請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90736完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁偉立 | zh_TW |
| dc.contributor.advisor | Wei-Li Liang | en |
| dc.contributor.author | 杜欣庭 | zh_TW |
| dc.contributor.author | Hsin-Ting Tu | en |
| dc.date.accessioned | 2023-10-03T17:23:46Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Acharya, U., Daigh, A.L.M. and Oduor, P.G. 2021. Machine Learning for Predicting Field Soil Moisture Using Soil, Crop, and Nearby Weather Station Data in the Red River Valley of the North. Soil Systems 5(4), 57.
Beven, K.J. and Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology Hydrological Sciences Bulletin 24(1), 43-69. Bloschl, G. and Sivapalan, M. 1995. Scale issues in hydrological modeling - a review. Hydrological Processes 9(3-4), 251-290. Bogner, C., Bauer, F., Widemann, B.T.Y., Vinan, P., Balcazar, L. and Huwe, B. 2014. Quantifying the morphology of flow patterns in landslide-affected and unaffected soils. Journal of Hydrology 511, 460-473. Brocca, L., Morbidelli, R., Melone, F. and Moramarco, T. 2007. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology 333(2-4), 356-373. Brocca, L., Tullo, T., Melone, F., Moramarco, T. and Morbidelli, R. 2012. Catchment scale soil moisture spatial-temporal variability. Journal of Hydrology 422, 63-75. Cao, Q., Song, X.D., Wu, H.Y., Gao, L., Liu, F., Yang, S.H. and Zhang, G.L. 2020. Mapping the response of volumetric soil water content to an intense rainfall event at the field scale using GPR. Journal of Hydrology 583, 124605. Chen, C.F., Li, C.F., Huang, C.M., Lin, H.Y. and Zeleny, D. 2022. Secondary succession on landslides in submontane forests of central Taiwan: Environmental drivers and restoration strategies. Applied Vegetation Science 25(1), e12635. Cheng, S., Yang, G., Yu, H., Li, J.Y. and Zhang, L. 2012. Impacts of Wenchuan Earthquake-induced landslides on soil physical properties and tree growth. Ecological Indicators 15(1), 263-270. Cho, E. and Choi, M. 2014. Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula. Journal of Hydrology 516, 317-329. Choi, M., Jacobs, J.M. and Cosh, M.H. 2007. Scaled spatial variability of soil moisture fields. Geophysical Research Letters 34(1), L01401. Derose, R.C., Trustrum, N.A., Thomson, N.A. and Roberts, A.H.C. 1995. Effect of landslide erosion on Taranaki hill pasture production and composition. New Zealand Journal of Agricultural Research 38(4), 457-471. Dong, J. and Ochsner, T.E. 2021. Reply to Comment by Jakobi et al. (2020) on "Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns". Water Resources Research 57(2), e2020WR028756. Elliott, J.A., Toth, B.M., Granger, R.J. and Pomeroy, J.W. 1998. Soil moisture storage in mature and replanted sub-humid boreal forest stands. Canadian Journal of Soil Science 78(1), 17-27. Famiglietti, J.S., Ryu, D.R., Berg, A.A., Rodell, M. and Jackson, T.J. 2008. Field observations of soil moisture variability across scales. Water Resources Research 44(1), W01423. Fan, L.F., Lehmann, P., Zheng, C.M. and Or, D. 2021. The Lasting Signatures of Past Landslides on Soil Stripping From Landscapes. Water Resources Research 57(12), e2021WR030375. Fang, H., Zhu, J.T., Saydi, M. and Chen, X.H. 2021. Changes of Streamflow Caused by Early Start of Growing Season in Nevada, United States. Water 13(8), 1067. Gomes, P.I.A., Aththanayake, U., Deng, W., Li, A.N., Zhao, W. and Jayathilaka, T. 2020. Ecological fragmentation two years after a major landslide: Correlations between vegetation indices and geo-environmental factors. Ecological Engineering 153, 105914. Gonzalez-Ollauri, A. and Mickovski, S.B. 