離株對水稻生長及根系發展的影響 20 1. 接種不同菌株對水稻TN1生長之影響 20 2. 不同分離株產生之VOC對水稻幼苗生長之影響 21 3. 芽孢桿菌屬 (Bacillus sp.) 菌株產生之VOC對水稻生長素反應的影響 21 4. 芽孢桿菌屬分離株之VOC組成分析 22 5. 苯甲醇 VOC 對水稻幼苗根系分析結果 23 第二節 水稻接種分離株對褐飛蝨抗性之影響 24 1. 褐飛蝨抗性秧苗期檢定法 24 2. 水稻接種芽孢桿菌屬菌株對褐飛蝨攝食與生殖表現 24 3. 在水稻感染褐飛蝨時接種芽孢桿菌屬菌株對水稻生理的影響 25 討論 28 1. 接種不同PGPB對水稻之影響 28 2. 芽孢桿菌屬菌株其VOC對水稻幼苗影響 29 3. 芽孢桿菌屬菌株協助水稻 ‘TN1’ 於褐飛蝨侵咬之防禦反應 32 3.1 接種NO.16對褐飛蝨生殖與攝食影響 32 3.2 植株抗氧化逆境反應 34 3.3 植株荷爾蒙影響 36 4. 結論與未來發展 37 參考文獻 38 圖 54 表 66 附錄 68 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 促進植物生長細菌 | zh_TW |
| dc.subject | 褐飛蝨 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 過氧化物酶 | zh_TW |
| dc.subject | 植物荷爾蒙 | zh_TW |
| dc.subject | rice | en |
| dc.subject | brown planthopper | en |
| dc.subject | peroxidase | en |
| dc.subject | PGPB | en |
| dc.subject | phytohormone | en |
| dc.title | 利用促進植物生長細菌提升水稻生長及抵抗褐飛蝨的侵害 | zh_TW |
| dc.title | Applying Plant Growth-Promoting Bacteria Enhances Rice Growth and Mitigates Brown Planthopper Infestation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林乃君;林書妍;莊汶博 | zh_TW |
| dc.contributor.oralexamcommittee | Nai-Chun Lin;Shu-Yen Lin;Wen-Po Chuang | en |
| dc.subject.keyword | 促進植物生長細菌,水稻,褐飛蝨,過氧化物酶,植物荷爾蒙, | zh_TW |
| dc.subject.keyword | PGPB,rice,brown planthopper,peroxidase,phytohormone, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202303787 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2028-08-08 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
