Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90720
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德zh_TW
dc.contributor.advisorSheng-Der Chaoen
dc.contributor.author蔡皓安zh_TW
dc.contributor.authorHao-An TSAIen
dc.date.accessioned2023-10-03T17:19:35Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-24-
dc.identifier.citation[1] Chao, S.W., Li ,A. H. T., & Chao, S. D.(2009). Molecular dynamics simulation of fluid methane properties using ab initio intermolecular interaction potential. Journal of computational chemistry, 30(12), 1839-1849.
[2] Huang, W. J., & Chao, S. D.(2021). Quantum chemistry calculated intermolecular interaction and molecular dynamics simulation of chloromethane、chloroform molecules. National Taiwan University, Institute of Applied Mechanics.
[3] Chen, Q. S., & Chao, S. D.(2019).Quantum chemistry calculated intermolecular interaction and molecular dynamics simulation of dichloromethane. National Taiwan University, Institute of Applied Mechanics.
[4] Ching-Hsiang Yu., & Chao, S. D.(2022).Using Ab initio Principle Molecular Dynamics Simulations to explore the Apollo Configurations of Chloroform and Bromoform Molecules.
[5] Li, A. H. T., Huang, S. C., & Chao, S. D.(2010).Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field. The Journal of chemical physics, 132(2), 024506.
[6] Li, A. H. T., Huang, S. C., & Chao, S. D.(2010).Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field. The Journal of chemical physics, 132(2), 024506.
[7] Stone, A. J.(1996). The theory of Intermolecular Force. International Series of Monographs on Chemistry, Vol.32.
[8] Dunning, T. H.(2000). A road map for the calculation of molecular binding energies. The Journal of Physical Chemistry A, 104(40), 9062-9080.
[9] Parker, T. M., Parrish, R. M., Burns, L. A., Ryno, A.G., & Sherrill, C. D.(2014). Levels of symmetry adapted perturbation theory (SAPT). Efficiency and performance for interaction energies. The Journal of Chemical Physics, 140(9), 094106.
[10] Stone, A.(2013). The theory of intermolecular forces. OUP Oxford.
[11] Grimme, S.,Ehrlich, S., Antony, J., & Krieg, H.(2010). A consistent and accurate ab initio parametrization od density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104.
[12] Marchetti, O., & Werner, H. J.(2009).Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. The Journal of Physical Chemistry A, 113(43), 11580-11585.
[13] Raghavachari, K., Pople, J. A., Trucks, G. W., & Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6), 479-483.
[14] Jeziorski, B., Moszynski, R., & Szalewicz, K.(1994).Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Review, 94(7), 1887-1930.
[15] Marques, M. A., & Gross, E. K.(2004). Time-dependent density functional theory. Annual Review of Physics Chemistry, 55, 427-455.
[16] Max Planck, "On the Law of Energy Distribution in the Normal Spectrum," Annals of Physics, vol. 309, no. 3, pp. 553-563, (1901).
[17] Albert Einstein, "On a heuristic point of view concerning the production and transformation of light," Annals of Physics, vol. 17, no. 6, pp. 132-148, (1905).
[18] Louis de Broglie, " Quantum Theory Research," Annales de Physique, vol. 3, no. 22, pp. 22-128, (1925).
[19] Werner Heisenberg, " On the quantum theoretical reinterpretation of kinematic and mechanical relationships," Journal of Physics, vol. 33, no. 12, pp. 879-893, (1925).
[20] Erwin Schrödinger, " Quantization as an eigenvalue problem," Annals of Physics, vol. 79, no. 4, pp. 361-376, (1926).
[21] Paul A. M. Dirac, "The Quantum Theory of the Electron," Proceedings of the Royal Society A, vol. 117, no. 778, pp. 610-624, (1928).
[22] Rey R.(2007). Quantitative characterization of orientational order in liquid carbon tetrachloride. The Journal of Chemical Physics, 126(16), 164506.
[23] Frisch, M. J., et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, (2009).
[24] Dunning Jr, T. H.(1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 1007-1023.
[25] Turney, J.M., et al.(2012). Psi4 : An open-source Ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 556-565.
[26] Physically-Motivated Force Fields from Symmetry-Adapted Perturbation Theory. Jesse G. McDaniel and J.R. Schmidt. J. Phys. Chem. A (2013), 117, 10, 2053–2066.
[27] J. L. Duncan, D.C McKean, P.D Mallinson, & R.D McCulloch(1973). Infrared spectra of CHD2Cl and CHD2CCH and the geometries of methyl chloride and propyne. Journal of Molecular Spectroscopy, 46, 232-239.
[28] ullini, F., Nivellini, G. D., Carlotti, M., & Carli, B. (1989). The far-infrared spectrum of methylene chloride. Journal of Molecular Spectroscopy, 138(2), 355-374.
[29] R. Samanta, S. Bhattacharjee. (2012). Vibrational properties and vibrational spectra of chloroform: A density functional theory study. Molecular and Biomolecular Spectroscopy.
[30] Absolute line positions of the Raman spectrum of liquid CCl4, J. Mol. Struct., vol. 454, pp. 75-84, (1998).
[31] D. C. Rapaport,. The art of molecular dymanics simulation. Cambridge University Press. (2004).
[32] Carl L. Yaws , Ralph W. Pike.(2009). Thermophysical Properties of Chemicals and Hydrocarbons. Chapter 3 - Density of liquid—Organic compounds.
[33] H.J. Böhm , C. Meissner & R. Ahlrichs (1984) Molecular dynamics simulation of liquid CH3F, CHF3, CH3Cl, CH3CN, CO2 and CS2 with new pair potentials, Molecular Physics, 53:3, 651-672
[34] Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. (1996), 118, 11225– 11236
[35] Structure of liquid methylene chloride: Molecular dynamics simulation compared to diffraction experiments. Szabolcs Bálint, Imre Bakó, Tamás Grósz, Tünde Megyes. Journal of Molecular Liquids(2007) 136(3):257–266
[36] Partial radial distribution functions of methylene halide molecular liquids,(2010). S Pothoczki, S Kohara, L Pusztai, Journal of Molecular Liquids 153 (2-3), 112-116
[37] Szilvia Pothoczki, L´aszl´o Temleitner, Shinji Kohara, P´al J´ov´ari1 and L´aszl´o Pusztai(2010), Journal of Physics:Condensed Matter, 22, 404211
[38] Polar stacking of molecules in liquid chloroform. J. J. Shephard, A. K. Soper, S. K. Callear, S. Imberti, J. S. O. Evans and C. G. Salzmann. (2015), 51, 4770-4773
[39] Deconstructing the Local Intermolecular Ordering and Dynamics of Liquid Chloroform and Bromoform. John. J Karnes and Ilan Benjamin. J. Phys. Chem. B (2021), 125, 14, 3629–3637
[40] Christoph Kölmel , Reinhart Ahlrichs and Bertram Karch (1988), MD simulations of liquid CCl4 with a new pair potential.
[41] S Pothoczki, L Temleitner, P Jóvári, S Kohara, L Pusztai (2009) J. Chem. Phys. 130, 064503, Nanometer range correlations between molecular orientations in liquids of molecules with perfect tetrahedral shape: CCl4, SiCl4, GeCl4, and SnCl4.
[42] Rapaport, D. C. The Art of Molecular Dynamics Simulation; Cambridge University Press: New York, 1995.
[43] Jensen, F. Introduction to Computational Chemistry; Wiley: New York, 1999.
[44] Prielmeier, F. X., and H-D. Lüdemann. Molecular Physics 58.3 (1986): 593-604.
[45] Pressure and Temperature Dependence of the Self-diffusion of Carbon Tetrachloride(1972), M. A. McCool and L. A. Woolf
[46] Straub, G.;Bassen, A.;Zweier, H.;Bertagnolli, H.;Todheide, K.;Soper, A. K.;Turner, J. Phys Rev E 1996, 53, 3505.
[47] Van Velzen, D. and Lopes Cardozo, R. and Langenkamp, H. (1972). Liquid Viscosity and Chemical Constitution of Organic Compounds: A New Correlation and a Compilation of Literature Data. EUR 4735.
[48] A. Kayode Coker(2007). ludwig's applied process design for chemical and petrochemical plants, volume 1, fourth edition.
[49] Multilayer Adsorption of Methane and Chloromethane on the Molybdenum (100) Surface. Gary M. Leuty, Ali Abu-Nada, and Mesfin Tsige. J. Phys. Chem. C (2012), 116, 27, 14514–14525.
[50] S Pothoczki, L Temleitner, L Pusztai.(2010), The Journal of chemical physics 132 (16), 164511.
[51] Pothoczki, S.; Temleitner, L.; Kohara, S.; Jóvári, P.; Pusztai, L. The liquid structure of haloforms CHCl3 and CHBr3 J. Phys.: Condens. Matter (2010), 22, 404211.
[52] Structure of Neat Liquids Consisting of (Perfect and Nearly) Tetrahedral Molecules, Szilvia Pothoczki, László Temleitner, and László Pusztai, hem. Rev. (2015), 115, 24, 13308–13361.
[53] Development of a “First Principles” Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient. Volodymyr Babin, Claude Leforestier, and Francesco Paesani. J. Chem. Theory Comput. (2013), 9, 12, 5395–5403.
[54] Development of a “First-Principles” Water Potential with Flexible Monomers. III. Liquid Phase Properties. Gregory R. Medders, Volodymyr Babin, and Francesco Paesani. J. Chem. Theory Comput. (2014), 10, 8, 2906–2910.
[55] Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum. Gregory R. Medders and Francesco Paesani. J. Am. Chem. Soc. (2016), 138, 11, 3912–3919.
[56] Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions. Francesco Paesani. Acc. Chem. Res. (2016), 49, 9, 1844–1851.
[57] Electron-Hole Theory of the Effect of Quantum Nuclei on the X-Ray Absorption Spectra of Liquid Water. Zhaoru Sun, Lixin Zheng, Mohan Chen, Michael L. Klein, Francesco Paesani, and Xifan Wu. Phys. Rev. Lett. 121, 137401 – Published 26 September (2018).
[58] Machine learning potentials for complex aqueous systems made simple. Christoph Schran, Fabian L. Thiemann, Patrick Rowe, and Angelos Michaelides. September 13, (2021), 118 (38) e2110077118.
[59] Short range order of CCl4: RMC and MD Methods. A Silva-Santisteban, A Henao, S Pothoczki, F J Bermejo, J L Tamarit, E Guardia, G J Cuello and L C Pardo. (2014) J. Phys. 10.1088/1742-6596/549/1/012014.
[60] Computational Study of Ion Binding to the Liquid Interface of Water. Liem X. Dang. J. Phys. Chem. B (2002), 106, 40, 10388–10394.
[61] Exploring Solvent Effects upon the Menshutkin Reaction Using a Polarizable Force Field. Orlando Acevedo and William L. Jorgensen. J. Phys. Chem. B (2010), 114, 25, 8425–8430.