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology 549, 374-387. Grayson, R.B., Western, A.W., Chiew, F.H.S. and Bloschl, G. 1997. Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resources Research 33(12), 2897-2908. Guo, L., Mount, G.J., Hudson, S., Lin, H. and Levia, D. 2020. Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots. Geoderma 357, 113953. Gwak, Y. and Kim, S. 2017. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrological Processes 31(2), 431-445. Han, X.L., Liu, J.T., Srivastava, P., Liu, H., Li, X.P., Shen, X.H. and Tan, H.B. 2021. The Dominant Control of Relief on Soil Water Content Distribution During Wet-Dry Transitions in Headwaters. Water Resources Research 57(11), e2021WR029587. He, Z.M., Jia, G.D., Liu, Z.Q., Zhang, Z.Y., Yu, X.X. and Hao, P.Q. 2020. Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrological Processes 34(25), 4904-4919. Heiskanen, J. and Makitalo, K. 2002. Soil water-retention characteristics of Scots pine and Norway spruce forest sites in Finnish Lapland. Forest Ecology and Management 162(2-3), 137-152. Hotta, N., Tanaka, N., Sawano, S., Kuraji, K., Shiraki, K. and Suzuki, M. 2010. Changes in groundwater level dynamics after low-impact forest harvesting in steep, small watersheds. Journal of Hydrology 385(1-4), 120-131. Ilek, A., Kucza, J. and Witek, W. 2019. Using undisturbed soil samples to study how rock fragments and soil macropores affect the hydraulic conductivity of forest stony soils: Some methodological aspects. Journal of Hydrology 570, 132-140. Kathuria, D., Mohanty, B.P. and Katzfuss, M. 2019. A Nonstationary Geostatistical Framework for Soil Moisture Prediction in the Presence of Surface Heterogeneity. Water Resources Research 55(1), 729-753. Ke, Z.M., Ma, L.H., Jiao, F., Liu, X.L., Liu, Z. and Wang, Z.L. 2021. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution. Journal of Hydrology 595, 125988. Kim, S. 2012. Characterization of annual soil moisture response pattern on a hillslope in Bongsunsa Watershed, South Korea. Journal of Hydrology 448, 100-111. Kim, S., Lee, H., Woo, N.C. and Kim, J. 2007. Soil moisture monitoring on a steep hillside. Hydrological Processes 21(21), 2910-2922. Kopler, I., Burg, D., Wittenberg, L. and Malkinson, D. 2019. Differences in soil moisture in two Middle Eastern oak forests: Comparing the effects of trees and soil composition. Hydrological Processes 33(1), 86-100. Kosugi, K. 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resources Research 32(9), 2697-2703. Lanni, C., Borga, M., Rigon, R. and Tarolli, P. 2012. Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution. Hydrology and Earth System Sciences 16(11), 3959-3971. Lee, E. and Kim, S. 2019. Seasonal and spatial characterization of soil moisture and soil water tension in a steep hillslope. Journal of Hydrology 568, 676-685. Lee, E. and Kim, S. 2022. Spatiotemporal soil moisture response and controlling factors along a hillslope. Journal of Hydrology 605, 127382. Li, J., Wang, X., Jia, H.X., Liu, Y., Zhao, Y.F., Shi, C.M., Zhang, F.R. and Wang, K.C. 2021. Assessing the soil moisture effects of planted vegetation on slope stability in shallow landslide-prone areas. Journal of Soils and Sediments 21(7), 2551-2565. Liang, W.L. 2020a. Dynamics of pore water pressure at the soil-bedrock interface recorded during a rainfall-induced shallow landslide in a steep natural forested headwater catchment, Taiwan. Journal of Hydrology 587, 125003. Liang, W.L. 2020b. Hydrological responses in a natural forested headwater before and after subsurface displacement. Journal of Hydrology 591, 125529. Liang, W.L., Hung, F.X., Chan, M.C. and Lu, T.H. 2014. Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate. Journal of Hydrology 516, 210-221. Liang, W.L., Li, S.L. and Hung, F.X. 2017. Analysis of the contributions of topographic, soil, and vegetation features on the spatial distributions of surface soil moisture in a steep natural forested headwater catchment. Hydrological Processes 31(22), 3796-3809. Liao, R.K., Yu, H.L. and Yang, P.L. 2021. Multifractal analysis of soil particle size distribution to evaluate the effects of gypsum on the quality of sodic soils. European Journal of Soil Science 72(4), 1726-1741. Liu, M.X., Wang, Q.Y., Guo, L., Yi, J., Lin, H., Zhu, Q., Fan, B.H. and Zhang, H.L. 2020. Influence of canopy and topographic position on soil moisture response to rainfall in a hilly catchment of Three Gorges Reservoir Area, China. Journal of Geographical Sciences 30(6), 949-968. Liu, X., Tang, Y.Z., Cheng, X.F., Jia, Z.H., Li, C., Ma, S.L., Zhai, L., Zhang, B. and Zhang, J.C. 2021. Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region. Water 13(7), 914. Liu, Z.B., Wang, Y.H., Yu, P.T., Tian, A., Wang, Y.R., Xiong, W. and Xu, L.H. 2018. Spatial Pattern and Temporal Stability of Root-Zone Soil Moisture during Growing Season on a Larch Plantation Hillslope in Northwest China. Forests 9(2), 68. Malicke, M., Hassler, S.K., Blume, T., Weiler, M. and Zehe, E. 2020. Soil moisture: variable in space but redundant in time. Hydrology and Earth System Sciences 24(5), 2633-2653. Mallet, F., Marc, V., Douvinet, J., Rossello, P., Joly, D. and Ruy, S. 2020. Assessing soil water content variation in a small mountainous catchment over different time scales and land covers using geographical variables. Journal of Hydrology 591, 125593. Marimon, B., Hay, J.D., Oliveras, I., Jancoski, H., Umetsu, R.K., Feldpausch, T.R., Galbraith, D.R., Gloor, E.L., Phillips, O.L. and Marimon, B.S. 2020. Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil 450(1-2), 65-79. Martinez-Fernandez, J., Gonzalez-Zamora, A. and Almendra-Martin, L. 2021. Soil moisture memory and soil properties: An analysis with the stored precipitation fraction. Journal of Hydrology 593, 125622. McKillup, S. and Dyar, M.D. (2010) Geostatistics explained: an introductory guide for earth scientists, pp.335-363, Cambridge University Press. Mirus, B.B., Smith, J.B. and Baum, R.L. 2017. Hydrologic Impacts of Landslide Disturbances: Implications for Remobilization and Hazard Persistence. Water Resources Research 53(10), 8250-8265. Molina, A.J., Llorens, P., Garcia-Estringana, P., de las Heras, M.M., Cayuela, C., Gallart, F. and Latron, J. 2019. Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area. Science of the Total Environment 647, 1421-1432. Pan, F.F. and Peters-Lidard, C.D. 2008. On the Relationship Between Mean and Variance of Soil Moisture Fields1. Journal of the American Water Resources Association 44(1), 235-242. Peng, W.X., Song, T.Q., Zeng, F.P., Wang, K.L., Du, H. and Lu, S.Y. 2013. Spatial distribution of surface soil water content under different vegetation types in northwest Guangxi, China. Environmental Earth Sciences 69(8), 2699-2708. Peng, Z., Tian, F., Hu, H., Zhao, S., Tie, Q., Sheng, H., Darnault, C. and Lu, H. 2016. Spatial Variability of Soil Moisture in a Forest Catchment: Temporal Trend and Contributors. Forests 7(8), 154. Penna, D., Borga, M., Norbiato, D. and Fontana, G.D. 2009. Hillslope scale soil moisture variability in a steep alpine terrain. Journal of Hydrology 364(3-4), 311-327. Peterson, A.M., Helgason, W.H. and Ireson, A.M. 2019. How