Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90714
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿zh_TW
dc.contributor.advisorJe-Ruei Liuen
dc.contributor.author梁孟群zh_TW
dc.contributor.authorMeng-Chun Liangen
dc.date.accessioned2023-10-03T17:18:05Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation易秉蓉。2010。以地衣芽孢桿菌去除黴菌毒素之研究。國立臺灣大學動物科學技術學研究所碩士論文,台北市。
李恩。2014。具黴菌毒素分解能力之芽孢桿菌的鑑定與特性分析。國立臺灣大學食品科技研究所碩士論文,台北市。
黃晨瑀。2018。中草藥及其芽孢桿菌發酵產物之抗氧化和抗衰老功效。國立臺灣大學動物科學技術學研究所碩士論文,台北市。
葛文聖。2018。益生菌促進澳洲淡水龍蝦特定免疫活性及抗白點病毒之潛力。國立臺灣大學生物科技研究所碩士論文,台北市。
徐翠君。2018。地衣芽孢桿菌 CK1 清除黴菌毒素 zearalenone 之機制及其益生功能的研究。國立臺灣大學動物科學技術學研究所博士論文,台北市。
蔡佳芳。2021。具益生菌潛力之芽孢桿菌抗病毒與抗過敏功效評估。國立臺灣大學食品科技研究所碩士論文,台北市。
謝立恩。2014。貓傳染性腹膜炎病毒毒力、抗病毒藥物及宿主基因感受性之探討。國立臺灣大學獸醫學研究所博士論文,台北市。
J. Fukumoto (1943). Isolation of bacteria secreting potent amylases and their distribution. J. Agric. Chem. 19 (7): 487–503.
Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., & Honda, K. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 331(6015), 337-341.
Bello-Morales, R., Andreu, S., Ruiz-Carpio, V., Ripa, I., & Lopez-Guerrero, J. A. (2022). Extracellular polymeric substances: still promising antivirals. Viruses, 14(6).
Bergmann, M., Ballin, A., Schulz, B., Dorfelt, R., & Hartmann, K. (2019). Treatment of acute viral feline upper respiratory tract infections. Tierarztl Prax Ausg K Kleintiere Heimtiere, 47(2), 98-109.
Barzoki, M. G., Malekshahi, S. S., & Shayestehpour, M. (2022). In vitro evaluation of antiviral activity of Shouchella clausii probiotic strain and bacterial supernatant against herpes simplex virus type 1. Arch. Microbiol., 204(8), 522.
Capozza, P., Pratelli, A., Camero, M., Lanave, G., Greco, G., Pellegrini, F., & Tempesta, M. (2021). Feline coronavirus and alpha-herpesvirus infections: Innate immune response and immune escape mechanisms. Animals (Basel), 11(12).
Chang, H. W., de Groot, R. J., Egberink, H. F., & Rottier, P. J. (2010). Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol, 91(Pt 2), 415-420.
Chen, S., Tian, J., Li, Z., Kang, H., Zhang, J., Huang, J., Qu, L. (2019). Feline infectious peritonitis virus Nsp5 inhibits type I interferon production by cleaving NEMO at multiple sites. Viruses, 12(1).
Cristofori, F., Dargenio, V. N., Dargenio, C., Miniello, V. L., Barone, M., & Francavilla, R. (2021). Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol, 12, 578386.
Chen, S., Tian, J., Li, Z., Kang, H., Zhang, J., Huang, J., Yin, H., Hu, X., & Qu, L. (2019). Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites. Viruses, 12(1), 43.
Dawson, S., Bennett, D., Carter, S. D., Bennett, M., Meanger, J., Turner, P. C., Gaskell, R. M. (1994). Acute arthritis of cats associated with feline calicivirus infection. Res Vet Sci, 56(2), 133-143.
de Barros, B. C. V., de Castro, C. M. O., Pereira, D., Ribeiro, L. G., Junior, J., Casseb, S. M. M., Mascarenhas, J. D. P. (2019). First complete genome sequence of a feline alphacoronavirus 1 strain from Brazil. Microbiol Resour Announc, 8(10).
de Mari, K., Maynard, L., Sanquer, A., Lebreux, B., & Eun, H. M. (2004). Therapeutic effects of recombinant feline interferon-omega on feline leukemia virus (FeLV)-infected and FeLV/feline immunodeficiency virus (FIV)-coinfected symptomatic cats. J Vet Intern Med, 18(4), 477-482.
Delaplace, M., Huet, H., Gambino, A., & Le Poder, S. (2021). Feline coronavirus antivirals: A Review. Pathogens, 10(9).
