請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90707
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林沛群 | zh_TW |
dc.contributor.advisor | Pei-Chun Lin | en |
dc.contributor.author | 莊源誠 | zh_TW |
dc.contributor.author | Yuan-Cheng Zhuang | en |
dc.date.accessioned | 2023-10-03T17:16:17Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | [1] 陳為熙, "輪足快速變換平台及其仿生控制架構之開發," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2013.
[2] 陳慎強, "輪足複合式移動平台運動模式開發," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2011. [3] 沈宣諭, "輪足雙模式運動平台之研發," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2009. [4] 陳宣妤, "具快速變換與跳躍能力之輪足模組開發," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2020. [5] D. Lakatos et al., "Dynamic locomotion gaits of a compliantly actuated quadruped with slip-like articulated legs embodied in the mechanical design," IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3908-3915, 2018. [6] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, "Design of HyQ–a hydraulically and electrically actuated quadruped robot," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831-849, 2011. [7] C. Semini, "HyQ-design and development of a hydraulically actuated quadruped robot," Doctor of Philosophy (Ph. D.), University of Genoa, Italy, 2010. [8] I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, and D. G. Caldwell, "Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ)," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 6052-6057. [9] M. Hutter et al., "Anymal-a highly mobile and dynamic quadrupedal robot," in 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2016: IEEE, pp. 38-44. [10] M. Hutter et al., "Anymal-toward legged robots for harsh environments," Advanced Robotics, vol. 31, no. 17, pp. 918-931, 2017. [11] P. Fankhauser and M. Hutter, "Anymal: a unique quadruped robot conquering harsh environments," Research Features, no. 126, pp. 54-57, 2018. [12] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, "Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot," in 2013 IEEE International Conference on Robotics and Automation, 2013: IEEE, pp. 3307-3312. [13] B. Katz, J. Di Carlo, and S. Kim, "Mini cheetah: A platform for pushing the limits of dynamic quadruped control," in 2019 international conference on robotics and automation (ICRA), 2019: IEEE, pp. 6295-6301. [14] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, "Mit cheetah 3: Design and control of a robust, dynamic quadruped robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 2245-2252. [15] P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, "Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots," Ieee transactions on robotics, vol. 33, no. 3, pp. 509-522, 2017. [16] B. Dynamics. "SPOT® Automate sensing and inspection, capture limitless data, and explore without boundaries." https://www.bostondynamics.com/products/spot (accessed 2023). [17] Y.-S. Kim, G.-P. Jung, H. Kim, K.-J. Cho, and C.-N. Chu, "Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels," IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1487-1498, 2014. [18] F. Zhou, H. Xu, and X. Zhang, "A wheel-track-leg hybrid locomotion mechanism based on transformable rims," in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017: IEEE, pp. 315-320. [19] L.-H. Pan, C.-N. Kuo, C.-Y. Huang, and J. J. Chou, "The Claw-Wheel transformable hybrid robot with reliable stair climbing and high maneuverability," in 2016 IEEE International Conference on Automation Science and Engineering (CASE), 2016: IEEE, pp. 233-238. [20] K. Tadakuma et al., "Armadillo-inspired wheel-leg retractable module," in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009: IEEE, pp. 610-615. [21] J. Kim, Y.-G. Kim, J.-H. Kwak, D.-H. Hong, and J. An, "Wheel & Track hybrid robot platform for optimal navigation in an urban environment," in Proceedings of SICE Annual Conference 2010, 2010: IEEE, pp. 881-884. [22] D. Lu et al., "Mechanical system and stable gait transformation of a leg-wheel hybrid transformable robot," in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2013: IEEE, pp. 530-535. [23] D. Zhang and D. Wang, "WALS-robot: A compact and transformable Wheel-Arm-Leg-Sucker hybrid robot," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016: IEEE, pp. 2584-2589. [24] Y.-J. Dai, E. Nakano, T. Takahashi, and H. Ookubo, "Motion control of leg-wheel robot for an unexplored outdoor environment," in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96, 1996, vol. 2: IEEE, pp. 402-409. [25] A. Suzumura and Y. Fujimoto, "Real-time motion generation and control systems for high wheel-legged robot mobility," IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3648-3659, 2013. [26] J. A. Smith, I. Sharf, and M. Trentini, "PAW: a hybrid wheeled-leg robot," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006: IEEE, pp. 4043-4048. [27] 林紘生, "輪足複合機器人之動態步態與越障姿態調控," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2015. [28] P. Pillay and R. Krishnan, "Modeling, simulation, and analysis of permanent-magnet motor drives. II. The brushless DC motor drive," IEEE transactions on Industry applications, vol. 25, no. 2, pp. 274-279, 1989. [29] W. Wu, "DC motor parameter identification using speed step responses," Modelling and Simulation in Engineering, vol. 2012, pp. 30-30, 2012. [30] C. Xiang, X. Wang, Y. Ma, and B. Xu, "Practical modeling and comprehensive system identification of a BLDC motor," Mathematical Problems in Engineering, vol. 2015, 2015. [31] S. Hwang, N. Perkins, A. Ulsoy, and R. Meckstroth, "Rotational response and slip prediction of serpentine belt drive systems," in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 1993, vol. 11788: American Society of Mechanical Engineers, pp. 61-71. [32] G. Gerbert, H. Jo¨ nsson, U. Persson, and G. Stensson, "Load distribution in timing belts," 1978. [33] M. Callegari, F. Cannella, and G. Ferri, "Multi-body modelling of timing belt dynamics," Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 217, no. 1, pp. 63-75, 2003. [34] S. Long, X. Zhao, W.-B. Shangguan, and W. Zhu, "Modeling and validation of dynamic performances of timing belt driving systems," Mechanical Systems and Signal Processing, vol. 144, p. 106910, 2020. [35] P.-W. Hsueh and M.-C. Tsai, "Reactive torque monitoring and cycling speed control of a belt-driven cycle ergometer," Control Engineering Practice, vol. 21, no. 11, pp. 1564-1576, 2013. [36] J. W. Hurst, J. E. Chestnutt, and A. A. Rizzi, "An actuator with physically variable stiffness for highly dynamic legged locomotion," in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, 2004, vol. 5: IEEE, pp. 4662-4667. [37] W. Bosworth, S. Kim, and N. Hogan, "The effect of leg impedance on stability and efficiency in quadrupedal trotting," in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: IEEE, pp. 4895-4900. [38] B. Ugurlu, E. Sariyildiz, T. Kawasaki, and T. Narikiyo, "Agile and stable running locomotion control for an untethered and one-legged hopping robot," Autonomous Robots, vol. 45, pp. 805-819, 2021. [39] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, "Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control," arXiv preprint arXiv:1909.06586, 2019. [40] G. Xin et al., "Robust footstep planning and LQR control for dynamic quadrupedal locomotion," IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4488-4495, 2021. [41] W. Xi and C. D. Remy, "Optimal gaits and motions for legged robots," in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: IEEE, pp. 3259-3265. [42] W. Xi, Y. Yesilevskiy, and C. D. Remy, "Selecting gaits for economical locomotion of legged robots," The International Journal of Robotics Research, vol. 35, no. 9, pp. 1140-1154, 2016. [43] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, "Feedback mpc for torque-controlled legged robots," in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019: IEEE, pp. 4730-4737. [44] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park, "Representation-free model predictive control for dynamic motions in quadrupeds," IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1154-1171, 2021. [45] M. Neunert et al., "Whole-body nonlinear model predictive control through contacts for quadrupeds," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458-1465, 2018. [46] 陳亮傑, "以中樞模式發生器結合踏點力最佳化進行四足機器人之步態生成控制與變換," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2022. [47] 劉育如, "結合多體動力學及限制型卡曼濾波器建構輪足機構地面接觸力估測," 碩士論文, 工學院機械工程學系, 國立臺灣大學, 2022. [48] 何光展, "高動態雙自由度輪足模組之驅動控制," 機械工程學研究所, 國立臺灣大學, 2021. [49] 海泰電機. "HT-04." http://www.haitaijd.cn/page105?product_id=78 (accessed 2023). [50] B. G. Katz, "A low cost modular actuator for dynamic robots," Massachusetts Institute of Technology, 2018. [51] 小栗富士雄, 機械設計圖表便覽, 5 ed. [52] 台灣時規皮帶股份有限公司. "S8M時規皮帶輪." http://www.twbelt.com.tw/webc/html/products/show.aspx?id=29&kid=24 (accessed 2023). [53] 台灣三住股份有限公司. https://tw.misumi-ec.com/ (accessed 2023). [54] S.-C. Chen, K.-J. Huang, W.-H. Chen, S.-Y. Shen, C.-H. Li, and P.-C. Lin, "Quattroped: a leg--wheel transformable robot," IEEE/ASME Transactions On Mechatronics, vol. 19, no. 2, pp. 730-742, 2013. [55] W.-H. Chen, H.-S. Lin, Y.-M. Lin, and P.-C. Lin, "TurboQuad: A novel leg–wheel transformable robot with smooth and fast behavioral transitions," IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1025-1040, 2017. [56] R. N. Jazar, Vehicle dynamics. Springer, 2008. [57] J. R. Mevey, "Sensorless field oriented control of brushless permanent magnet synchronous motors," 2009. [58] "IEEE Guide: Test Procedures for Synchronous Machines Part I--Acceptance and Performance Testing Part II-Test Procedures and Parameter Determination for Dynamic Analysis," IEEE Std 115-1995, pp. 1-198, 1996, doi: 10.1109/IEEESTD.1996.7328817. [59] Unipulse. "UTMⅢ." https://www.unipulse.tokyo/en/product/utmiii/ (accessed 2023). [60] C. D. Remy, "Optimal exploitation of natural dynamics in legged locomotion," ETH Zurich, 2011. [61] S. Tungpataratanawong, K. Ohishi, and T. Miyazaki, "High performance robust motion control of industrial robot parameter identification based on resonant frequency," in 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004, vol. 1: IEEE, pp. 111-116. [62] S. Li, J. Yang, W.-H. Chen, and X. Chen, Disturbance observer-based control: methods and applications. CRC press, 2014. [63] D. Luenberger, "An introduction to observers," IEEE Transactions on automatic control, vol. 16, no. 6, pp. 596-602, 1971. [64] R. J. Full and D. E. Koditschek, "Templates and anchors: neuromechanical hypotheses of legged locomotion on land," Journal of experimental biology, vol. 202, no. 23, pp. 3325-3332, 1999. [65] J.-H. Kim et al., "Legged robot state estimation with dynamic contact event information," IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6733-6740, 2021. [66] C. Ott, R. Mukherjee, and Y. Nakamura, "A Hybrid System Framework for Unified Impedance and Admittance Control," Journal of Intelligent & Robotic Systems, vol. 78, no. 3-4, pp. 359-375, 2014, doi: 10.1007/s10846-014-0082-1. [67] M. Casadio, V. Sanguineti, P. G. Morasso, and V. Arrichiello, "Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation," Technology and Health Care, vol. 14, no. 3, pp. 123-142, 2006. [68] L.-J. Chen and P.-C. Lin, "Gait Pattern Stabilization using Central Pattern Generator with Foothold Force Optimization for Quadruped Robots," in 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2022: IEEE, pp. 1658-1663. [69] T. Valency and M. Zacksenhouse, "Accuracy/robustness dilemma in impedance control," J. Dyn. Sys., Meas., Control, vol. 125, no. 3, pp. 310-319, 2003. [70] Y.-J. Liu and P.-C. Lin, "Development of a dynamic model of the 11-linkage and closed-chain leg-wheel module," in 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2022: IEEE, pp. 1082-1088. [71] H.-Y. Chen, T.-H. Wang, K.-C. Ho, C.-Y. Ko, and P.-C. Lin, "Development of a novel leg-wheel module with fast transformation and leaping capability," Mechanism and Machine Theory, vol. 163, 2021, doi: 10.1016/j.mechmachtheory.2021.104348. [72] R. Blickhan and R. Full, "Similarity in multilegged locomotion: bouncing like a monopode," Journal of Comparative Physiology A, vol. 173, pp. 509-517, 1993. [73] D. J. Hyun, S. Seok, J. Lee, and S. Kim, "High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah," The International Journal of Robotics Research, vol. 33, no. 11, pp. 1417-1445, 2014. [74] J. Jae Yun and J. E. Clark, "Dynamic stability of variable stiffness running," presented at the 2009 IEEE International Conference on Robotics and Automation, 2009. [75] J. Sola, "Quaternion kinematics for the error-state Kalman filter," arXiv preprint arXiv:1711.02508, 2017. [76] M. S. Andrle and J. L. Crassidis, "Attitude estimation employing common frame error representations," Journal of Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1614-1624, 2015. [77] N. Dantam, "Quaternion computation," Georgia Institute of Technology, Atlanta, Tech. Rep, 2014. [78] J. Sola, J. Deray, and D. Atchuthan, "A micro Lie theory for state estimation in robotics," arXiv preprint arXiv:1812.01537, 2018. [79] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999. [80] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, "OSQP: An operator splitting solver for quadratic programs," Mathematical Programming Computation, vol. 12, no. 4, pp. 637-672, 2020. [81] D. Goldfarb and A. Idnani, "A numerically stable dual method for solving strictly convex quadratic programs," Mathematical programming, vol. 27, no. 1, pp. 1-33, 1983. [82] A. G. Pandala, Y. Ding, and H.-W. Park, "qpSWIFT: A real-time sparse quadratic program solver for robotic applications," IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3355-3362, 2019. [83] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, "qpOASES: a parametric active-set algorithm for quadratic programming," Mathematical Programming Computation, vol. 6, no. 4, pp. 327-363, 2014, doi: 10.1007/s12532-014-0071-1. [84] Y. Wang and S. Boyd, "Fast model predictive control using online optimization," IEEE Transactions on control systems technology, vol. 18, no. 2, pp. 267-278, 2009. [85] A. Graham, Kronecker products and matrix calculus with applications. Courier Dover Publications, 2018. [86] 高稚然, "足式機器人動態力分析及力與位置複合控制模型開發," 碩士論文, 國立臺灣大學, 工學院機械工程學系, 2019. [87] VICON. "Motion capture system." https://www.vicon.com/ (accessed 2023). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90707 | - |
dc.description.abstract | 近年來,機器人的應用範疇不斷擴大,並在醫療、智慧倉儲、物流、製造……等等領域扮演著重要的角色。而足類機器人又是機器人領域之中的一項熱門的研究主題。而對於「足」這個機構來說,便是大自然透過物競天擇所篩選出最佳化的移動方式,使透過足運動的生物能夠面對大自然中充挑戰的未知地形;而對於「輪」這個構型來說,便是人類歷史上的一項重大發明之一,使物體能夠快速且有效率地穿越平坦的地形,並對交通運輸有著重要的影響。
在本研究中,將基於實驗室過往所開發之新型連桿式輪足複合機構作為四足機器人的足部,以開發一台同時兼具「足」與「輪」優點之新型輪足複合機器人。本研究將首先介紹四足機器人之機構設計,其中包含輪足機構之強化與輕量化、轉向機構系統、馬達傳動模組及機身設計。此外,為了得到更準確的輸出扭矩,本研究將針對傳動機構中的致動器與皮帶輪轉動系統進行特性量測及建模。而對於機器人的控制器來說,本研究將透過所提出的單足混合控制架構,使輪足機構具備虛擬的被動元件,以減緩足部末端點與外界環境接觸產生的衝擊。最後,本研究將透過機身力補償控制器,使四足機器人能夠達成精確軌跡追蹤且平穩之行走步態,並透過與單足混合控制架構結合,以增強機器人的運動能力及在各種環境和應用中的適應性。 | zh_TW |
dc.description.abstract | In recent years, the scope of robot applications has been expanding, and robots play important roles in various fields such as healthcare, smart warehousing, logistics, manufacturing, and more. Among the research topics in the field of robotics, quadruped robots are one of the most popular topics. For the "leg" mechanism, the most optimized methods of movement chosen by mother nature, allowing living creature to navigate terrains filled with challenges and uncertainties. On the other hand, the invention of the "wheel" has been a major milestone in human history, enabling efficient and rapid traversal of flat terrains and significantly impacting transportation systems.
In this study, a novel linkage-based leg-wheel mechanism, developed in the laboratory, is employed as the leg component to create a new quadruped robot that combines the advantages of both legs and wheels. The research begins by introducing the mechanical design of the quadruped robot, which includes the reinforcement and lightweight design of the leg-wheel mechanism, steering mechanism, motor drive module, and body design. Additionally, to achieve more accurate output torque, this study conducts measurement and modeling of the actuator and pulley system in the transmission mechanism. Regarding the robot's controller, a proposed single-leg hybrid control architecture is employed to provide the leg-wheel mechanism with virtual passive elements, which helps mitigate the impacts generated when the end-effector interacts with the external environment. Finally, by utilizing the whole body force compensation controller, the quadruped robot achieves precise trajectory tracking and stable walking gaits. Additionally, by integrating this controller with the proposed single-leg hybrid control architecture, the robot's locomotion capabilities is enhanced, allowing for greater adaptability in various environments and applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:16:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:16:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | (審定書) i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 xi 表目錄 xvii 符號表 xviii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 3 1.3.1 輪足複合型機器人 4 1.3.2 傳動元件之建模與系統鑑別 7 1.3.3 足部及機身控制器 8 1.4 貢獻 9 1.5 論文架構 10 第二章 實驗平台架構 11 2.1 前言 11 2.2 機電系統 11 2.2.1 機電配置架構 11 2.2.2 直流無刷馬達 12 2.3 硬體架構 14 2.3.1 輪足轉換機構 14 2.3.2 傳動模組設計 20 2.3.3 轉向機構 24 2.3.4 機身設計 28 2.4 新一代輪足複合型機器人 29 第三章 馬達模組測試與特性 31 3.1 前言 31 3.2 馬達特性量測法 31 3.3 馬達特性量測實驗 34 3.4 直流無刷馬達之穩態表現 35 3.4.1 馬達常數量測 35 3.4.2 穩態表現 36 3.4.3 輸出扭矩補償 41 3.5 皮帶輪傳動系統之建模及外力估測 48 3.5.1 雙慣性系統 48 3.5.2 皮帶輪系統之系統鑑別 50 3.5.3 皮帶輪系統鑑別實驗 52 3.6 皮帶輪輸出端之輸出扭矩與狀態估測 54 3.6.1 皮帶輪輸出端之外力擾動觀測器 54 3.6.2 皮帶輪輸出端之狀態估測器 56 3.6.3 皮帶輪輸出端之量測實驗 57 第四章 單足混合控制 60 4.1 前言 60 4.2 連桿輪足機構回顧 60 4.2.1 輪足座標轉換 61 4.2.2 虛功法 64 4.3 混合控制架構 66 4.3.1 阻抗控制 68 4.3.2 導納控制 69 4.3.3 阻抗-導納混合控制 71 4.3.4 踏步控制策略 73 4.4 單足運動實驗 75 4.4.1 實驗設置 76 4.4.2 虛擬剛性量測實驗 76 4.4.3 動態跳躍量測實驗 80 4.4.4 連續踏步實驗 83 第五章 四足機器人之全身力控制補償 89 5.1 前言 89 5.2 四元數的運算性質 89 5.2.1 四元數乘法 90 5.2.2 叉積表示法 91 5.2.3 四元數與旋轉矩陣之轉換關係 92 5.3 離散三維剛體動力學模型 92 5.3.1 三維剛體位移運動學 93 5.3.2 三維剛體位移動力學 94 5.3.3 三維剛體姿態運動學 95 5.3.4 三維剛體姿態動力學 100 5.3.5 離散三維剛體運動方程式 101 5.4 最佳化之全身力補償控制器 102 5.4.1 目標函數 102 5.4.2 二次規劃求解器 106 第六章 四足機器人之行走實驗 113 6.1 前言 113 6.2 實驗設置 114 6.3 四足機器人之足部混合控制實驗 115 6.4 考慮足部剛性之機身力補償控制器實驗 119 第七章 結論與未來展望 124 7.1 結論 124 7.2 未來展望 125 REFERENCES 127 | - |
dc.language.iso | zh_TW | - |
dc.title | 結合雙自由度輪足模組之四足機器人及其足部混合控制與全身力補償控制之開發 | zh_TW |
dc.title | Development of a Quadruped Robot with Two-DOF Leg-Wheel Module and its Legged Hybrid Control and Whole-Body Force Compensation Control | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 顏炳郎;連豊力 | zh_TW |
dc.contributor.oralexamcommittee | Ping-Lang Yen;Feng-Li Lian | en |
dc.subject.keyword | 仿生機器人,輪腳複合模組,阻抗控制,導納控制,混合控制,全身力控制, | zh_TW |
dc.subject.keyword | Bio-inspired robot,leg-wheel module,impedance control,admittance control,hybrid control,whole-body force control, | en |
dc.relation.page | 133 | - |
dc.identifier.doi | 10.6342/NTU202303690 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 12.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。