Spatial Patterns of Soil Moisture Dynamics Can Explain Field-Scale Soil Moisture Variability: Observations From a Sodic Landscape. Water Resources Research 55(5), 4410-4426. Rascon-Ramos, A.E., Martinez-Salvador, M., Sosa-Perez, G., Villarreal-Guerrero, F., Pinedo-Alvarez, A., Santellano-Estrada, E. and Corrales-Lerma, R. 2021. Soil Moisture Dynamics in Response to Precipitation and Thinning in a Semi-Dry Forest in Northern Mexico. Water 13(1), 105. Reza, S.K., Kumar, N., Ramachandran, S., Mukhopadhyay, S., Singh, S.K., Dwivedi, B.S. and Ray, S.K. 2021. Geo-spatial analysis for horizontal and vertical variability of bulk density, particle-size distribution and soil moisture content in Tripura, Northeastern India. Arabian Journal of Geosciences 14(24), 2734. Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., Western, A.W. and Vereecken, H. 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resources Research 48, W10544. Ryu, D. and Famiglietti, J.S. 2005. Characterization of footprint-scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resources Research 41(12), W12433. Sadeghi, S.H., Ghaffari, G.A., Rangavar, A., Hazbavi, Z. and Singh, V.P. 2020. Spatiotemporal distribution of soil moisture in gully facies. International Soil and Water Conservation Research 8(1), 15-25. Sipek, V., Hnilica, J., Vlcek, L., Hnilicova, S. and Tesar, M. 2020. Influence of vegetation type and soil properties on soil water dynamics in the Sumava Mountains (Southern Bohemia). Journal of Hydrology 582, 124285. Sun, L., Yang, L., Chen, L.D., Yen, H., Zhao, F.K. and Li, S.J. 2020. Evaluation of seasonal patterns of hydraulic redistribution in a humid subtropical area, East China. Hydrological Processes 34(4), 1052-1062. Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33(2), 309-319. Thomas, M.A., Mirus, B.B. and Smith, J.B. 2020. Hillslopes in humid-tropical climates aren't always wet: Implications for hydrologic response and landslide initiation in Puerto Rico. Hydrological Processes 34(22), 4307-4318. Toriyama, J., Ohnuki, Y., Ohta, S., Kosugi, K., Kabeya, N., Nobuhiro, T., Shimizu, A., Tamai, K., Araki, M., Keth, S. and Chann, S. 2013. Soil physicochemical properties and moisture dynamics of a large soil profile in a tropical monsoon forest. Geoderma 197, 205-211. Tromp-van Meerveld, H.J. and McDonnell, J.J. 2006. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Advances in Water Resources 29(2), 293-310. Uchida, T., Kosugi, K. and Mizuyama, T. 2001. Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments. Hydrological Processes 15(11), 2151-2174. Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J.W., Huisman, J.A. and Vanderborght, J. 2008. Comment on "Field observations of soil moisture variability across scales" by James S. Famiglietti et al. Water Resources Research 44(12), W12601. Vezhapparambu, S., Madhusoodanan, M.S., Sharma, T.B.V. and Ramesh, M.V. 2020. Characterizing satellite-derived soil moisture and its relationship with rainfall over India. International Journal of Climatology 40(3), 1909-1918. Walker, L.R., Zarin, D.J., Fetcher, N., Myster, R.W. and Johnson, A.H. 1996. Ecosystem Development and Plant Succession on Landslides in the Caribbean. Biotropica 28(4), 566-576. Wang, D., Fu, B.J., Zhao, W.W., Hu, H.F. and Wang, Y.F. 2008. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China. Catena 72(1), 29-36. Wang, T.J., Wu, D.D. and Zhan, C.S. 2020. Comparison of environmental controls on soil moisture spatial patterns at mesoscales: Observational evidence from two regions in China. Geoderma 374, 114451. Western, A.W., Bloschl, G. and Grayson, R.B. 1998a. Geostatistical characterisation of soil moisture patterns in the Tarrawarra a catchment. Journal of Hydrology 205(1-2), 20-37. Western, A.W., Bloschl, G. and Grayson, R.B. 1998b. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrological Processes 12(12), 1851-1868. Western, A.W., Bloschl, G. and Grayson, R.B. 2001. Toward capturing hydrologically significant connectivity in spatial patterns. Water Resources Research 37(1), 83-97. Western, A.W., Grayson, R.B. and Bloschl, G. 2002. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences 30, 149-180. Western, A.W., Grayson, R.B., Bloschl, G., Willgoose, G.R. and McMahon, T.A. 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research 35(3), 797-810. Wilson, D.J., Western, A.W. and Grayson, R.B. 2004. Identifying and quantifying sources of variability in temporal and spatial soil moisture observations. Water Resources Research 40(2), W02507. Wu, D.D., Wang, T.J., Di, C.L., Wang, L.C. and Chen, X. 2020. Investigation of controls on the regional soil moisture spatiotemporal patterns across different climate zones. Science of the Total Environment 726, 138214. Wu, Z.L., Deng, Y.S., Cai, C.F., Huang, J. and Huang, W.X. 2021. Multifractal analysis on spatial variability of soil particles and nutrients of Benggang in granite hilly region, China. Catena 207, 105594. Yang, D.D., Qiu, H.J., Hu, S., Pei, Y.Q., Wang, X.G., Du, C., Long, Y.Q. and Cao, M.M. 2021a. Influence of successive landslides on topographic changes revealed by multitemporal high-resolution UAS-based DEM. Catena 202, 105229. Yang, L., Huang, Y.H., Lima, L.V., Sun, Z.Y., Liu, M.J., Wang, J., Liu, N. and Ren, H. 2021b. Rethinking the Ecosystem Functions of Dicranopteris, a Widespread Genus of Ferns. Frontiers in Plant Science 11, 581513. 杜欣庭、梁偉立 2021. 崩塌地次級演替初期階段近地表水分與環境因子之關係. 臺灣林業科學 36(1), 35-49. 詹孟浚、梁偉立 2014. 以坡地土壤厚度及垂直結構探討淺層崩塌潛勢區位. 中華水土保持學報 45(2), 85-94. 鄭名宏、梁偉立 2019. 應用簡易動力貫入法判釋地層結構. 中華水土保持學報 50(1), 22-31. 鍾安晴、周富三、林文智 2020. 崩塌地的後起之秀. 林業研究專訊 27(6), 49-53. 鍾安晴、陳永修、龔冠寧 2018. 多納林區崩塌地的環境多樣性. 林業研究專訊 25(6), 69-72. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90736 | - |
| dc.description.abstract | 崩塌是臺灣常見之山區擾動類型,崩塌干擾容易對森林水土環境造成改變,尤以陡峭、森林覆蓋之源頭集水區更為容易。近地表含水率之空間分布為森林水循環中重要的一環,本研究調查林業試驗所福山研究中心內之一處源頭集水區,在2016年發生崩塌後6年,以高空間解析度之調查近地表含水率與地形、植生、土壤物理性質之空間分布,依據干擾程度分為高、低干擾區後,並比較其與崩塌前同樣區所蒐集資料,瞭解崩塌擾動對含水率空間分布變異的影響,以及主要控制含水率分布的環境因子轉變。
崩塌後主要擾動區域位於高干擾區,其導致坡度變緩、上坡貢獻面積減少、地形濕潤指數分布的連接性中斷,大量林木與土壤的流失也顯示在植生指數與飽和水力傳導度的下降。土壤深度、介質孔隙率及有效孔隙率則在高、低干擾區無明確分區增減的趨勢。崩塌也導致原先位於高干擾區之地表逕流消失,崩塌後僅剩地表湧水分布。高干擾區原先具有之地表逕流消失,以及地形、土壤擾動皆使得高干擾區難以隨平均含水率增加而增加濕潤區域,因此使得崩塌後坡地可達之平均含水率下降,低含水率分布區域增加,空間分布異質性也下降。低干擾區則是維持崩塌前後相似的平均含水率與含水率空間變異程度。在崩塌後水土環境分布皆改變的結果下,崩塌後近地表含水率與多數環境因子空間分布之相關性減弱,且主要控制因子減少。在乾燥狀態時,崩塌後以植生密度之負向控制含水率分布能力最高,坡度次之;到中等狀態時,主要因子之控制性皆較乾燥狀態時下降。由於干擾程度的差異,因此儘管全區主要控制因子之控制性皆在崩塌後減弱,但受影響而減少主要控制因子的情形仍以高干擾區較低干擾區明顯。 本研究顯示崩塌對森林源頭集水區近地表含水率分布的擾動,導致坡地變的乾燥且含水率空間分布異質性降低,並在崩塌後6年環境間關聯性仍低,說明崩塌後除了以傳統植生恢復的角度觀察,近地表含水率的空間分布特性及相關水土環境變動,也應作為重要的評估項目。 | zh_TW |
| dc.description.abstract | Landslides in Taiwan's forested hillslopes can significantly impact the soil and water environment, particularly in steep headwater catchments. This study aimed to investigate the effects of a landslide that occurred in 2016 on near-surface soil moisture distribution using high-resolution data before and after the event. The study site is located at Taiwan Forestry Research Institute, Fushan Research Center. We also examined the influence of the landslide on topography, vegetation, and soil properties that affect soil moisture. The study site was divided into highly disturbed and low disturbed areas for analysis.
After the landslide, noticeable changes occurred in the highly disturbed area, including a reduction in slope steepness, upslope contributing area, and connectivity of the topographic wetness index. Due to the loss of vegetation and soil matrix, decline in the vegetation indexes and saturated hydraulic conductivity were also observed. Other variable changes in porosity, soil depth or a decrease in effective porosity were observed in both highly and low-disturbed areas. The landslide had a significant impact on near-surface soil moisture distribution. The landslide resulted in the absence of surface runoff that distributed in the highly disturbed area, and was replaced by a few small springs. Both mean soil moisture and spatial variation decreased after the landslide and were due to the absence of surface runoff, disturbance of topography and soil in the highly disturbed area. On the other hand, low disturbed area maintained similar spatial variation after the landslide. The correlation between near-surface soil moisture distribution and its controlling factors weakened after the landslide in both highly and low-disturbed areas. Under dry conditions, vegetation density has the highest negatively controlling ability of soil moisture, second was the slope. Under moderate conditions, the controlling ability of both vegetation density and slope decrease controlling ability than under dry conditions. The highly disturbed area is still affected more than the low disturbed area. To summarize, landslides have a significant impact on near-surface soil moisture in forested headwater areas, leading to a reduction in mean soil moisture and spatial variation. The correlation between soil moisture and its controlling factors remains weak even six years after the landslide. Therefore, when addressing landslide-affected hillslopes, it is crucial to consider the spatial distribution of near-surface soil moisture and environmental changes alongside traditional restoration approaches. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:23:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:23:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XIV 第一章 前言 1 1.1 研究背景 1 1.2 近地表含水率之研究方法 1 1.2.1 以敘述統計瞭解近地表土壤含水率空間變異 3 1.2.2 以地理統計瞭解近地表土壤含水率空間變異 4 1.3 近地表土壤含水率變化與控制因子 8 1.3.1 數值變化與其控制因子 9 1.3.2 空間變化與其控制因子 11 1.4 近地表土壤含水率空間分布控制因子的影響程度 15 1.5 崩塌後干擾的影響 16 1.6 本研究樣區前人研究彙整 18 1.7 研究目的 20 第二章 材料與方法 22 2.1 研究樣區 22 2.2 調查項目 23 2.2.1 降雨資料 25 2.2.2 近地表土壤含水率分布 25 2.2.3 地形分布 27 2.2.4 植生分布 28 2.2.5 土壤物理性質 29 2.3 相關性分析方法 31 2.4 崩塌前後各項因子之數值比較 31 第三章 崩塌前後環境因子分布差異 33 3.1 結果–地形因子分布差異 33 3.2 結果–植生因子分布差異 37 3.3 結果–土壤物理因子分布差異 43 3.4 討論–崩塌擾動對各環境因子分布的影響 48 3.5 小結 52 第四章 崩塌前後近地表含水率差異 54 4.1 結果—研究期間內雨量與平均含水率關係 54 4.2 結果—近地表土壤含水率的空間分布 59 4.3 結果—近地表土壤含水率平均值與標準差、變異係數關係 62 4.4 結果—崩塌前後近地表土壤含水率的空間結構差異 68 4.5 討論—崩塌是否導致坡地近地表土壤更乾燥 74 4.5.1 累積降雨量對平均含水率的影響 74 4.5.2 崩塌前後含水率分布特性的轉變 75 4.6 討論—崩塌是否增加近地表土壤含水率的空間分布異質性 76 4.6.1 以敘述統計而言 76 4.6.2 以地理統計而言 78 4.7小結 79 第五章 崩塌前後環境因子與近地表含水率空間分布的相關性分析 80 5.1 結果–崩塌前後地形與近地表含水率的空間分布相關性 80 5.2 結果–崩塌前後植生與近地表含水率的空間分布相關性 83 5.3 結果—崩塌前後土壤物理性質與近地表含水率的空間分布相關性 87 5.4 討論—不同土壤含水狀態下,崩塌後控制近地表含水率分布之因子是否轉變 91 5.5 小結 95 第六章 結論 96 參考文獻 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 崩塌干擾 | zh_TW |
| dc.subject | 近地表土壤含水率 | zh_TW |
| dc.subject | 空間分布 | zh_TW |
| dc.subject | 主要控制因子 | zh_TW |
| dc.subject | 演替初期環境恢復 | zh_TW |
| dc.subject | Spatial distribution | en |
| dc.subject | Near-surface soil moisture | en |
| dc.subject | Early stage of succession restoration | en |
| dc.subject | Landslide | en |
| dc.subject | Main controlling factors | en |
| dc.title | 坡地近地表含水率空間分布控制因子於淺層崩塌發生前後之變動 | zh_TW |
| dc.title | Changes in factors controlling spatial distributions of near-surface soil moisture before and after a shallow landslide on a headwater hillslope | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃誌川;許少瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Jr-Chuan Huang;Shao-Yiu Hsu | en |
| dc.subject.keyword | 近地表土壤含水率,空間分布,主要控制因子,崩塌干擾,演替初期環境恢復, | zh_TW |
| dc.subject.keyword | Near-surface soil moisture,Spatial distribution,Main controlling factors,Landslide,Early stage of succession restoration, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202302864 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2028-09-05 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-09-05 | 11.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