[62] Local structure and orientational ordering in liquid bromoform. Jacob J. Shephard, John S. O. Evans and Christoph G. Salzmann. (2019)
[63] X‐ray diffraction study and models of liquid methane at 92 K. Anton Habenschuss; Elijah Johnson; A. H. Narten. J. Chem. Phys. 74, 5234–5241 (1981)
[64] Molecular-Level Interpretation of Vibrational Spectra of Ordered Ice Phases. Daniel R. Moberg, Peter J. Sharp, and Francesco Paesani. J. Phys. Chem. B (2018), 122, 46, 10572–10581.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90720-
dc.description.abstract本研究探討氯化甲烷(Chlorinated)四面二聚體結構利用第一原理(ab initio)進行分子動力學模擬的相關參數擬合以及空間局部堆疊結構,其中包括一氯甲烷(Chloromethane)、二氯甲烷(Dichloromethane)、三氯甲烷(Chloroform)、四氯甲烷(Tetrachloromethane)的分子動力學模擬。我們針對氯化甲烷四面體結構的二聚體做了一系列的分類,從中選取了最佳化的二聚體構型,並從量子計算中建立的MP2/aug-cc-PVQZ單體最佳化分子結構以及利用微擾理論(Møller-Plesset Perturbation Theory, MP2)選取MP2方法並且使用aug-cc-PVQZ的基底去做勢能擬合以及力場的建構,並且使用PSI4軟體中的SAPT 2+3(Symmetry-Adapted Perturbation Theory) 將建構出來的力場構型進行能量計算並且與MP2比較,進行二聚體間能量的拆解得出交換能、誘導能、靜電能以及色散能,藉此去更深入了解各個作用能其吸引力和排斥力對於氯化甲烷二聚體分子的占比影響。
以第一原理量子化學計算所建構的力場用於分子動力學模擬,我們使用5-sites model方法去分析氯化甲烷極性分子二聚體結構並且搭配使用Lennard-Jones Potential Function加上庫倫作用項(Coulombic terms)去對力場的建構以及二聚體曲線勢能擬合,並帶入牛頓方程式進行分子動力學模擬,藉此得到相關熱力學性質。模擬時使用徑向分布函數(Radial Distribution Function)、速度自相關函數(Velocity Autocorrelation Function)、擴散係數(Diffusion Constant)和黏滯係數(Viscosity)等相關性質進行模擬,計算溫度從三相點(Triple Point)沿著汽化點(Bolling Point)到臨界點(Critical Point)進行熱力學性質曲線分析。並且近一步探討了空間局部結構的部分,使用方向相關函數(Orientational Correlation Function, OCF)和空間分布函數(Spatial Distribution Function, SDF)進行模擬得出與角度相關的徑向分布函數關係,並將結果與現有文獻之實驗值進行比較,本研究顯示出以量子化學計算所建構的力場在分子動力學模擬中有不錯的精準度與可靠性。
zh_TW
dc.description.abstractThis study investigates the parameter fitting and spatial local stacking structure of chlorinated methane (Chlorinated) tetrahedral dimers using first-principles (ab initio) molecular dynamics simulations, including chloromethane, dichloromethane, chloroform, and tetrachloromethane. We classified a series of dimer structures and selected the optimized dimer configuration. The potential energy and force field were constructed using the MP2 method and aug-cc-PVQZ basis set, and the energy was calculated using the Symmetry-Adapted Perturbation Theory (SAPT) 2+3 method in the PSI4 software. The inter-dimer energy was decomposed into exchange, induction, electrostatic, and dispersion energies to further understand the proportionate influence of attractive and repulsive forces on the chlorinated methane dimer molecules.
The first-principles quantum chemical calculations were used to construct the force field for molecular dynamics simulations. We used the 5-sites model to analyze the polar molecular dimer structure of chlorinated methane and used the Lennard-Jones potential function with Coulombic terms to construct the force field and curve-fitting for the dimer potential energy. The Newtonian equations were used to perform molecular dynamics simulations to obtain relevant thermodynamic properties. The simulations included the radial distribution function, velocity autocorrelation function, diffusion constant, and viscosity to calculate the thermodynamic properties along the temperature curve from the triple point to the critical point. Additionally, the local spatial structure was explored using the orientational correlation function and spatial distribution function to obtain the angular radial distribution function relationship, which was compared with experimental values in existing literature. This study demonstrates the accuracy and reliability of the force field constructed using quantum chemical calculations in molecular dynamics simulations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:19:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:19:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書………………………………………………………………………... #
致謝……………………………………………………………………………………… I
摘要……………………………………………………………………………………... II
ABSTRACT…………………………………………………………………………. IV
目錄……………………………………………………………………………………. VI
圖目錄………………………………………………………………………...……….. IX
表目錄………………………………………………………………………………. XV
第一章 緒論……………………………………………………………………………. 1
第二章 基本理論………………………………………………………………………. 4
2.1 量子力學理論…………………………………………………………….. 4
2.1.1 量子力學(Quantum Mechanics)的發展介紹……………………... 4
2.1.1 薛丁格方程式(Schrödinger Equation) ……………………………. 5
2.1.2 波恩-奧本海默近似法(Born-Oppenheimer approximation)……… 7
2.2 分子軌域理論…………………………………………………………… 10
2.2.1 全初始法(Ab initio) ………………………………………………10
2.2.2 Hartree–Fock 近似法(Hartree–Fock approximation, HF)……….. 11
2.2.3 微擾理論(Møller-Plesset Perturbation Theory)………………..… 14
2.3 分子動力學................................................................................................ 18
2.3.1 基本原理…………………………….. ………………………….. 18
2.3.2 週期性邊界條件(Periodic boundary condition)............................. 20
2.3.3 徑向分佈函數(Radial Distribution Function, RDF)....................... 21
2.3.4 速度自相關函數(Velocity Autocorrelation Function, VAF)…….. 24
2.3.5 擴散係數(Diffusion Constant)…………………………………… 26
2.3.6 黏滯係數(Viscosity Coefficient)…………………………………. 27
第三章 計算方法與細節………………………………………………………........... 28
3.1 二聚體之量子化學計算方法…………………………………………… 29
3.1.1 單體結構最佳化計算……………………………………………. 29
3.1.2 二聚體能量計算…………………………………………………. 30
3.2 二聚體間勢能曲線擬合方法…………………………………………… 34
3.3 分子動力學計算方法…………………………………………………… 37
第四章 模擬與計算結果……………………………………………………………... 38
4.1 MP2之量子化學計算結果……………………………………………… 39
4.1.1 一氯甲烷二聚體構型勢能曲線計算……………………………. 39
4.1.2 二氯甲烷二聚體構型勢能曲線計算……………………………. 41
4.1.3 三氯甲烷二聚體構型勢能曲線計算……………………………. 43
4.1.4 四氯甲烷二聚體構型勢能曲線計算……………………………. 45
4.1.5 甲烷二聚體構型勢能曲線計算…………………………………. 47
4.2 氯化甲烷二聚體SAPT之能量分析結果……………………………… 49
4.2.1 SAPT的基本介紹…………………………………………………49
4.2.2 一氯甲烷的SAPT2+3能量分析結果…………………………... 50
4.2.3 二氯甲烷的SAPT2+3能量分析結果…………………………... 52
4.2.4 三氯甲烷的SAPT2+3能量分析結果…………………………... 54
4.2.5 四氯甲烷的SAPT2+3能量分析結果…………………………... 56
4.2.6 甲烷的SAPT2+3能量分析結果…………………………........... 58
4.3 氯化甲烷二聚體之勢能曲線擬合結果……………………………….... 60
4.4 分子動力學模擬結果…………………………………………………… 78
4.4.1 一氯甲烷徑向分佈函數之模擬結果…………………………… 79
4.4.2 二氯甲烷徑向分佈函數之模擬結果…………………………… 82
4.4.3 三氯甲烷徑向分佈函數之模擬結果…………………………… 85
4.4.4 四氯甲烷徑向分佈函數之模擬結果…………………………… 88
4.4.5 甲烷徑向分佈函數之模擬結果………………………………… 90
4.4.6 速度自相關函數(Velocity autocorrelation function)之模擬結果.. 92
4.4.7 擴散係數(Diffusion coefficient)之模擬結果……………………. 96
4.4.8 剪力黏滯係數(Shear viscosity coefficient)之模擬結果………… 99
4.4.9 空間分布函數(Spatial Distribution Functions)之模擬結果…… 102
4.4.10 方向相關函數(Orientational Correlation Functions)模擬結果.. 110
4.4.11 三氯甲烷局部結構實驗理論探討…………………………… 121
第五章 結論與未來展望……………………………………………………………. 123
5.1 量子化學SAPT2+3能量計算結論…………………………………… 123
5.2 分子動力學模擬結論………………………………………………… 124
5.3 未來展望……………………………………………………………… 126
參考文獻…………………………………………………………………………….. 127
附錄A………………………………………………………………………………... 134
附錄B………………………………………………………………………………... 136
附錄C………………………………………………………………………………... 138
附錄D………………………………………………………………………………... 139
-
dc.language.isozh_TW-
dc.subjectGaussian09軟件zh_TW
dc.subject分子動力學模擬zh_TW
dc.subject方向相關函數zh_TW
dc.subject空間分布函數zh_TW
dc.subject自洽理論zh_TW
dc.subject微擾理論zh_TW
dc.subject徑向分布函數zh_TW
dc.subject氯化甲烷zh_TW
dc.subject四氯甲烷zh_TW
dc.subject三氯甲烷zh_TW
dc.subject二氯甲烷zh_TW
dc.subject一氯甲烷zh_TW
dc.subject甲烷zh_TW
dc.subject速度自相關函數zh_TW
dc.subject擴散係數zh_TW
dc.subject二聚體構型zh_TW
dc.subject黏滯係數zh_TW
dc.subjectSAPTzh_TW
dc.subjectGaussian09 softwareen
dc.subjectmethaneen
dc.subjectchloromethaneen
dc.subjectdichloromethaneen
dc.subjectchloroformen
dc.subjecttetrachloromethaneen
dc.subjectchlorinated methanesen
dc.subjectdimer structureen
dc.subjectmolecular dynamics simulationen
dc.subjectself-consistent theoryen
dc.subjectperturbation theoryen
dc.subjectradial distribution functionen
dc.subjectvelocity autocorrelation functionen
dc.subjectdiffusion constanten
dc.subjectviscosityen
dc.subjectspatial distribution functionen
dc.subjectorientational correlation functionen
dc.subjectSAPTen
dc.title利用第一原理進行分子動力學模擬探討氯化甲烷二聚體分子組成之結構zh_TW
dc.titleUsing Ab-initio Method and Molecular Dynamics Simulations to Explore the Structure of Chlorinated Methanes Dimer Moleculesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周佳靚;蔡政達;江志強;李皇德zh_TW
dc.contributor.oralexamcommitteeChia-Ching Chou;Jeng-Da Chai;Jyh-Chiang Jiang;Huang-Te Lien
dc.subject.keyword甲烷,一氯甲烷,二氯甲烷,三氯甲烷,四氯甲烷,氯化甲烷,二聚體構型,分子動力學模擬,自洽理論,微擾理論,徑向分布函數,速度自相關函數,擴散係數,黏滯係數,空間分布函數,方向相關函數,SAPT,Gaussian09軟件,zh_TW
dc.subject.keywordmethane,chloromethane,dichloromethane,chloroform,tetrachloromethane,chlorinated methanes,dimer structure,molecular dynamics simulation,self-consistent theory,perturbation theory,radial distribution function,velocity autocorrelation function,diffusion constant,viscosity,spatial distribution function,orientational correlation function,SAPT,Gaussian09 software,en
dc.relation.page139-
dc.identifier.doi10.6342/NTU202301065-
dc.rights.note未授權-
dc.date.accepted2023-07-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
11.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved