請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90712
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉嚞睿 | zh_TW |
dc.contributor.advisor | Je-Ruei Liu | en |
dc.contributor.author | 張晉哲 | zh_TW |
dc.contributor.author | Chin-Che Chang | en |
dc.date.accessioned | 2023-10-03T17:17:34Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Abella, G., E. Novell, V. Tarancon, L. Varona, R. N. Pena, J. Estany, and L. Fraile. 2019. Identification of resilient sows in porcine reproductive and respiratory syndrome virus- infected farms. J. Anim. Sci. 97:3228–3236.
Abt, M.C., L. C. Osborne, L. A. Monticelli, T. A. Doering, T. Alenghat, G. F. Sonnenberg, M. A. Paley, M. Antenus, K. L. Williams, and J. Erikson. 2012. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity. 37:158– 170. Albina, E., L. Piriou, E. Hutet, R. Cariolet, and R. L’Hospitalier. 1998. Immune responses in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Immunol. Immunopathol. 61:49–66. Allende, R., W. W. Laegreid, G. F. Kutish, J. A. Galeota, R. W. Wills, and F. A. Osorio. 2000. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection. J. Virol. 74:10834–10837. Amarilla S. P., Gómez-Laguna J, Carrasco L, Rodríguez-Gómez IM, Ocerín JM CY, and Morgan SB. 2015. A comparative study of the local cytokine response in the lungs of pigs experimentally infected with different PRRSV-1 strains: Upregulation of IL-1α in highly pathogenic strain induced lesions. Vet. Immunol. Immunopathol. 164:137–47. AOAC. 2007. Official methods of analysis of AOAC International. 18th ed. AOAC International, Gaithersburg, MD. Badaoui, B., C. K. Tuggle, Z. Hu, J. M. Reecy, T. Ait-Ali, A. Anselmo, and S. Botti. 2013. Pig immune response to gen- eral stimulus and to porcine reproductive and respiratory syndrome virus infection: A meta-analysis approach. BMC Genomics 14:220. Benfield, D., J. Nelson, K. Rossow, R. Rowland, S. Lawson, M. Steffen, and J. Collins. 1998. Pathogenesis and persistence of PRRS. Proceedings of Allen D. Leman Swine Conference, Minneapolis, Minnesota: University of Minnesota. vol. 25; pp. 169–171. Boddicker, N. J., D. J. Garrick, R. R. Rowland, J. K. Lunney, J. M. Reecy, and J. C. Dekkers. 2014b. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim. Genet. 45:48–58. Boddicker, N., E. H. Waide, R. R. Rowland, J. K. Lunney, D. J. Garrick, J. M. Reecy, and J. C. Dekkers. 2012. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. 90:1733– 1746. Bogdan, C. 2000. The function of type I interferons in antimicrobial immunity. Curr. Opin. Immunol. 12:419–424. Boyd, R. D., M. E. Johnston, and C. Zier-rush. 2010. Soybean meal level modulates the adverse effect of high immune stress on growth and feed efficiency in growing pigs. Proc. MN Nutr. Conf. 71:167–174. Bradley, C., C. L. Walk, N. D. Walker, and P. Wilcock. 2015. The ef- fect of superdosing phytase with or without the addition of live yeast in diets void of spray dried plasma in pigs from weaning to 21 days post-weaning. J. Anim. Sci. 93(Suppl. 2):57. Brockmeier, S. L., M. V. Palmer, S. R. Bolin, and R. B. Rimler. 2001. Effects of intranasal inoculation with Bordetella bron- chiseptica, porcine reproductive and respiratory syndrome virus, or a combination of both organisms on subsequent in- fection with Pasteurella multocida in pigs. Am. J. Vet. Res. 62:521–525. Butler, J. E., K. M. Lager, W. Golde, K. S. Faaberg, M. Sinkora, C. Loving, and Y. I. Zhang. 2014. Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunol. Res. 59:81–108. Chai, W., M. Burwinkel, Z. Wang, C. Palissa, B. Esch, S. Twardziok, J. Rieger, P. Wrede, and M. F. G. Schmidt. 2013. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch. Virol. 158:799-807. Chand, R. J., B. R. Trible, and R. R. Rowland. 2012. Pathogenesis of porcine reproductive and respiratory syn- drome virus. Curr. Opin. Virol. 2:256–263. Charerntantanakul, W., Yamkanchoo, S., and Kasinrerk, W. 2013. Plasmids expressing porcine interferon gamma up-regulate pro-inflammatory cytokine and co-stimulatory molecule expression which are suppressed by porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol. 153(1–2), 107–117. Che, T. M., R. W. Johnson, K. W. Kelley, W. G. Van Alstine, K. A. Dawson, C. A. Moran, and J. E. Pettigrew. 2011. Mannan oligosaccharide improves immune responses and growth efficiency of nursery pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 89:2592− 2602. Costers, S., D. J. Lefebvre, J. Van Doorsselaere, M. Vanhee, P. L. Delputte, and H. J. Nauwynck. 2010. GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing epitope that is susceptible to immunose- lection in vitro. Arch. Virol. 155:371–378. Dekkers, J., R. R. R. Rowland, J. K. Lunney, and G. Plastow. 2017. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs. Vet. Microbiol. 209:107–113. Dekkers, J., R. R. R. Rowland, J. K. Lunney, and G. Plastow. 2017. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs. Vet. Microbiol. 209:107– 113. Delputte, P. L., N. Vanderheijden, H. J. Nauwynck, and M. B. Pensaert. 2002. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syn- drome virus to a heparinlike receptor on porcine alveo- lar macrophages. J. Virol. 76:4312– 4320. Dillon, S. M., E. J. Lee, C. V. Kotter, G. L. Austin, S. Gianella, B. Siewe, D. M. Smith, A. L. Landay, M. C. McManus, C. E. Robertson, et al. 2016. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol. 9:24–37. Doeschl-Wilson, A. B., I. Kyriazakis, A. Vincent, M. F. Rothschild, E. Thacker, and L. Galina-Pantoja. 2009. Clinical and patho- logical responses of pigs from 2 genetically diverse commercial lines to porcine reproductive and respiratory syndrome virus infection. J. Anim. Sci. 87:1638−1647. Duan X., Nauwynck H. J., and Pensaert M. B. 1997. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch. Virol. 142:2483– 2497. Eclercy, J., T. Larcher, M. Andraud, P. Renson, C. Bernard, L. Bigault, M. Ledevin, F. Paboeuf, B. Grasland, N. Rose, et al. 2020. PCV2 co-infection does not impact PRRSV MLV1 safety but enhances virulence of a PRRSV MLV1-like strain in infected SPF pigs. Vet. Microbiol. 244:108656. Edfors-Lilja I., Wattrang E., Marklund L., Moller M., Andersson-Eklund L., Andersson L., and Fossum C. 1998. Mapping quantitative trait loci for immune capacity in the pig. J. Immunol. 161:829–835. Engle, T. B., E. E. Jobman, T. W. Moural, A. M. McKnite, J. W. Bundy, S. Y. Barnes, E. H. Davis, J. A. Galeota, T. E. Burkey, G. S. Plastow, et al. 2014. Variation in time and magnitude of immune response and viremia in experi- mental challenges with porcine circovirus 2b. BMC Vet. Res. 10:286. Escobar, J., W. G. V. Alstine, D. H. Baker, and R. W. Johnson. 2007. Behaviour of pigs with viral and bacterial pneumonia. Appl. Anim. Behav. Sci. 105:42−50. Fu, Y., R. Quan, H. Zhang, J. Hou, J. Tang, and W.-H. Feng. 2012. Porcine reproductive and respiratory syndrome virus induces interleukin-15 through the NF-B signaling pathway. Gabler, N. K., W. Schweer, J. F. Patience, L. Karriker, J. C. Sparks, G. Gourley, M. Fitzsimmons, K. Schwartz, and T. E. Burkey. 2013. The impact of PRRS on feed efficiency, digestibility and tissue accretion in grow-finisher pigs. In: Allen D. Leman Swine Conference, no. 40. Veterinary Continuing Education, St. Paul, MN. p. 135–136. Gamal, A. A., A. M. Hashem, M. M. El-Safty, R. A. Soliman, and M. A. Esawy. 2020. Evaluation of the antivirus activity of Enterococcus faecalis Esawy levan and its sulfated form. Biocatal. Agric. Biotechnol. 28:101735. Halbur P. G., Paul P. S., Meng X. J., Lum M. A., Andrews J. J., and Rathje J. A.. 1996. Comparative pathogenicity of nine US porcine reproductive and respiratory syndrome virus (PRRSV) isolates in a five-week-old cesarean-derived, colostrum- deprived pig model. J. Vet. Diagn. Invest. 8:11–20. Helm, E. T., S. M. Curry, C. M. De Mille, W. P. Schweer, E. R. Burrough, E. A. Zuber, S. M. Lonergan, and N. K. Gabler. 2019. Impact of porcine reproductive and respiratory syndrome virus on muscle metabolism of growing pigs. J. Anim. Sci. 97:3213–3227. Helm, E. T., S. M. Curry, C. M. De Mille, W. P. Schweer, E. R. Burrough, E. A. Zuber, S. M. Lonergan, and N. K. Gabler. 2019. Impact of porcine reproductive and respiratory syndrome virus on muscle metabolism of growing pigs1. J. Anim. Sci. 97:3213– 3227. Hess, A. S., Z. Islam, M. K. Hess, R. R. Rowland, J. K. Lunney, A. Doeschl-Wilson, G. S. Plastow, and J. C. Dekkers. 2016. Comparison of host genetic fac- tors influencing pig response to infection with two North American isolates of porcine reproductive and respiratory syndrome virus. Genet. Sel. Evol. 48:43. Holtkamp, D. J., J. B. Kliebenstein, E. J. Neumann, J. J. Zimmerman, H. F. Rotto, T. K. Yoder, C. Wang, P. E. Yeske, C. L. Mowrer, and C. A. Haley. 2013. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Heal. Prod. 21:72–84. Huang, Y. W., and Meng, X. J. (2010). Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV). Virus Research, 154(1), 141–149. Hui X, Li H, Zhou Z, Lam KSL, Xiao Y, and Wu D. 2010. Adipocyte fatty acid- binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH 2-terminal kinases and activator protein-1. J Biol Chem. 285:10273–80. Islam, Z. U., S. C. Bishop, N. J. Savill, R. R. Rowland, J. K. Lunney, B. Trible, and A. B. Doeschl-Wilson. 2013. Quantitative analysis of porcine reproductive and respira- tory syndrome (PRRS) viremia profiles from experimen- tal infection: a statistical modelling approach. PLoS One. 8:e83567. Islam, Z. U., S. C. Bishop, N. J. Savill, R. R. Rowland, J. K. Lunney, B. Trible, and A. B. Doeschl-Wilson. 2013. Quantitative analysis of porcine reproductive and respiratory syndrome (PRRS) viremia profiles from experimental infection: a statistical modelling approach. PLoS One 8:e83567. Jacela, J. Y., J. M. Derouchey, M. D. Tokach, R. D. Goodband, J. L. Nelssen, D. G. Renter, and S. S. Dritz. 2010. Feed additives for swine: fact sheets – prebiotics and probiotics, and phytogenics. J. Swine Heal. Prod. 18:132–136. Jeong, J., S. Kim, K. H. Park, I. Kang, S. J. Park, S. Yang, T. Oh, and C. Chae. 2018. Vaccination with a porcine reproductive and respiratory syndrome virus vaccine at 1- day-old improved growth performance of piglets under field conditions. Vet. Microbiol. 214:113–124. Jiang, N., H. Liu, P. Wang, J. Huang, H. Han, and Q. Wang. 2019. Illumina MiSeq Sequencing Investigation of Microbiota in Bronchoalveolar Lavage Fluid and Cecum of the Swine Infected with PRRSV. Curr. Microbiol. 76:222–230. Johnson, C. R., T. F. Griggs, J. Gnanandarajah, and M. P. Murtaugh. 2011. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J. Gen. Virol. 92:1107–1116. Karuppannan, A. K., and T. Opriessnig. 2017. Porcine circovirus type 2 (PCV2) vaccines in the context of current molecular epidemiology. Viruses. 9(5):99. Kim H. S., Kwang J., Yoon I. J., Joo H. S., and Frey M. L.. 1993. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch. Virol. 133:477–483. Labarque G., Van Gucht S., Nauwynck H., Van Reeth K., and Pensaert M.. 2003. Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines. Vet. Res. 34:249–260. Ladinig, A., J. K. Lunney, C. J. Souza, C. Ashley, G. Plastow, and J. C. Harding. 2014. Cytokine profiles in pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus and relationships with viral load and fetal outcome. Vet. Res. 45:113. Lang, C. H., C. Silvis, N. Deshpande, G. Nystrom, and R. A. Frost. 2003. Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, –6, and high-mobility-group protein-1 in skeletal muscle. Shock 19:538–546. Langenhorst, R. J., S. Lawson, A. Kittawornrat, J. J. Zimmerman, Z. Sun, Y. Li, J. Christopher-Hennings, E. A. Nelson, and Y. Fang. 2012. Development of a fluores- cent microsphere immunoassay for detection of antibodies against porcine reproductive and respiratory syndrome virus using oral fluid samples as an alternative to serum- based assays. Clin. Vaccine Immunol. 19:180–189. Lewis, C. R. G., M. Torremorell, and S. C. Bishop. 2009. Effects of porcine reproductive and respiratory syndrome virus infection on the performance of commercial sows and gilts of different parities and genetic lines. J. Swine Heal. Prod. 17: 140–147. Lossouarn, J., A. Briet, E. Moncaut, S. Furlan, A. Bouteau, O. Son, M. Leroy, M. S. DuBow, F. Lecointe, P. Serror, and M. Petit. 2019. Enterococcus faecalis countermeasures defeat a virulent Picovirinae bacteriophage. Viruses. 11:48. Madson, D. M., D. R. Magstadt, P. H. E. Arruda, H. Hoang, D. Sun, L. P. Bower, M. Bhandari, E. R. Burrough, P. C. Gauger, A. E. Pillatzki, G. W. Stevenson, B. L. Wilberts, J. Brodie, K. M. Harmon, C. Wang, R. G. Main, J. Zhang, and K. J. Yoon. 2014. Pathogenesis of porcine epidemic diarrhea virus iso- late (US/Iowa/18984/2013) in 3- week-old weaned pigs. Vet. Microbiol. 174:60–68. Martelli, P., P. Ardigò, L. Ferrari, M. Morganti, E. De Angelis, P. Bonilauri, A. Luppi, S. Guazzetti, A. Caleffi, and P. Borghetti. 2013. Concurrent vaccinations against PCV2 and PRRSV: study on the specific immunity and clinical protection in naturally infected pigs. Vet. Microbiol. 162:558–571. Mateu, E. and I. Diaz. 2008. The challenge of PRRS immunology. Vet. J. 177:345−351. McNab, F., K. Mayer-Barber, A. Sher, A. Wack, and A. O'Garra. 2015. Type I interferons in infectious disease. Nat Rev Immunol. 15(2):87-103. Meier, W. A., J. Galeota, F. A. Osorio, R. J. Husmann, W. M. Schnitzlein, and F. A. Zuckermann. 2003. Gradual development of the interferon-gamma response of swine to porcine reproduc- tive and respiratory syndrome virus infection or vaccination. Virology 309:18−31. Moore KW, de Waal MR, Coffman RL, and O’Garra A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 19:683–765. Nakamine, M., Y. Kono, S. Abe, C. Hoshino, J. Shirai, and T. Ezaki. 1998. Dual infection with enterotoxigenic Escherichia coli and porcine reproductive and respiratory syndrome virus observed in weaning pigs that died suddenly. J. Vet. Med. Sci. 60:555– 561. Niederwerder, M. C., C. J. Jaing, J. B. Thissen, A. G. Cino-Ozuna, K. S. McLoughlin, and R. R. Rowland. 2016. Microbiome associations in pigs with the best and worst clinical outcomes following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). Vet. Microbiol. 188:1–11. Niederwerder, M.C. 2017. Role of the microbiome in swine respiratory disease. Vet. Microbiol. 209:97–106. Nimmerjahn, F., and J. V. Ravetch. 2008. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8:34-47. Petry, D. B., J. Lunney, P. Boyd, D. Kuhar, E. Blankenship, and R. K. Johnson. 2007. Differential immunity in pigs with high and low responses to porcine reproductive and res- piratory syndrome virus infection. J. Anim. Sci. 85:2075– 2092. Putz, A. M., C. R. Schwab, A. D. Se 孔, D. J. Holtkamp, J. J. Zimmerman, K. Baker, N. V. L. Serão, and J. C. M. Dekkers. 2019. The effect of a porcine reproductive and respiratory syndrome outbreak on genetic parameters and reaction norms for reproductive performance in pigs. J. Anim. Sci. 97:1101–1116. Renukaradhya, G. J., X.-J. Meng, J. G. Calvert, M. Roof, and K. M. Lager. 2015. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: current status and future direction. Vaccine. 33(27):3065–3072. Robbins, K. R., A. M. Saxton, and L. L. Southern. 2006. Estimation of nutrient requirements using broken-line re- gression analysis. J. Anim. Sci. 84(Suppl):E155–E165. Roberts, N. E., and G. W. Almond. 2003. Infection of growing swine with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae—Effects on growth, serum me- tabolites, and insulin-like growth factor-I. Can. Vet. J. 44:31–37. Rochell, S. J., L. S. Alexander, G. C. Rocha, W. G. Van Alstine, R. D. Boyd, J. E. Pettigrew, and R. N. Dilger. 2015. Effects of dietary soybean meal concentration on growth and immune response of pigs infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 93:2987–2997. Rowland, R. R., M. Steffen, T. Ackerman, and D. A. Benfield. 1999. The evolution of porcine reproductive and respiratory syndrome virus: quasispecies and emergence of a virus subpopulation during infection of pigs with VR-2332. Virology. 259:262–266. Sang, Y., J. Shi, W. Sang, R. R. R. Rowland, and F. Blecha. 2012. Replication-competent recombinant porcine reproductive and respiratory syndrome (PRRS) viruses expressing indicator proteins and antiviral cytokines. Viruses. 4:10 2-116. Sang, Y., R. R. R. Rowland, and F. Blecha. 2011. Interaction between innate immunity and porcine reproductive and respiratory syndrome virus. Anim. Health Res. Rev. 12:149– 167. Sanglard, L. P., S. Schmitz-Esser, K. A. Gray, D. C. L. Linhares, C. J. Yeoman, J. C. M. Dekkers, M. C. Niederwerder, and N. V. L. Serão. 2020. Vaginal microbiota diverges in sows with low and high reproductive performance after porcine reproductive and respiratory syndrome vaccination. Sci. Rep. 10:3046. Schroder, K., P. J. Hertzog, and T. Ravasi. 2004. Interferon-γ: an overview of signals, mechanisms, and functions. J. Leukoc. Biol. 75:163−189. Schroyen, M., C. Eisley, J. E. Koltes, E. Fritz-Waters, I. Choi, G. S. Plastow, L. Guan, P. Stothard, H. Bao, A. Kommadath, et al. 2016. Bioinformatic analyses in early host response to porcine reproductive and respiratory syndrome virus (PRRSV) reveals pathway differences between pigs with alternate genotypes for a major host response QTL. BMC Genomics. 17:196. Schroyen, M., J. P. Steibel, J. E. Koltes, I. Choi, N. E. Raney, C. Eisley, E. Fritz-Waters, J. M. Reecy, J. C. Dekkers, R. R. Rowland, et al. 2015. Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection. BMC Genomics. 16:516. Schweer, W., K. Schwartz, J. F. Patience, L. Karriker, C. Sparks, M. Weaver, M. Fitzsimmons, T. E. Burkey, and N. K. Gabler. 2017. Porcine reproductive and respiratory syndrome virus reduces feed efficiency, digestibility, and lean tissue accretion in grow-finish pigs. Transl. Anim. Sci. 1: 480–488 Schweer, W., K. Schwartz, J. F. Patience, L. Karriker, C. Sparks, M. Weaver, M. Fitzsimmons, T. E. Burkey, and N. K. Gabler. 2017. Porcine Reproductive and Respiratory Syndrome virus reduces feed efficiency, digestibility, and lean tissue accretion in grow-finish pigs. Transl. Anim. Sci. 1(4): 480–488. Serão, N. V. L., O. Matika, R. A. Kemp, J. C. S. Harding, S. C. Bishop, G. S. Plastow, and J. C. M. Dekkers. 2014. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J. Anim. Sci. 92:2905–2921. Serão, N. V., O. Matika, R. A. Kemp, J. C. Harding, S. C. Bishop, G. S. Plastow, and J. C. Dekkers. 2014. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J. Anim. Sci. 92:2905–2921. Shenoy, A. R., D. A. Wellington, P. Kumar, H. Kassa, C. J. Booth, P. Cress 孔, and J. D. MacMicking. 2012. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science. 336:481–485. Shibata, I., S. Yazawa, M. Ono, and Y. Okuda. 2003. Experimental dual infection of specific pathogen-free pigs with porcine repro- ductive and respiratory syndrome virus and pseudorabies virus. J. Vet. Med. B Infect. Dis. Vet. Public Health 50:14−19. Shimizu, M., S. Yamada, K. Kawashima, S. Ohashi, S. Shimizu, and T. Ogawa. 1996. Changes of lymphocyte subpopulations in pigs infected with porcine reproductive and respiratory syndrome (PRRS) virus. Vet. Immunol. Immunopathol. 50:19–27. Sinkora, M., J. E. Butler, K. M. Lager, H. Potockova, and J. Sinkorova. 2014. The comparative profile of lymphoid cells and the T and B cell spectratype of germ-free piglets infected with viruses SIV, PRRSV or PCV2. Vet. Res. 45:91. Smith, B. N., M. L. Oelschlager, M. S. A. Rasheed, and R. N. Dilger. 2020. Dietary soy isoflavones reduce pathogen-related mortality in growing pigs under porcine reproductive and respiratory syndrome viral challenge. J. Anim. Sci. 98: 1–15. Thacker E. L., Halbur P. G., Paul P. S., and Thacker B. J. 1998. Detection of intracellular porcine reproductive and respiratory syndrome virus nucleocapsid protein in porcine macrophages by flow cytometry. J. Vet. Diagn. Invest. 10:308–311. Thanawongnuwech R, Halbur P, Royer R, Bruna J. 1998. PRRS virus-induced damage to intravascular macrophages. Swine Res Report. 1997:43. Thanawongnuwech, R., E. L. Thacker, and P. G. Halbur. 1997. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMS): in vitro compari- sons with pulmonary alveolar macrophages (PAMS). Vet. Immunol. Immunopathol. 59:323–335. Tiphany, C., J. Leng, R. M. L. Ragione, S. P. Graham, and E. Tchilian. 2021. Changes in the nasal microbiota of pigs following single or co-infection with porcine reproductive and respiratory syndrome and swine influenza A viruses. Pathogens. 10:1225. Toepfer-Berg, T. L., J. Escobar, W. G. Van Alstine, D. H. Baker, J. Salak-Johnson, and R. W. Johnson. 2004. Vitamin E supplemen- tation does not mitigate the acute morbidity effects of porcine reproductive and respiratory syndrome virus in nursery pigs. J. Anim. Sci. 82:1942−1951. Van Der Linden IFA, Voermans JJM, Van Der Linde-Bril EM, Bianchi ATJ, Steverink PJGM. 2003. Virological kinetics and immunological responses to a porcine reproductive and respiratory syndrome virus infection of pigs at different ages. Vaccine. 21:1952–7. Van Reeth, K., S. Van Gucht, and M. Pensaert. 2002. In vivo stud- ies on cytokine involvement during acute viral respiratory disease of swine: Troublesome but rewarding. Vet. Immunol. Immunopathol. 87:161−168. Vanderheijden N., Delputte P. L., Favoreel H. W., Vandekerckhove J., Van Damme J., van Woensel P. A., and Nauwynck H. J. 2003. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J. Virol. 77:8207–8215. Wagner, J., A. Kneucker, E. Liebler-Tenorio, V. Fachinger, M. Glaser, S. Pesch, M. P. Murtaugh, and P. Reinhold. 2011. Respiratory function and pulmonary lesions in pigs infected with porcine reproductive and respiratory syndrome virus. Vet. J. 187:310– 319. Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C, Esch B, Schmid MFG. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza a virus in vitro. PLoS One 8: e53043 (2013) Watanabe T, Hayashi K, Kan T, Ohwaki M, Kawahara T. Anti-Influenza virus effects of Enterococcus faecalis KH2 and Lactobacillus plantarum SNK12 RNA. Biosci Microbiota Food Heal. 2021;40(1):43e49. Weingartl H. M., Sabara M., Pasick J., van Moorlehem E., and Babiuk L. 2002. Continuous porcine cell lines developed from alveolar macrophages: Partial characterization and virus susceptibility. J. Virol. Methods 104:203–216. Wesley, R. D., K. M. Lager, and M. E. Kehrli Jr. 2006. Infection with porcine reproductive and respiratory syndrome virus stimulates an early gamma interferon response in the serum of pigs. Can. J. Vet. Res. 70:176−182. Wilkie, B., and B. Mallard. 1999. Selection for high immune response: an alternative approach to animal health main- tenance? Vet. Immunol. Immunopathol. 72:231–235. Yoon, K. J., J. J. Zimmerman, C. C. Chang, S. Cancel-Tirado, K. M. Harmon, and M. J. McGinley. 1999. Effect of chal- lenge dose and route on porcine reproductive and respiratory syndrome virus (PRRSV) infection in young swine. Vet. Res. 30:629–638. Yoon, K. J., L. L. Wu, J. J. Zimmerman, and K. B. Platt. 1997. Field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to antibody dependent enhancement (ADE) of infection. Vet. Microbiol. 55:277–287. Yoshimura, A., Wakabayashi, Y., and Mori, T. (2010). Cellular and molecular basis for the regulation of inflammation by TGF-beta. Journal of Biochemistry, 147(6), 781–789. Zhang, H., W. Ma, Z. Sun, C. Zhu, G. M. Werid, Y. M. Ibrahim, W. Zhang, Y. Pan, D. Shi, H. Chen, and Y. Wang. 2021. Abundance of Lactobacillus in porcine gut microbiota is closely related to immune response following PRRSV immunization. Vet. Microbiol. 259:109134. Zhang, L., W. Li, Y. Sun, L. Kong, P. Xu, P. Xia, and G. Zhang. 2020. Antibody-mediated porcine reproductive and respiratory syndrome virus infection downregulates the production of interferon-α and tumor necrosis factor-α in porcine alveolar macrophages via Fc gamma receptor I and III. Viruses. 12:187. Zuckermann, F. A., E. A. Garcia, I. D. Luque, J. Christopher- Hennings, A. Doster, M. Brito, and F. Osorio. 2007. Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma- IFN-producing cells and virological parameters of protection upon challenge. Vet. Microbiol. 123:69–85. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90712 | - |
dc.description.abstract | 豬繁殖與呼吸症候群病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)是豬隻嚴重的病毒性疾病。PRRSV 能夠破壞早期的先天免疫反應,引起主 要的肺臟病變,至今仍然是全球豬隻中最嚴重的疾病。益生菌被定義為具有促進健 康的微生物食品補充劑。益生菌可能帶來有益作用,包括產生抗微生物物質、調節 免疫反應和促進宿主先天防禦機制。最重要的是,已經有研究證實益生菌可以對抗 病毒。
本研究的目的是建立一個體外模型,以研究益生菌對 MARC-145 細胞中 PRRSV 的抗病毒潛力。從離乳前的小豬中分離出乳酸菌(lactic acid bacteria,LAB)菌株。 通過 MTT 試驗,排除對 MARC-145 細胞有細胞毒性的乳酸菌菌株。Plaque 試驗的結 果顯示,PRRSV 力價為 8.6×10! PFU/mL。根據 MTT 試驗搭配 TCID50,稀釋10"倍 的病毒液使 MARC-145 細胞活性低於 50%,將此濃度用於後續實驗。 根據抗病毒試驗,發現部分 LAB 菌株具有抗 PRRSV 的能力。首先,在預處理試 驗中,HH35 和 HH69 菌株顯著提高了 MARC-145 細胞的活性,兩者皆有效減少胞外 的病毒量,此結果與 ISG15、IL-8 有關。在感染後處理試驗中,與 OAS1、TGF-𝛽1、 IL-8 有關,HH09 和 HH32(1)菌株也能顯著提高細胞的活性,兩者皆有效減少胞內外 的病毒量。在競爭試驗中,與 TGF-𝛽1、TNF-𝛼、IL-6、IL-8 有關,HH09 和 HH32(1) 菌株也具有顯著的抗病毒效果,有效減少胞內外的病毒量。此外,與 TGF-𝛽1、TNF- 𝛼、IL-6、IL-8、IL-10 有關,所有 LAB 菌株在無細胞預處理試驗中均呈現有效對抗 病毒的反應,其中 HH32(1) 有效減少胞內的病毒量。這些 LAB 菌株經過 16S rDNA 序列及 API 20 strep 和 API 50 CHL 生化測試分析為 Limosilactobacillus reuteri、 Enterococcus faecium 和 Enterococcus faecalis 相關菌株。HH32(1)菌株在 pH 3 的情況 下具有抗酸特性。HH35、HH69 菌株在抗膽鹽特性上生長曲線雖顯著低於對照組, 但仍能持續生長。HH09 對 Ampicillin、Chloramphenicol、Kanamycin、Spectinomycin、 Streptomycin、Vancomycin 等抗生素不具抗性,因此較不具有抗藥性之疑慮。最後, HH09、HH32(1)、HH35、HH69 菌株皆可抵抗 Salmonella enterica BCRC 12947、 Listeria monocytogenes BCRC 15338 及 BCRC 15378 等病原菌。綜上所述,HH09、 HH32(1)、HH35、HH69 菌株都有潛力成為具有抗 PPRS 病毒效果的益生菌。 | zh_TW |
dc.description.abstract | Porcine reproductive and respiratory syndrome virus (PRRSV) is a severe viral disease affecting pigs. PRRSV disrupts early innate immune responses and primarily causes lung pathology, making it the most significant disease in global swine populations. Probiotics are defined as microbial food supplements that promote health. Probiotics have shown beneficial effects, including the production of antimicrobial substances, modulation of immune responses, and enhancement of host innate defense mechanisms. Importantly, research has demonstrated the potential of probiotics to combat viral infections.
The objective of this study is to establish an in vitro model to investigate the antiviral potential of probiotics against PRRSV in MARC-145 cells. Lactic acid bacteria (LAB) strains were isolated from pre-weaned piglets. LAB strains that exhibited cytotoxicity to MARC-145 cells were excluded through the MTT assay. The plaque assay confirmed a viral titer of 8.6 × 10!PFU/mL. Based on the MTT assay and TCID50, a virus dilution of 10#"was determined, resulting in MARC-145 cell viability below 50% for subsequent experiments. The antiviral assays revealed that certain LAB strains displayed significant anti-PRRSV activity. In the pretreatment assay, strains HH35 and HH69 significantly increased the viability of MARC-145 cells while effectively reducing extracellular viral load, which correlated with ISG15 and IL-8. In the post-infection assay, strains HH09 and HH32(1) exhibited a significant increase in cell viability and effectively reduced both intracellular and extracellular viral load, associated with OAS1, TGF-β1, and IL-8. In the competition assay, strains HH09 and HH32(1) demonstrated remarkable antiviral effects, correlated with TGF- β1, TNF-α, IL-6, IL-8, effectively reducing both intracellular and extracellular viral load. Additionally, in the cell-free preincubation assay, all LAB strains exhibited a positive response against the virus, correlated with TGF-β1, TNF-α, IL-6, IL-8, and IL-10, with HH32(1) effectively reducing intracellular viral load. Through 16S rDNA sequencing and biochemical tests using API 20 strep and API 50 CHL, the LAB strains were identified as Limosilactobacillus reuteri, Enterococcus faecium, and Enterococcus faecalis. Strain HH32(1) demonstrated acid resistance at pH 3. While strains HH35 and HH69 exhibited growth curves significantly lower than the control group in terms of bile salt tolerance, they still exhibited sustained growth. Strain HH09 did not exhibit resistance to antibiotics such as Ampicillin, Chloramphenicol, Kanamycin, Spectinomycin, Streptomycin, and Vancomycin, indicating a lower concern for antibiotic resistance. Finally, strains HH09, HH32(1), HH35, and HH69 demonstrated resistance against pathogenic bacteria such as Salmonella enterica BCRC 12947, Listeria monocytogenes BCRC 15338, and BCRC 15378. In conclusion, strains HH09, HH32(1), HH35, and HH69 show potential as probiotics with anti-PRRSV effects. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:17:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:17:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝........................................................................................i
中文摘要................................................................................iii 英文摘要...................................................................................v 目錄......................................................................................vii 圖目錄...................................................................................xii 表目錄...................................................................................xiv 前言.......................................................................................1 第一章、文獻探討.....................................................................2 一、豬繁殖與呼吸症候群.............................................................2 (一)病毒簡介....................................................................2 (二)基本構造....................................................................2 (三)病毒種類及地理分佈.....................................................3 (四)歷史沿革....................................................................3 (五)感染途徑....................................................................4 (六)臨床症狀....................................................................4 (七)經濟損失....................................................................5 (八)疫苗防治....................................................................6 (九)病毒引起的免疫反應.....................................................7 二、益生菌...............................................................................8 (一)益生菌之定義..............................................................8 (二)益生菌之特性..............................................................8 1. 耐酸之特性................................................................8 2. 耐膽鹽之特性.............................................................8 3. 抗生素之敏感性..........................................................9 4. 抗特定病原菌之能力....................................................9 5. 腸道吸附之特性........................................................10 6. 其他特性.................................................................10 三、乳酸菌.............................................................................10 (一)乳酸菌菌種鑑定方式...................................................10 1. API 20 strep .............................................................11 2. API 50 CHL .............................................................11 3. 常見乳酸菌種之形態特徵 ...........................................11 4. 常見乳酸菌培養特性 .................................................12 5. 16S rDNA ...............................................................12 6. Gyrase B 基因...........................................................12 7. rpo A 基因...............................................................13 8. 酵素聯合免疫吸附法(ELISA) .......................................13 (二)乳酸菌的主要功用.......................................................13 (三)常見乳酸菌的種類與特性..............................................13 (四)乳酸菌對於豬隻之應用.................................................14 四、細胞模型...........................................................................14 (一)非洲綠猴胚胎腎細胞(MARC145).................................14 (二)豬肺泡巨噬細胞(PAM).............................................15 五、MTT assay ........................................................................15 六、干擾素.............................................................................16 (一)干擾素之種類與特性.....................................................16 (二)干擾素之抗病毒機制.....................................................16 (三)干擾素之抗 PRRS 效應..................................................16 (四)與干擾素相關之常見基因...............................................18 七、乳酸菌對於豬隻抗病毒之應用...............................................19 八、研究動機..........................................................................19 第二章、材料與方法.................................................................25 一、豬繁殖與呼吸症候群之病毒..................................................25 (一)病毒製備..................................................................25 (二)病毒力價..................................................................26 (三)病毒力價計算............................................................26 二、乳酸菌.............................................................................26 (一)乳酸菌之篩選............................................................26 (二)乳酸菌之鑑定............................................................27 1. 16S rDNA、rpoA 基因定序............................................27 2. 微生菌鑑定套組:API 20 strep .......................................27 3. 微生菌鑑定套組:API 50 CHL .......................................28 (三)乳酸菌之預處理.........................................................29 (四)BSA protein assay ........................................................29 三、非洲綠猴胚胎腎細胞...........................................................30 (一)細胞株活化...............................................................30 (二)細胞株之繼代培養......................................................30 (三)細胞株冷凍保存.........................................................30 四、經乳酸菌處理之 MARC145 細胞毒性分析................................31 五、病毒感染之 MARC145 細胞活性分析......................................31 六、經乳酸菌處理之 MARC145 細胞之抗病毒活性..........................32 (一)Pretreatment assay .......................................................32 (二)Post-infection treatment assay ..........................................33 (三)Competition assay .......................................................33 (四)Cell-free preincubation assay ..........................................34 七、MARC145 細胞之第一型干擾素下游基因、介白素、與病毒表現...35 (一)細胞 RNA 採集...........................................................35 (二)胞外液 RNA 採集........................................................36 (三)反轉錄聚合酶鏈鎖反應................................................36 (四)即時聚合酶鏈鎖反應...................................................37 八、益生菌之特性分析..............................................................37 (一)耐酸測試..................................................................37 (二)耐膽鹽測試...............................................................38 (三)抗生素敏感性測試......................................................38 (四)抗病原菌測試............................................................38 九、統計分析..........................................................................39 第三章、實驗結果....................................................................44 一、豬繁殖與呼吸症候群之病毒力價............................................44 二、經乳酸菌處理之 MARC145 細胞毒性......................................44 三、病毒感染之 MARC145 細胞活性............................................44 四、經乳酸菌處理之 MARC145 細胞之抗病毒活性..........................44 (一)Pretreatment assay .......................................................44 (二)Post-infection treatment assay ..........................................45 (三)Competition assay .......................................................45 (四)Cell-free preincubation assay ..........................................45 五、MARC145 細胞之第一型干擾素下游基因表現量........................45 (一)Pretreatment assay .......................................................45 (二)Post-infection treatment assay ..........................................46 (三)Competition assay .......................................................46 (四)Cell-free preincubation assay ..........................................46 六、乳酸菌之菌種鑑定..............................................................47 (一)16S rDNA、rpoA 基因定序............................................47 (二)微生物鑑定套組(API 20 strep and API 50 CHL)...............47 七、益生菌之特性分析..............................................................48 (一)耐酸測試..................................................................48 (二)耐膽鹽測試...............................................................48 (三)抗生素敏感性測試......................................................48 (四)抗病原菌測試............................................................49 第四章、討論..........................................................................75 第五章、結論..........................................................................82 參考文獻................................................................................83 | - |
dc.language.iso | zh_TW | - |
dc.title | 具抗豬繁殖與呼吸症候群病毒能力之乳酸菌株篩選 | zh_TW |
dc.title | Screening of lactic acid bacteria strains with anti-porcine reproductive and respiratory syndrome virus | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝建元;劉啟德;張惠雯;陳勁初 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Yan Hsieh;Chi-Te Liu;Hui-Wen Chang;Chin-Chu Chen | en |
dc.subject.keyword | Porcine reproductive and respiratory syndrome virus (PRRSV),益生菌(LAB),抗病毒,乳酸菌,Limosilactobacillus reuteri,Enterococcus faecium,Enterococcus faecalis, | zh_TW |
dc.subject.keyword | Porcine reproductive and respiratory syndrome virus (PRRSV),probiotics,anti- viral,lactic acid bacteria (LAB),Limosilactobacillus reuteri,Enterococcus faecium,Enterococcus faecalis, | en |
dc.relation.page | 96 | - |
dc.identifier.doi | 10.6342/NTU202302037 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 42.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。