Deng, W., Dong, X. F., Tong, J. M., & Zhang, Q. (2012). The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci, 91(3), 575-582.
Diao, Y., Xin, Y., Zhou, Y., Li, N., Pan, X., Qi, S., & Yin, Z. (2014). Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-kappaB and MAPKs activation and ROS production. Int Immunopharmacol, 18(1), 12-19.
Dicks, L. M. T., & Grobbelaar, M. J. (2021). Double-barrel shotgun: probiotic lactic acid bacteria with antiviral properties modified to serve as vaccines. Microorganisms, 9(8).
Doki, T., Takano, T., Koyama, Y., & Hohdatsu, T. (2015). Identification of the peptide derived from S1 domain that inhibits type I and type II feline infectious peritonitis virus infection. Virus Res, 204, 13-20.
Doki, T., Yabe, M., Takano, T., & Hohdatsu, T. (2018). Differential induction of type I interferon by type I and type II feline coronaviruses in vitro. Res Vet Sci, 120, 57-62.
Enosi Tuipulotu, D., Fumian, T. M., Netzler, N. E., Mackenzie, J. M., & White, P. A. (2019). The adenosine analogue NITD008 has potent antiviral activity against human and animal caliciviruses. Viruses, 11(6).
Evermann, J. F., Henry, C. J., & Marks, S. L. (1995). Feline infectious peritonitis. J Am Vet Med Assoc, 206(8), 1130-1134.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), 543-547.
Fumian, T. M., Tuipulotu, D. E., Netzler, N. E., Lun, J. H., Russo, A. G., Yan, G. J. H., & White, P. A. (2018). Potential therapeutic agents for feline calicivirus infection. Viruses, 10(8).
Gaskell, R., Dawson, S., Radford, A., & Thiry, E. (2007). Feline herpesvirus. Vet Res, 38(2), 337-354.
Herrewegh, A. A., Smeenk, I., Horzinek, M. C., Rottier, P. J., & de Groot, R. J. (1998). Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol, 72(5), 4508-4514.
Heyman, M., & Menard, S. (2002). Probiotic microorganisms: how they affect intestinal pathophysiology. Cell Mol Life Sci, 59(7), 1151-1165.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews. Gastroenterology & hepatology, 11(8), 506–514.
Kennedy, M., Boedeker, N., Gibbs, P., & Kania, S. (2001). Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol, 81(3), 227-234.
Kim, J. A., Bayo, J., Cha, J., Choi, Y. J., Jung, M. Y., Kim, D. H., & Kim, Y. (2019). Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. PLoS One, 14(6), e0218922.
Kono, M., Tatsumi, K., Imai, A. M., Saito, K., Kuriyama, T., & Shirasawa, H. (2008). Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res, 77(2), 150-152.
La Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins, 10(1), 11-21.
Lin, C. N., Chang, R. Y., Su, B. L., & Chueh, L. L. (2013). Full genome analysis of a novel type II feline coronavirus NTU156. Virus Genes, 46(2), 316-322.
Liu, X., Yan, H., Lv, L., Xu, Q., Yin, C., Zhang, K., Hu, J. (2012). Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australas J Anim Sci, 25(5), 682-689.
Liu, Y., Wang, J., & Wu, C. (2022). Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Frontiers in nutrition, 8, 634897.
Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Flavell, R. A. (2004). Recognition of single-stranded RNA viruses by toll-like receptor 7. Proc Natl Acad Sci, 101(15), 5598-5603.
M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith.(1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., vol. 28, pp. 350–356.
McDonagh, P., Sheehy, P. A., & Norris, J. M. (2015). Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro. Vet Microbiol, 176(1-2), 10-18.
Megat Mazhar Khair, M. H., Selvarajah, G. T., Omar, A. R., & Mustaffa-Kamal, F. (2022). Expression of toll-like receptors 3, 7, 9 and cytokines in feline infectious peritonitis virus-infected CRFK cells and feline peripheral monocytes. J Vet Sci, 23(2), e27.
Muras, A., Romero, M., Mayer, C., & Otero, A. (2021). Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol, 41(4), 609-627.
Murphy, B. G., Perron, M., Murakami, E., Bauer, K., Park, Y., Eckstrand, C., Pedersen, N. C. (2018). The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet Microbiol, 219, 226-233.
Mehmeti, I., F. Kiran, & O. Osmanagaoglu. (2011). Comparison of three methods for determination of protein concentration in lactic acid bacteria for proteomics studies. Afr J Adv Biotechnol 10:2178-2185.
Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut pathogens, 10, 21.
Ng, S. W., Selvarajah, G. T., Cheah, Y. K., Mustaffa Kamal, F., & Omar, A. R. (2020). cellular metabolic profiling of CrFK cells infected with feline infectious peritonitis virus using phenotype microarrays. pathogens (Basel), 9(5), 412.
Olsen, C. W. (1993). A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol, 36(1-2), 1-37.
Peng, J. Y., Horng, Y. B., Wu, C. H., Chang, C. Y., Chang, Y. C., Tsai, P. S., Chang, H. W. (2019). Evaluation of antiviral activity of Bacillus licheniformis-fermented products against porcine epidemic diarrhea virus. AMB Express, 9(1), 191.
Pletneva, L. M., Haller, O., Porter, D. D., Prince, G. A., & Blanco, J. C. G. (2008). Induction of type I interferons and interferon-inducible Mx genes during respiratory syncytial virus infection and reinfection in cotton rats. J Gen Virol, 89(Pt 1), 261-270.
Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6).
Rasimus-Sahari, S., Teplova, V. V., Andersson, M. A., Mikkola, R., Kankkunen, P., Matikainen, S., Salkinoja-Salonen, M. (2015). The peptide toxin amylosin of Bacillus amyloliquefaciens from moisture-damaged buildings is immunotoxic, induces potassium efflux from mammalian cells, and has antimicrobial activity. Appl Environ Microbiol, 81(8), 2939-2949.
Reynolds, B. S., Poulet, H., Pingret, J. L., Jas, D., Brunet, S., Lemeter, C., Boucraut-Baralon, C. (2009). A nosocomial outbreak of feline calicivirus associated virulent systemic disease in France. J Feline Med Surg, 11(8), 633-644.
Ritz, S., Egberink, H., & Hartmann, K. (2007). Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis. J Vet Intern Med, 21(6), 1193-1197.
Russell, P. H., & Jarrett, O. (1978). The specificity of neutralizing antibodies to feline leukaemia viruses. Int J Cancer, 21(6), 768-778.
Sanchez-Leon, E., Bello-Morales, R., Lopez-Guerrero, J. A., Poveda, A., Jimenez-Barbero, J., Girones, N., & Abrusci, C. (2020). Isolation and characterization of an exopolymer produced by Bacillus licheniformis: In vitro antiviral activity against enveloped viruses. Carbohydr Polym, 248, 116737.
Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol, 16(10), 605-616.
Satish Kumar, C. S., Kondal Reddy, K., Boobalan, G., Gopala Reddy, A., Sudha Rani Chowdhary, C. H., Vinoth, A., Srinivasa Rao, G. (2017). Immunomodulatory effects of Bifidobacterium bifidum 231 on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. Res Vet Sci, 110, 40-46.
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Curr Biol, 24(10), R453-462.
Shen, Q., Shang, N., & Li, P. (2011). In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr Microbiol, 62(4), 1097-1103.
Shyr, Z. A., Cheng, Y. S., Lo, D. C., & Zheng, W. (2021). Drug combination therapy for emerging viral diseases. Drug Discov Today, 26(10), 2367-2376.
Stoeva, M. K., Garcia-So, J., Justice, N., Myers, J., Tyagi, S., Nemchek, M., Eid, J. (2021). Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes, 13(1), 1-28.
Takano, T., Hohdatsu, T., Toda, A., Tanabe, M., & Koyama, H. (2007). TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages. Virology, 364(1), 64-72.
Takano, T., Satoh, K., Doki, T., Tanabe, T., & Hohdatsu, T. (2020). Antiviral effects of hydroxychloroquine and type I interferon on in vitro fatal feline coronavirus infection. Viruses, 12(5).
Takano, T., Wakayama, Y., & Doki, T. (2019). Endocytic pathway of feline coronavirus for cell entry: Differences in Serotype-Dependent Viral Entry Pathway. Pathogens, 8(4).
Tanabe, T., Fukuda, Y., Kawashima, K., Yamamoto, S., Kashimoto, T., & Sato, H. (2021). Transcriptional inhibition of feline immunodeficiency virus by alpha-amanitin. J Vet Med Sci, 83(1), 158-161.
Tanaka, Y., Tanabe, E., Nonaka, Y., Uemura, M., Tajima, T., & Ochiai, K. (2022). Ionophore antibiotics inhibit type II feline coronavirus proliferation in vitro. Viruses, 14(8).
Tekes, G., & Thiel, H. J. (2016). Feline coronaviruses: Pathogenesis of Feline Infectious Peritonitis. Adv Virus Res, 96, 193-218.
Tonetti, F. R., Islam, M. A., Vizoso-Pinto, M. G., Takahashi, H., Kitazawa, H., & Villena, J. (2020). Nasal priming with immunobiotic lactobacilli improves the adaptive immune response against influenza virus. Int Immunopharmacol, 78, 106115.
Torres, N. I., Noll, K. S., Xu, S., Li, J., Huang, Q., Sinko, P. J., Chikindas, M. L. (2013). Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins, 5(1), 26-35.
Tsai, C. Y., Hu, S. Y., Santos, H. M., Catulin, G. E. M., Tayo, L. L., & Chuang, K. P. (2021). Probiotic supplementation containing Bacillus velezensis enhances expression of immune regulatory genes against pigeon circovirus in pigeons (Columba livia). J Appl Microbiol, 130(5), 1695-1704.
Vinoj, G., Vaseeharan, B., Thomas, S., Spiers, A. J., & Shanthi, S. (2014). Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar Biotechnol (NY), 16(6), 707-715.
Wang, C., Meng, H., Gao, Y., Gao, H., Guo, K., Almazan, F., Abrahamyan, L. (2017). Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus. Vet Res, 48(1), 41.
Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., Li, W. (2017). Antioxidant properties of probiotic bacteria. Nutrients, 9(5).
Weiss, R. C., Cox, N. R., & Martinez, M. L. (1993). Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Res Vet Sci, 55(2), 162-172.
WoldemariamYohannes, K., Wan, Z., Yu, Q., Li, H., Wei, X., Liu, Y., Sun, B. (2020). Prebiotic, probiotic, antimicrobial, and functional food applications of Bacillus amyloliquefaciens. J Agric Food Chem, 68(50), 14709-14727.
Wu, L., Wu, H., Chen, L., Lin, L., Borriss, R., & Gao, X. (2015). Bacilysin overproduction in Bacillus amyloliquefaciens FZB42 markerless derivative strains FZBREP and FZBSPA enhances antibacterial activity. Appl Microbiol Biotechnol, 99(10), 4255-4263.
Wu, Y., Wang, Y., Zou, H., Wang, B., Sun, Q., Fu, A., Li, W. (2017). Probiotic Bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Front Microbiol, 8, 469.
Wang, Y., Moon, A., Huang, J., Sun, Y., & Qiu, H. J. (2022). Antiviral effects and underlying mechanisms of probiotics as promising antivirals. Front. cell. infect 12, 928050.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90714-
dc.description.abstract貓傳染性腹膜炎是一種由 feline infectious peritonitis virus (FIPV) 的冠狀病毒所引起之高致死率疾病,目前僅有極少能夠治療的藥物。本研究藉由 MTT 試驗從 Bacillus amyloliquefaciens LN(LN)、B. velezensis AC(AC)及 B. licheniformis CK1(CK1) 芽孢桿菌萃取物挑選對 fcwf-4 細胞模型較不具細胞毒性之 AC、CK1 萃取物進行三種抗 FIPV 病毒策略效用評估,包含預防、治療及聯合處理。其中 AC 與 CK1 萃取物以預防模式處理下具有提升細胞存活率的效果;而治療模式下則是 CK1 萃取物處理組有較好的效果。利用即時螢光定量技術與免疫螢光染色法觀察在上述兩種模式中的 FIPV 表現量及分布,發現經芽孢桿菌萃取物處理之細胞與未處理組相比並無降低 FIPV-N 表現及陽性率。而結合預防及治療的聯合處理中,以AC/CK1 進行的聯合處理不如 CK1/CK1 具有顯著提升存活率之效果。最後以即時螢光定量技術分析以芽孢桿菌萃取物進行預防與治療策略中以 FIPV 感染與未感染細胞之基因表現,證實具有預防效果的芽孢桿菌萃取物皆能提升 TNF-α 的表現量;而 CK1 胞內液與細胞壁在治療模式且受感染的情況下,降低了受體 fAPN 並提升了抗病毒蛋白 Mx1 的表現。綜合上述, AC 與 CK1 萃取物未能降低 FIPV 複製能力,但能夠對 fcwf-4 細胞之免疫與抗病毒相關基因產生影響。zh_TW
dc.description.abstractFeline infectious peritonitis (FIP) is a viral disease of cats caused by certain strains of a virus called the feline coronavirus (FCoV). This study aimed to evaluate the antiviral efficacy of extracts from probiotic strains, including Bacillus amyloliquefaciens LN (LN), B. velezensis AC (AC), and B. licheniformis CK1 (CK1) on the fcwf-4 cell model using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Three strategies, including pre-treatment, post-treatment, and combination treatment, were assessed for their effectiveness against FIPV, focusing on the extracts from AC, CK1 intracellular fluid (INT), cell wall (CW), and exopoly-substances (EPS), which showed lower cytotoxicity to the fcwf-4 cell model. AC and CK1 extracts demonstrated improvement of cell viability in the strategy of pre-treatment, while CK1 extract performed better in the post-treatment. However, analysis of FIPV-N expression showed both strategies had no reduction in FIPV-N expression and in cells treated with Bacillus extracts compared to the untreated group. In the combination therapy, the AC/CK1 combination did not present a significant increase in survival rate compared to the CK1/CK1 combination. Analysis of gene expression in FIPV-infected and uninfected cells treated with Bacillus extracts confirmed that the preventive Bacillus extracts increased TNF-α expression. In the post-treatment with infected cells, CK1_INT and CK1_CW reduced the receptor fAPN and increased the antiviral protein Mx1 expression. In conclusion, this study demonstrated that AC and CK1 extracts did not reduce FIPV replication but had regulations to antiviral and proinflammatory genes in fcwf-4 cells.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:18:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:18:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VIII
表目錄 X
第一章、文獻探討 1
第一節、益生菌 1
一、益生菌之定義 1
二、益生菌之特性 1
三、益生菌之功能 2
(一)改善腸道健康與功能 2
(二)調節免疫系統 2
(三)抗氧化功能 3
(四)具抗病毒活性 3
四、芽孢桿菌 4
(一)液化澱粉芽孢桿菌Bacillus amyloliquefaciens 4
(二)貝萊斯芽孢桿菌Bacillus velezensis 5
(三)地衣芽孢桿菌Bacillus licheniformis 6
第二節、病毒 11
一、病毒簡介 11
二、貓冠狀病毒 11
(一)貓冠狀病毒簡介 11
(二)貓冠狀病毒之基因體特性 12
(三)貓傳染性腹膜炎 13
(四)貓冠狀病毒感染與複製 13
(五)抗貓冠狀病毒之藥物 14
(六)貓傳染性腹膜炎病毒引起之宿主免疫反應 15
第三節、研究動機與目的 20
第二章、材料與方法 21
第一節、實驗架構 21
第二節、芽孢桿菌萃取物之抗貓傳染性腹膜炎病毒能力評估 22
一、芽孢桿菌之培養與保存 22
二、芽孢桿菌萃取物製備 22
三、細胞與病毒培養 24
四、病毒效價測定 26
五、病毒感染之細胞存活率測定 26
六、菌株萃取物之細胞毒性測試 27
七、菌株萃取物於病毒感染之預防模式 27
八、菌株萃取物於病毒感染之治療模式 28
九、菌株萃取物於病毒感染之聯合模式 28
十、免疫螢光染色 29
十一、病毒基因與促發炎基因分析 29
十二、統計分析 31
第三章、實驗結果 34
第一節、芽孢桿菌萃取物抗貓型腹膜炎病毒(FIPV)能力評估 34
一、芽孢桿菌萃取物毒性測試 34
二、 芽孢桿菌胞外聚合物醣類與蛋白含量分析 34
三、 FIPV NTU156 效價與存活率測定 35
四、以芽孢桿菌萃取物處理受 FIPV 感染細胞之預防模式 35
五、以芽孢桿菌萃取物處理受 FIPV 感染細胞之治療模式 36
六、測定聯合處理之細胞存活率 37
第二節、芽孢桿菌萃取物與貓型腹膜炎病毒(FIPV)於宿主細胞抗病毒與促發炎基因相關 mRNA 表現量之影響 38
一、 病毒作用 38
二、 預防模式 38
三、 治療模式 39
第四章、討論 60
一、芽孢桿菌萃取物之抗病毒活性評估 60
二、基因表現量分析 62
第五章、結論 67
第六章、參考文獻 68
-
dc.language.isozh_TW-
dc.title以體外試驗評估具益生菌特性之芽孢桿菌萃取物抗貓傳染性腹膜炎病毒活性zh_TW
dc.titleEvaluation of antiviral activity of probiotic Bacillus extracts against feline infectious peritonitis virus in vitroen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張惠雯;謝建元;陳勁初;劉啟德zh_TW
dc.contributor.oralexamcommitteeHui-Wen Chang;Chien-Yan Hsieh;Chin-Chu Chen;Chi-Te Liuen
dc.subject.keyword芽孢桿菌,抗病毒,貓傳染性腹膜炎病毒,胞外聚合物,zh_TW
dc.subject.keywordProbiotic,Bacillus amyloliquefaciens,Bacillus velezensis,Bacillus licheniformis,Feline infectious peritonitis virus,Antiviral,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202302799-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2025-08-08-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2025-08-08
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved