Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90711
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林祥泰zh_TW
dc.contributor.advisorShiang-Tai Linen
dc.contributor.author林子新zh_TW
dc.contributor.authorTzu-Hsin LINen
dc.date.accessioned2023-10-03T17:17:19Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationBerry, M. V. (1971). The molecular mechanism of surface tension. Phys. Educ., 6, 79.
F.J. Zuiderweg and A. Harmens (1958), "The influence of surface phenomena on the performance of distillation columns," Chemical Engineering Science, vol. 9, no. 2, pp. 89-103.
Saheed Olawale Olayiwola and Morteza Dejam (2019), "A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs," Fuel, vol. 241, pp. 1045-1057.
Daniela Georgieva (2009), Alain Cagna, and Dominique Langevin, "Link between surface elasticity and foam stability," Soft Matter, vol. 5, pp. 2063-2071.
Heydweiller, A. (1910). “Concerning the physical characteristics of solutions in correlation. II. Surface tension and electronic conductivity of watery salt solutions.” Ann. Phys, 33, 145-185.
Jones, G. and W. A. Ray (1935). "THE SURFACE TENSION OF SOLUTIONS." Journal of the American Chemical Society 57(5): 957-958.
Jones, G. and W. A. Ray (1937). "The Surface Tension of Solutions of Electrolytes as a Function of the Concentration. I. A Differential Method for Measuring Relative Surface Tension." Journal of the American Chemical Society 59(1): 187-198.
Jones, G. and W. A. Ray (1941). "The Surface Tension of Solutions of Electrolytes as a Function of the Concentration II*." Journal of the American Chemical Society 63(1): 288-294.
Jones, G. and W. A. Ray (1941). "The Surface Tension of Solutions of Electrolytes as a Function of the Concentration. III. Sodium Chloride." Journal of the American Chemical Society 63(12): 3262-3263.
Jones, G. and W. A. Ray (1942). "The Surface Tension of Solutions of Electrolytes as a Function of the Concentration. IV. Magnesium Sulfate." Journal of the American Chemical Society 64(12): 2744-2745.
Dole, M., Swartout, J. A. (1940). A twin-ring surface tensiometer. I. The apparent surface tension of potassium chloride solutions. J. Am. Chem. Soc., 62, 3039-3045.
F.A. Long, G.C. Nutting (1942), “The Relative Surface Tension of Potassium Chloride Solutions by a Differential Bubble Pressure Method1”, J. Am. Chem. Soc. 64 (10) 2476–2482
Y. Uematsu, K. Chida, H. Matsubara, (2018). Intentionally Added Ionic Surfactants Induce Jones-Ray Effect at Air-Water Interface. Colloid and Interface Science Communications, 27, 45-48.
Thy D. U. Phan, An H. T. Phan, Khoa C. M. Le, Thi H. Le, and Khoi T. Nguyen (2021). Utilization of Ultrafine Gas Bubbles to Investigate the Jones–Ray Effect of Diluted Salt Solutions. Langmuir, 37(49), 14237-14242.
Okur, H. I., et al. (2018). "The Jones-Ray Effect is not Caused by Surface Active Impurities." The Journal of Physical Chemistry Letters
Okur, H. I., et al. (2017). "The Jones-Ray effect reinterpreted: Surface tension minima of low ionic strength electrolyte solutions are caused by electric field induced water-water correlations." Chemical Physics Letters
G. Schay (1977). A comprehensive presentation of the thermodynamics of adsorption excess quantities. In E. Wolfram (Ed.), Colloid and Surface Science (pp. 393-400). Pergamon.
A. Ch. Mitropoulos (2008). “What is a surface excess? ” Journal of Engineering Science and Technology Review 1 (2008) 1-3 Lecture note
Wagner, C. (1924). The surface tension of dilute solutions of electrolytes. Phys. Z, 25, 474.
Onsager, L., et al. (1934). "The Surface Tension of Debye‐Hückel Electrolytes." The Journal of Chemical Physics 2(8): 528-536.
Levin Y. (2001)." Surface tension of strong electrolytes." Europhys. Lett., 56 (2), pp. 187–192
Oshima (2004). " Surface tension of general electrolyte solutions." Colloid Polym Sci 283: 119–124
Levin Y. (2009)." Ions at the Air-Water Interface: An End to a Hundred-Year-Old Mystery?." Physical Review Letters, PRL 103, 257802
Philippe Leroy, Arnault Lassin, Mohamed Azaroual, Laurent André. (2010). “Predicting the surface tension of aqueous 1:1 electrolyte solutions at high salinity.” Geochimica et Cosmochimica Acta, Elsevier, 2010,74 (19), p. 5427-5442.
R. Kumar, M. Muthukumar (2020). Surface Tension of Dielectric–Air Interfaces. The Journal of Physical Chemistry B, 124(25), 5265-5270.
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926-935.
Jorgensen, W. L., Chandrasekhar, J., & Madura, J. D. (1983). Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water: TIP4P, TIP4P-Ew, TIP5P, SPC, and SPC/E. Journal of Chemical Physics, 79(2), 926-935.
Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269-6271.
Abascal, J. L. F., Sanz, E., García Fernández, R., & Vega, C. (2005). A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of chemical physics, 122(23), 234511.
Abascal, J. L. F., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. Journal of Chemical Physics, 123(23), 234505.
Reddy, M. R., & Berkowitz, M. (1987). Structure and dynamics of high‐pressure TIP4P water. The Journal of chemical physics, 87(11), 6682-6686.
Reddy, M. R., & Berkowitz, M. (1988). Temperature dependence of conductance of the Li+, Cs+, and Cl− ions in water: Molecular dynamics simulation. The Journal of chemical physics, 88(11), 7104-7110.
Reddy, M. R., & Berkowitz, M. (1989). The dielectric constant of SPC/E water. Chemical physics letters, 155(2), 173-176.
Perera, L., & Berkowitz, M. L. (1991). Many‐body effects in molecular dynamics simulations of Na+ (H2O) n and Cl−(H2O) n clusters. The Journal of chemical physics, 95(3), 1954-1963.
Perera, L., & Berkowitz, M. L. (1992). Structure and dynamics of Cl−(H2O) 20 clusters: The effect of the polarizability and the charge of the ion. The Journal of chemical physics, 96(11), 8288-8294.
Perera, L., & Berkowitz, M. L. (1993). Stabilization energies of Cl−, Br−, and I− ions in water clusters. The Journal of chemical physics, 99(5), 4222-4224.
Perera, L., & Berkowitz, M. L. (1994). Structures of Cl−(H2O) n and F−(H2O) n (n= 2, 3,..., 15) clusters. Molecular dynamics computer simulations. The Journal of chemical physics, 100(4), 3085-3093.
Jungwirth, P., & Tobias, D. J. (2001). Molecular structure of salt solutions: A new view of the interface with implications for heterogeneous atmospheric chemistry. The Journal of Physical Chemistry B, 105(43), 10468-10472.
Jungwirth, P., & Tobias, D. J. (2002). Ions at the air/water interface. The Journal of Physical Chemistry B, 106(25), 6361-6373.
Mucha, M., Frigato, T., Levering, L. M., Allen, H. C., Tobias, D. J., Dang, L. X., & Jungwirth, P. (2005). Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. The Journal of Physical Chemistry B, 109(16), 7617-7623.
Jungwirth, P., & Tobias, D. J. (2006). Specific ion effects at the air/water interface. Chemical reviews, 106(4), 1259-1281.
Tobias, D. J., Stern, A. C., Baer, M. D., Levin, Y., & Mundy, C. J. (2013). Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces. Annual Review of Physical Chemistry, 64, 339-359.
Bhatt, D., Chee, R., Newman, J., & Radke, C. J. (2004). Molecular simulation of the surface tension of simple aqueous electrolytes and the Gibbs adsorption equation. Current opinion in colloid & interface science, 9(1-2), 145-148.
Bhatt, D., Newman, J., & Radke, C. J. (2004). Molecular dynamics simulations of surface tensions of aqueous electrolytic solutions. The Journal of Physical Chemistry B, 108(26), 9077-9084.
D’Auria, R., & Tobias, D. J. (2009). Relation between surface tension and ion adsorption at the air− water interface: a molecular dynamics simulation study. The Journal of Physical Chemistry A, 113(26), 7286-7293.
Neyt, J. C., Wender, A., Lachet, V., Ghoufi, A., & Malfreyt, P. (2013). Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models. Physical Chemistry Chemical Physics, 15(28), 11679-11690.
Peng, T., Firouzi, M., Li, Q., & Peng, K. (2015). Surface force at the nano-scale: Observation of non-monotonic surface tension and disjoining pressure. Physical Chemistry Chemical Physics, 17(32), 20502-20507.
Wang, X., Chen, C., Binder, K., Kuhn, U., Pöschl, U., Su, H., & Cheng, Y. (2018). Molecular dynamics simulation of the surface tension of aqueous sodium chloride: from dilute to highly supersaturated solutions and molten salt. Atmospheric Chemistry and Physics, 18(23), 17077-17086.
Alhosani, M., Asthagiri, D., Puerto, M., & Chapman, W. G. (2020). Insights into the mechanisms affecting water/oil interfacial tension as a function of salt types and concentrations. Fluid Phase Equilibria, 522, 112771.
Sakhtemanian, L., Dashti, N., & Ghatee, M. H. (2022). A singular behavior at the electrolytes solution surfaces: Experimental and simulation investigation over an extended range of temperature. Fluid Phase Equilibria, 555, 113347.
Hocknew, R.W., S.P. Goel, and J.W. Eastwood (1973). 10000Particle Molecular Dynamics Model with Long-Range Forces. Chemical Physics Letters, 21(3), 589-591.
J. E. Lennard-Jones (1924). On the determination of molecular fields. II. From the equation of state of a gas. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738), 463-477.
Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092.
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577-8593.
Landau, L. D., & Lifshitz, E. M. (1980). v. V, Statistical Physics, Part I.
Kittel, C., & Kroemer, H. (1998). Thermal physics.
Nosé, S. (1984). "A molecular dynamics method for simulations in the canonical ensemble." Molecular Physics 52(2): 255-268.
Ikeda, S., et al. (1978). "The application of the Gibbs adsorption isotherm to aqueous solutions of a nonionic-cationic surfactant." Journal of Colloid and Interface Science 67(2): 336-348.
Stephenson, J. (1974). "Fluctuations in Particle Number in a Grand Canonical Ensemble of Small Systems". American Journal of Physics. 42 (6): 478–481.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314(1-2), 141-151
Qi, R., Wei, G., Ma, B., & Nussinov, R. (2018). Replica exchange molecular dynamics: a practical application protocol with solutions to common problems and a peptide aggregation and self-assembly example. Peptide self-assembly: Methods and protocols, 101-119.
Debye, P., & Hückel, E. (1923). Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, 24, 185-206.
Zhou, J., Lu, X., Wang, Y., & Shi, J. (2002). Molecular dynamics study on ionic hydration. Fluid Phase Equilibria, 194, 257-270.
Dassault Systèmes BIOVIA, Material Studio, 5.0, San Diego:Dassault Systèmes, 2017
Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474-6487.
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25.
Evans, R. (1979). "The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids." Advances in Physics 28(2): 143-200.
Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of chemical physics, 18(6), 817-829.
Gazith, M. (1964). Activity Coefficients of Various Electrolytes. Molal and Molar Concentrations (No. IA-1004). Israel. Atomic Energy Commission. Soreq Research Establishment, Rehovoth.
Floriano, M. A., & Angell, C. A. (1990). Surface tension and molar surface free energy and entropy of water to-27.2. degree. C. Journal of Physical Chemistry, 94(10), 4199-4202.
Vega, C., & de Miguel, E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. The Journal of chemical physics, 126(15), 154707.
Gaiduk, A. P., & Galli, G. (2017). Local and Global Effects of Dissolved Sodium Chloride on the Structure of Water. The Journal of Physical Chemistry Letters, 8(7), 1496–1502.
Bouazizi, S., Nasr, S., Jaîdane, N., & Bellissent-Funel, M.-C. (2006). Local Order in Aqueous NaCl Solutions and Pure Water: X-ray Scattering and Molecular Dynamics Simulations Study. The Journal of Physical Chemistry B, 110(46), 23515–23523.
Ghoufi, A., Malfreyt, P., & Tildesley, D. J. (2016). Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chemical Society Reviews, 45(5), 1387-1409.
Jarvis, N. L., & Scheiman, M. A. (1968). Surface potentials of aqueous electrolyte solutions. The Journal of Physical Chemistry, 72(1), 74-78.
Filippini, G., Bourasseau, E., Ghoufi, A., Goujon, F., & Malfreyt, P. (2014). Communication: Slab thickness dependence of the surface tension: Toward a criterion of liquid sheets stability. The Journal of Chemical Physics, 141(8).
Bourasseau, E., Homman, A. A., Durand, O., Ghoufi, A., & Malfreyt, P. (2013). Calculation of the surface tension of liquid copper from atomistic Monte Carlo simulations. The european physical journal B, 86, 1-8.
Errington, J. R., & Kofke, D. A. (2007). Calculation of surface tension via area sampling. The Journal of chemical physics, 127(17).
Orea, P., López-Lemus, J., & Alejandre, J. (2005). Oscillatory surface tension due to finite-size effects. The Journal of chemical physics, 123(11).
Biscay, F., Ghoufi, A., Goujon, F., Lachet, V., & Malfreyt, P. (2009). Calculation of the surface tension from Monte Carlo simulations: Does the model impact on the finite-size effects?. The Journal of chemical physics, 130(18).
Alejandre, J., & Chapela, G. A. (2010). The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. The Journal of chemical physics, 132(1).
Isele-Holder, R. E., Mitchell, W., & Ismail, A. E. (2012). Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. The Journal of chemical physics, 137(17).
Míguez, J. M., Piñeiro, M. M., & Blas, F. J. (2013). Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation. The Journal of Chemical Physics, 138(3).
Goujon, F., Ghoufi, A., Malfreyt, P., & Tildesley, D. J. (2015). Controlling the long-range corrections in atomistic Monte Carlo simulations of two-phase systems. Journal of Chemical Theory and Computation, 11(10), 4573-4585.
Yeh, I. C., & Berkowitz, M. L. (1999). Ewald summation for systems with slab geometry. The Journal of chemical physics, 111(7), 3155-3162.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90711-
dc.description.abstract電解質水溶液的表面張力在眾多化學工程過程中起著至關重要的作用。經典靜電理論預測,隨著電解質濃度的增加,表面張力會單調增加。然而,瓊斯和雷(Jones and Ray)發現,電解質溶液在非常低濃度(約1 mM)時的表面張力比純水低,這種現象經典理論無法解釋。迄今為止,這一有趣現象的原因仍不清楚且存在爭議。

本研究利用分子動力學(MD),混和分子動力學-蒙地卡羅(hybrid MDMC)以及並行退火(REMD)模擬,研究了不同濃度下氯化鈉水溶液的表面張力。通過壓力和表面過剩濃度計算表面張力,並研究了離子分佈和表面水分子方向。我們模擬得到的高濃度區域的表面張力與實驗值相似,並遵循實驗數據的趨勢。在低濃度區域,儘管直接計算表面張力存在較大的統計不確定性,但鹽類在表面的聚集傾向可能表示了基於吉布斯吸附方程式(Gibbs adsorption equation)的降低表面張力現象。
zh_TW
dc.description.abstractThe surface tension of an electrolyte aqueous solution plays a crucial role in numerous chemical engineering processes. Classical electrostatic theory predicts a monotonic increase of surface tension with electrolyte concentration. However, Jones and Ray observed that the surface tension of electrolyte solutions is lower at very low concentrations (~1 mM) compared to that of pure water, which cannot be explained by classical theory. Until now, the reasons behind this interesting phenomenon remain unclear and controversial.

In this study, molecular dynamics (MD), hybrid molecular dynamics and Monte Carlo (hybrid MDMC), and replica-exchange molecular dynamics (REMD) simulations are used to investigate the surface tension of aqueous NaCl solutions at different concentrations. The surface tension was calculated using stress and Gibbs adsorption equation, while ion distribution and surface water molecular orientation were also studied. The surface tensions obtained from our simulations in the high concentration region are similar to the experimental values and follow the same trend as the experimental data. In the low concentration region, while the direct calculating of surface tension is subject to large statistical uncertainty, the preferred accumulation of NaCl near the surface may suggest a lowered surface tension based on Gibbs adsorption isotherm.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:17:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:17:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Surface Tension of Ionic Solution and Its Applications 1
1.2 Previous Research 3
1.2.1 Experimental Studies 3
1.2.2 Theoretical Studies 4
1.2.3 Simulation Studies 6
1.3 Motivation and Objectives 9
Chapter 2 Theory 10
2.1 Molecular Dynamics Simulation 10
2.2 Integration of Equation of Motion 11
2.3 Force Field 12
2.3.1 Non-Bond Terms 12
2.3.2 Valence Terms 14
2.4 Ensemble 15
2.5 Temperature Thermostat 15
2.6 Gibbs Adsorption Equation 16
2.7 Monte Carlo Simulation 17
2.8 Replica Exchange Method 18
2.9 Debye Hückel Theory 19
2.10 Radial Distribution Function 20
Chapter 3 Computational Details 21
3.1 Models 21
3.2 Force Field 22
3.3 MD Simulation 23
3.4 Hybrid MDMC Simulation 25
3.5 REMD Simulation 26
3.6 Analysis 27
3.6.1 Distribution 27
3.6.2 Surface Excess 28
3.6.3 Structure and Orientation of Water 29
3.6.4 Surface Tension 30
3.6.4.1 Calculate Surface Tension by Stress 30
3.6.4.2 Calculate Surface Tension by Gibbs Adsorption Equation 31
Chapter 4 Result and Discussion 34
4.1 Model Validation 34
4.1.1 Surface Tension of Pure Water 34
4.1.2 RDF 35
4.1.3 Size Effect 37
4.2 High Concentration Solution 38
4.2.1 Structure and Orientation of Water 38
4.2.2 Surface Tension Calculated by Stress 42
4.2.3 Surface Tension Calculated by Gibbs Adsorption Equation 44
4.3 Low Concentration Solution 47
4.3.1 Classical MD 47
4.3.1.1 Surface Tension Calculated by Stress 47
4.3.1.2 Discussion: Challenges of Simulate Low Concentration Solution by Classical MD Simulation. 48
4.3.2 Hybrid MDMC 50
4.3.2.1 The Effect of the Simulation Parameters 50
4.3.2.2 Surface Tension Calculated by Stress. 52
4.3.2.3 Surface Tension Calculated by Gibbs Adsorption Equation 53
4.3.2.4 Discussion: Surface Tension in the Presence of Ions at the Surface Region. 55
4.3.2.5 Discussion: The Performance of Hybrid MDMC Method. 57
4.3.3 REMD 59
4.3.3.1 The effect of the simulation parameters 59
4.3.3.2 Surface Tension Calculated by Stress 59
4.3.3.3 Discussion: The Performance of REMD Method. 61
Chapter 5 Conclusion 64
REFERENCES 66
-
dc.language.isoen-
dc.subject蒙特卡羅模擬zh_TW
dc.subject液-氣界面zh_TW
dc.subject分子動力學模擬zh_TW
dc.subject表面過剩濃度zh_TW
dc.subject電解質水溶液zh_TW
dc.subject表面張力zh_TW
dc.subjectSurface tensionen
dc.subjectMolecular dynamic simulationen
dc.subjectAqueous electrolyte solutionen
dc.subjectLiquid-air interfaceen
dc.subjectSurface excess concentrationen
dc.subjectMonte Carlo simulationen
dc.title極低濃度NaCl水溶液表面張力的理論研究zh_TW
dc.titleTheoretical Study on the Surface Tension of NaCl Aqueous Solution at Extremely Low Concentrationsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳台偉;洪英傑;賴品光zh_TW
dc.contributor.oralexamcommitteeTai-Wei Wu;Ying-Chieh Hung;Pin-Kuang Laien
dc.subject.keyword表面張力,電解質水溶液,分子動力學模擬,蒙特卡羅模擬,液-氣界面,表面過剩濃度,zh_TW
dc.subject.keywordSurface tension,Aqueous electrolyte solution,Molecular dynamic simulation,Monte Carlo simulation,Liquid-air interface,Surface excess concentration,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202301888-
dc.rights.note未授權-
dc.date.accepted2023-07-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
2.09 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved