請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90700完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林彥蓉 | zh_TW |
| dc.contributor.advisor | YANN-RONG LIN | en |
| dc.contributor.author | 謝葦勳 | zh_TW |
| dc.contributor.author | WEI-HSUN HSIEH | en |
| dc.date.accessioned | 2023-10-03T17:14:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Abraha, T., Githiri, S. M., Kasili, R., Araia, W. and Nyende, A. B. (2015). Genetic variation among sorghum (Sorghum bicolor L. Moench) landraces from Eritrea under post-flowering drought stress conditions. Am. J. Plant Sci. 6, 1410-1424.
Adamack, A. T. and Gruber, B. (2014). PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5(4), 384-387. Adugna, A., Snow, A. A., Sweeney, P. M., Bekele E. and Mutegi E. (2013). Population genetic structure of in situ wild Sorghum bicolor in its Ethiopian center of origin based on SSR markers. Genet. Resour. Crop. Evol. 60, 1313-1328. Alexander, D. H., Novembre, J. and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655-1664. Ananda, G., Norton, S., Blomstedt, C., Furtado, A., Møller, et al. (2021). Phylogenetic relationships in the Sorghum genus based on sequencing of the chloroplast and nuclear genes. The Plant Genome 14(3), e20123. Ananda, G. K., Myrans, H., Norton, S. L., Gleadow, R., Furtado, A., et al. (2020). Wild sorghum as a promising resource for crop improvement. Front. Plant Sci. 11, 1108. Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. and Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17(2), 81-92. Andrew, M. H. and Mott, J. J. (1983). Annuals with transient seed banks: The population biology of indigenous Sorghum species of tropical north-west Australia. Austral. J. Ecol. 8(3), 265-276. Andolfatto, P., Davison, D., Erezyilmaz, D., Hu, T. T., Mast, J., et al. (2011). Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res. 21(4), 610-617. Arriola, P. E. and Ellstrand, N. C. (1996). Crop‐to‐weed gene flow in the genus Sorghum (Poaceae): Spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum, S. bicolor. Am. J. Bot. 83(9), 1153-1159. Armstrong, T. T., Fitzjohn, R. G., Newstrom, L. E., Wilton, A. D. and Lee, W. G. (2005). Transgene escape: what potential for crop–wild hybridization? Mol. Ecol. 14, 2111-2132. Atwater, D. Z., Sezen, U. U., Goff, V., Kong, W., Paterson, A. H., et al. (2016). Reconstructing changes in the genotype, phenotype, and climatic niche of an introduced species. Ecography 39, 894-903. Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS One 3(10), e3376. Barnaud, A., Deu, M., Garine, E., McKey, D. and Joly, H.I. (2007). Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor. Appl. Genet. 114(2), 237-248. Barnaud, A., Deu, M., Garine, E., Chantereau, J., Bolteu, J., et al. (2009). A weed–crop complex in sorghum: the dynamics of genetic diversity in a traditional farming system. Am. J. Bot. 96(10), 1869-1879. Barnaud, A., Trigueros, G., McKey, D. and Joly, H. I. (2008) High outcrossing rates in fields with mixed sorghum landraces: how are landraces maintained? Heredity (Edinb) 101, 445-452. Barney, J. N. and DiTomaso, J. M. (2011). Global Climate Niche Estimates for Bioenergy Crops and Invasive Species of Agronomic Origin: Potential Problems and Opportunities. PLoS One 6: e17222. Barroso, J., Andújar, D., San Martín, C., Fernández-Quintanilla, C. and Dorado, J. (2012). Johnsongrass (Sorghum halepense) seed dispersal in corn crops under Mediterranean conditions. Weed Sci. 60, 34-41. Becker-Dillingen, J. (1927). Handbuch des Getreidebaues einschließlich Mais, Hirse und Buchweizen. Paul Parey, Berlin. Berenji, J., Dahlberg, J., Sikora, V. and Latkovi, D. (2011). Origin, history, morphology, production, improvement, and utilization of broomcorn [Sorghum bicolor (L.) Moench] in Serbia. Econ. Bot. 65, 190-208. Bennett, M. D. (1972). Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. B: Biol. Sci. 181(1063), 109-135. Bennett, M. D. (1987). Variation in genomic form in plants and its ecological implications. New Phytol. 106, 177-200. Billot, C., Ramu, P., Bouchet, S., Chantereau, J., Deu, M., et al. (2013). Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 8:e59714. Billot, C., Rivallan, R., Sall, M. N., Fonceka, D., Deu, M., et al. (2012). A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae). Am. J. Bot. 99(6), e245-e250. Biodiversity International. (2023). Crop wild relatives. Available at: https://www.bioversityinternational.org/cwr/. Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3), 314. Boatwright, J. L., Sapkota, S., Jin, H., Schnable, J. C., Brenton, Z., et al. (2022). Sorghum Association Panel whole‐genome sequencing establishes cornerstone resource for dissecting genomic diversity. The Plant J. 111(3), 888-904. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., et al. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. Celarier, R. P. (1958). Cytotaxonomic notes on the subsection Halepensia of the genus Sorghum. Bull. Torrey Bot. Club. 85, 49-62. Chakrabarty, S., Mufumbo, R., Windpassinger, S., Jordan, D., Mace, E., et al. (2022). Genetic and genomic diversity in the sorghum gene bank collection of Uganda. BMC Plant Biol. 22(1), 1-11. Chen, C.-H., Lin, C.-Y. and Kuoh, C.-S. (2015). Grass Flora of Taiwan (3 of 3): PANICOIDEAE (Arundinelleae & Andropogoneae) and MICRAIROIDEAE. Endemic Species Research Institute. Chichi, Taiwan. p. 108-115. Chen, K. H., Hsieh, W. H., Chin, H. S., Chen, C. H. and Lin, Y. R. (2016). The genetic divergence of Sorghum genus in Taiwan revealed by nuclear genes. Crop, Environ. Bioinform. 13, 188–207. (in Chinese with English abst.) Cheng, F. S. H. (1995). Wildlife and conservation of Taiwan, Geography supplementary teaching materials. National Institute for Translation and Compilation, Taipei, Taiwan. 2, 225-254. Chiang, M. Y. and Chiang, Y. J. (1983). Weed occurrence, ecology and damage of upland field in Taiwan. Weed Sci. Bul. 4, 30-41. Chou C.-H. (1989). Allelopathic research of subtropical vegetation in Taiwan. IV: Comparative phytotoxic nature of leachate from four subtropical grasses. J. Chem. Ecol. 15, 2149-2159. Clements, D. R. and Ditommaso, A. (2011). Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted?. Weed Res. 51, 227-240. COA. (2021). Council of Agriculture, Taipei, Taiwan. Available at: http:// https://www.coa.gov.tw/. Cooper, E. A., Brenton, Z. W., Flinn, B. S., Jenkins, J., Shu, S., et al. (2019). A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genom. 20(1), 1-13. Cuevas, H. E., Prom, L. K. and Rosa-Valentin, G. (2018). Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes. PLoS One 13:e0191877. Cuevas, H. E., Rosa-Valentin, G., Hayes, C. M., Rooney, W. L. and Hoffmann, L. (2017). Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. BMC genom. 18(1), 1-17. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., et al. (2021). Twelve years of SAMtools and BCFtools. Gigascience 10(2), giab008. Davey, J. W. and Blaxter, M. L. (2010). RADSeq: next-generation population genetics. Brief. Funct. Genom. 9(5-6), 416-423. Dekker, J. (2003). The foxtail (Setaria) species-group. Weed science 51(5), 641-656. Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., et al. (2014). Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecol. Sustain. Food Syst. 38, 369-377. Deschamps, S., Zhang, Y., Llaca, V., Ye, L., Sanyal, A., et al. (2018). A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 9(1), 1-10. Deu, M., Sagnard, F., Chantereau, J., Calatayud, C., Hérault, D., et al. (2008). Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor. Appl. Genet. 116, 903-913. Deu, M., Sagnard, F., Chantereau, J., Calatayud, C., Vigouroux, Y., et al. (2010). Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. Theor. Appl. Genet. 120, 1301-1313. de Wet, J. M. J. (1978). Special paper: systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am. J. Bot. 65(4), 477-484. de Wet, J. M. J. and Huckabay, J. P. (1967). The origin of Sorghum bicolor. II. Distribution and domestication. Evolution, 21(4), 787-802. Dillon, S. L., Shapter, F. M., Henry, R. J., Cordeiro, G., Izquierdo, L., et al. (2007). Domestication to crop improvement: Genetic resources for Sorghum and Saccharum (Andropogoneae). Ann. Bot. 100(5), 975-989. Doggett, H. (1988). Sorghum / Hugh Doggett. Longman Scientific & Technical; Wiley, Harlow, Essex, England: New York. Doležel, J., Greilhuber, J. and Suda, J. (2007). Flow cytometry with plants: an overview. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes, 41-65. Drew, J. H., Glen, A. G. and Leemis, L. M. (2000). Computing the cumulative distribution function of the Kolmogorov–Smirnov statistic. Comput. Stat. Data Anal. 34, 1-15. Ejeta, G. and Grenier, C. (2005). Sorghum and its weedy hybrids. Crop ferality and volunteerism. CRC Press, Boca Raton, FL: 123-135. Elbehri, A. and Sadiddin, A. (2016). Climate change adaptation solutions for the green sectors of selected zones in the MENA region. Future of Food: J. Food Agric. Soc. 4, 39-54. Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6(5), e19379. Emmenegger, M., Pfister, S., Koehler, A., de Giovanetti, L., Arena, A. P., et al. (2011). Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. Int. J. Life Cycle Assess. 16, 869. Endrizzi, J. E. (1957). Cytological studies of some species and hybrids in the Eu-sorghums. Bot. Gaz. 119, 1-10. Enyew, M., Feyissa, T., Carlsson, A. S., Tesfaye, K., Hammenhag, C., et al. (2022). Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) moench] accessions as revealed by single nucleotide polymorphism markers. Front. Plant Sci. 12, 3110. Evanno, G., Regnaut, S. and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8), 2611-2620. FAO (2021). FAOSTAT Statistical Database. Available at: http://www.fao.org/faostat/ (Accessed 14th April 2023). Faye, J. M., Maina, F., Akata, E. A., Sine, B., Diatta, C., et al. (2021). A genomics resource for genetics, physiology, and breeding of West African sorghum. The Plant Genom. 14(2), e20075. Feltus, F. A., Hart, G. E., Schertz, K. F., Casa, A. M., Kresovich, S., et al. (2006). Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor. Appl. Genet. 112, 1295-1305. Foll, M. and Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2), 977-993. Fuller, D. Q. and Stevens, C. J. (2018). Sorghum domestication and diversification: A current archaeobotanical perspective. In A. M. Mercuri, A. C. D'Andrea, R. Fornaciari, & A. Höhn (Eds.), Plants and people in the African past (pp. 427-452). Springer. Garber, E. D. (1950). Cytotaxonomic studies in the genus Sorghum. University of California Press, Berkeley. Galbraith, D. W., Harkins, K. R., Maddox, J. M., Ayres, N. M., Sharma, D. P., et al. (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601), 1049-1051. GBIF. (2023). The Global Biodiversity Information Facility. Available online at: http://www.gbif.org/ (Accessed 16th April 2023). Ghersa, C. M., Martinez-Ghersa, M. A., Satorre, E. H., Van Esso, M. L. and Chichotky, G. (1993). Seed dispersal, distribution and recruitment of seedlings of Sorghum halepense (L.) Pers. Weed Res. 33, 79-88. Glaszmann, J. C., Kilian, B., Upadhyaya, H. D. and Varshney, R. K. (2010). Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 13(2), 167-173. Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., et al. (2014). TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PloS one 9(2), e90346. Goodman, M. M. and Stuber, C. W. (1983). Races of maize: VI. Isozyme variation among races of maize in Bolivia. Maydica, 28,169–187. Gressel, J. (2005). Crop ferality and volunteerism. CRC Press. Greenacre, M. J. (2007). Correspondence analysis in practice. Second edition. Chapman and Hall/CRC Press, London, UK. Hao, H., Li, Z., Leng, C., Lu, C., Luo, H., et al. (2021). Sorghum breeding in the genomic era: opportunities and challenges. Theor. Appl. Genet. 134(7), 1899-1924. Hao, Z., Lv, D., Ge, Y., Shi, J., Weijers, D., Yu, G., Chen, J. (2020). RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. 6:e251. Hamilton, C. W. and Reichard, S. H. (1992). Current practice in the use of subspecies, variety, and forma in the classification of wild plants. Taxon 41(3), 485-498. Harker, K. N., Clayton, G. W., Blackshaw, R. E., O'Donovan, J. T., Lupwayi, N. Z., et al. (2005). Glyphosate-resistant spring wheat production system effects on weed communities. Weed Sci. 53, 451-464. Harlan, J. R. and de Wet, J. M. J. (1972). A simplified classification of cultivated sorghum. Crop Sci. 12, 172-176. Harlan, J. R. (1992). Crops and Man. American Society of Agronomy. Crop Science Society of America, Madison, Wisconsin, 16, 63-262. Hayden, M., Nguyen, T. and Chalmers, K. (2005). Multiplex-ready markers: A technique for high-throughput, low-cost genotyping on a semi-automated DNA fragment analyser. Holm, L. G., Plucknett, D. L., Pancho, J. V. and Herberger, J. P. (1977). The world's worst weeds. Distribution and biology. University Press of Hawaii. Hooftman, D. A., Bullock, J. M., Morley, K., Lamb, C., Hodgson, D. J., et al. (2015). Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats. Ann. Bot. 115, 147-157. Hsieh, J.S. (1994). Sorghum. Monographs on miscellaneous crops. Taiwan Grain Food Development Foundation, Taipei, Taiwan. 1, 331-508. Hsieh, W. H., Hwu, K. K., Wu, Y. P., Chen, C. H. and Lin Y. R. (2015). The assessment of genetic diversity of sorghum germplasm by using SSR markers. J. Agri. Assoc. Taiwan 16(1), 85-110. (in Chinese with English abst.) Hsu, C. -C. (1978). 26. GRAMINEAE (POACEAE), Flora of Taiwan, 5, 373-783. Hsu, C.-C. (2000). 28. Sorghum Moench. In: Huang, T.-C., Boufford, D.E., Hsieh, C.-F., Kouh, C.-S., Ohasi, H., Su, H.-J. (eds.), Flora of Taiwan 2nd Edition, Vol. 5. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan. Jung, M.-J., Chu, M.-K., Hsu, T.-C., Kao, R.-C. and Dai, S.-S. (2012). Four newly naturalized grasses and rushes in Taiwan. Taiwania 57, 426-433. Kamvar, Z. N., Brooks, J. C. and Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. Kanatas, P., Gazoulis, I., Zannopoulos, S., Tataridas, A., Tsekoura, A., et al. (2021). Shattercane (Sorghum bicolor (L.) Moench subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture. Diversity 13, 463. Kimber, C. (2000). Origins of domesticated sorghum and its early diffusion to India and China. Sorghum: Origin, history, technology, and production. 3–98. Kong, W., Jin, H., Franks, C. D., Kim, C., Bandopadhyay, R. et al. (2013). Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. G3: Genes|Genomes|Genetics 3, 101-108. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547. Kuo, Y. T., Ishii, T., Fuchs, J., Hsieh, W. H., Houben, A. and Lin, Y. R. (2021). The evolutionary dynamics of repetitive DNA and its impact on the genome diversification in the genus Sorghum. Front. Plant Sci. 12, 729734. Labeyrie, V., Deu, M., Barnaud, A., Calatayud, C., Buiron, M., et al. (2014). Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in Eastern Kenya. PLoS One 9(3), e92178. Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357-359. Lavoie, C., Shah, M. A., Bergeron, A. and Villeneuve, P. (2013). Explaining invasiveness from the extent of native range: new insights from plant atlases and herbarium specimens. Divers. Distrib. 19, 98-105. Leitch, I. J. and Bennett, M. D. (2007). Genome size and its uses: the impact of flow cytometry. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes, 153-176. Lepais, O. and Weir, J. T. (2014). R package SimRAD: Simulations to predict the number of loci expected in RAD and GBS approaches. Letunic, I. and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47(W1), W256-W259. Li, M., Yuyama, N., Luo, L., Hirata, M. and Cai, H. (2009). In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol. Breed. 24(1), 41-47. Li, X. and Yu, J. (2022). Unraveling the sorghum domestication. Mol. Plant 15(5), 791-792. Lin, Y. R., Schertz, K. F. and Paterson, A. H. (1995). Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141, 391-411. Lin, Y. R., Wu, S. C., Chen, S. E., Tseng, T. H., Chen, C. S. et al. (2011). Mapping of quantitative trait loci for plant height and heading date in two inter-subspecific crosses of rice and comparison across Oryza genus. Bot. Stud. 52(1), 1-4. Lui, K. (2005). PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21, 2128-2129. Mace, E. S., Tai, S., Gilding, E. K., Li, Y., Prentis, P. J., et al. (2013). Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat. Commun. 4(1), 1-9. Maina, F., Bouchet, S., Marla, S. R., Hu, Z., Wang, J., et al. (2018). Population genomics of sorghum (Sorghum bicolor) across diverse agroclimatic zones of Niger. Genome, 61(4), 223-232. Maxted, N. (2003). Conserving the genetic resources of crop wild relatives in European Protected Areas. Biol. Conserv. 113(3), 411-417. McWhorter, C. G. (1989). History, biology, and control of johnsongrass. Rev. Weed Sci. (USA). Menamo, T., Kassahun, B., Borrell, A. K., Jordan, D. R., Tao, Y., et al. (2021). Genetic diversity of Ethiopian sorghum reveals signatures of climatic adaptation. Theor. Appl. Genet. 134(2), 731-742. Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T. et al. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. 110(2), 453-458. Morrell, P. L., Williams-Coplin, T. D., Lattu, A. L., Bowers, J. E., Chandler, J. M., et al. (2005). Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol. Ecol. 14, 2143-2154. Mutegi, E., Sagnard, F., Muraya, M., Kanyenji, B., Rono, B., et al. (2010). Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: Implications for conservation and crop-to-wild gene flow. Genet. Resour. Crop Evol. 57, 243-253. Mutegi, E., Sagnard, F., Labuschagne, M., Herselman, L., Semagn, K., et al. (2012). Local scale patterns of gene flow and genetic diversity in a crop–wild–weedy complex of sorghum (Sorghum bicolor (L.) Moench) under traditional agricultural field conditions in Kenya. Conserv. Genet. 13(4), 1059-1071. Mutegi, E., Sagnard, F., Semagn, K., Deu, M., Muraya, M., et al. (2011). Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor. Appl. Genet. 122(5), 989-1004. Muraya, M. M., de Villiers, S., Parzies, H. K., Mutegi, E., Sagnard, F., et al. (2011). Genetic structure and diversity of wild sorghum populations (Sorghum spp.) from different eco-geographical regions of Kenya. Theor. Appl. Genet. 123(4), 571-583. Myrans, H., Diaz, M. V., Khoury, C. K., Carver, D., Henry, R. J., et al. (2020). Modelled distributions and conservation priorities of wild sorghums (Sorghum Moench). Divers. Distrib. 26(12), 1727-1740. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70(12), 3321-3323. Nei, M. and Jin, L. (1989). Variances of the average numbers of nucleotide substitutions within and between populations. Mol. Biol. Evol. 6(3), 290-300. Nei, M. and Takezaki, N. (1983). Estimation of genetic distances and phylogenetic trees from DNA analysis. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 21, 405-412. Ng’uni, D., Geleta, M., Fatih, M. and Bryngelsson, T. (2010). Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann. Bot. 105, 471-480. Oerke, E. C. (2006). Crop losses to pests. J. Agric. Sci. 144, 31-43. Ohadi, S., Littlejohn, M., Mesgaran, M., Rooney, W. and Bagavathiannan, M. (2018). Surveying the spatial distribution of feral sorghum (Sorghum bicolor L.) and its sympatry with johnsongrass (S. halepense) in South Texas. PLoS One 13: e0195511. Oksanen, J., Kindt R., Legendre P. and O’Hara R. B. (2006). vegan: community ecology package version 1.8-3. (http://cran.r-project.org/). Pannell, J. R. and Charlesworth, B. (1999). Neutral genetic diversity in a metapopulation with recurrent local extinction and recolonization. Evolution 53(3), 664-676. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229), 551-556. Paterson, A. H., Lin, Y.-R., Li, Z., Schertz, K. F., Doebley, J. F., et al. (1995). Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714-1718. Paterson, A. H., Kong, W., Johnston, R. M., Nabukalu, P., Wu, G., et al. (2020). The evolution of an invasive plant, Sorghum halepense L. (‘Johnsongrass’). Front. Genet. 11, 317. Peacock, J. A. (1983). Two-dimensional goodness-of-fit testing in astronomy. Mon. Notices Royal Astron. Soc. 202(3), 615-627. Peakall, R. and Smouse P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537-2539. Pérez‐Figueroa, A., García‐Pereira, M. J., Saura, M., Rolán‐Alvarez, E. and Caballero, A. (2010). Comparing three different methods to detect selective loci using dominant markers. J. Evol. Biol. 23(10), 2267-2276. Poland, J. A., Brown, P. J., Sorrells, M. E. and Jannink, J.-L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PloS One 7(2), e32253. Price, H. J. (1988). DNA content variation among higher plants. Ann. Missouri Bot. Gard. 1248-1257. Price, H. J. (2005). Genome evolution in the genus Sorghum (Poaceae). Ann. Bot. 95, 219-227. Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155(2), 945-959. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559-575. R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/. Rout, M. E., Chrzanowski, T. H., Westlie, T. K., DeLuca, T. H., Callaway, R. M., et al. (2013). Bacterial endophytes enhance competition by invasive plants. Am. J. Bot. 100(9), 1726-1737. Ruperao, P., Thirunavukkarasu, N., Gandham, P., Selvanayagam, S., Govindaraj, et al. (2021). Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Front. Plant Sci. 12, 963. Sagnard, F., Deu, M., Dembélé, D., Leblois, R., Touré, L., et al. (2011). Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild–weedy–crop complex in a western African region. Theor. Appl. Genet. 123, 1231-1246. Schmidt, J. J., Pedersen, J. F., Bernards, M. L. and Lindquist, J. L. (2013). Rate of shattercane × sorghum hybridization in situ. Crop Sci. 53(4), 1677-1685. Semagn K., Bjørnstad A. and Ndjiondjop M. N. (2006). An overview of molecular marker methods for plants. Afr. J. Biotechnol. 5, 2540-2568. Sezen, U. U., Barney, J. N., Atwater, D. Z., Pederson, G. A., Pederson, J. F., et al., (2016). Multi-phase US spread and habitat switching of a post-Columbian invasive, Sorghum halepense. PloS One 11:e0164584. Shannon, C. E. (1948). A mathematical theory of communication. Bell. Syst. Technol. J. 27, 379-423. Shih, K. M., Chang, C. T., Chung, J. D., Chiang, Y. C. and Hwang, S. Y. (2018). Adaptive genetic divergence despite significant isolation-by-distance in populations of Taiwan Cow-tail fir (Keteleeria davidiana var. formosana). Front. Plant Sci. 9, 92. Simberloff, D. (2013). Invasive species: what everyone needs to know. Oxford University Press. Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787-792. Snowden, J. D. (1936). The cultivated races of sorghum. Adlard and Son, London. Stebbins, G. L. (1966). Chromosomal variation and evolution: polyploidy and chromosome size and number shed light on evolutionary processes in higher plants. Science 152(3728), 1463-1469. Stoller, E. W. (1977). Differential cold tolerance of quackgrass and johnsongrass rhizomes. Weed Sci. 25(4), 348-351. Sujay, Y. H., Sattagi, H. N. and Patil, R. K. (2010). Invasive alien insects and their impact on agroecosystem. Karnataka J. Agric. Sci. 23(1), 26-34. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3), 585-595. Takezaki, N. and Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1), 389-399. Tang, H., Dube, S. K., Liang, G. H. and Kung, S. D. (1991). Possible repetitive DNA markers for Eusorghum and Parasorghum and their potential use in examining phylogenetic hypotheses on the origin of Sorghum species. Genome 34, 241-250. Tao, Y., Luo, H., Xu, J., Cruickshank, A., Zhao, X., et al. (2021). Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 7(6), 766-773. Tesso, T., Kapran, I., Grenier, C., Snow, A. and Sweeney, P. (2008). The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci. 38, 1425-1431. Turcotte, M. M., Araki, H., Karp, D. S., Poveda, K. and Whitehead, S. R. (2017). The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372(1712), 20160033. Upadhyaya, H. D., Vetriventhan, M. and Deshpande, S. (2016). Sorghum germplasm resources characterization and trait mapping. The Sorghum Genome, 77-94. USDA and Agricultural Research Service, National Plant Germplasm System (2021). Germplasm Resources Information Network (GRIN-Taxonomy) (Beltsville, Maryland: National Germplasm Resources Laboratory). Available at: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple (Accessed 22th September 2021). Wang, J., Hu, Z., Upadhyaya, H. D. and Morris, G. P. (2020). Genomic signatures of seed mass adaptation to global precipitation gradients in sorghum. Heredity 124(1), 108-121. Warwick, S. I. and Black, L. D. (1983). The biology of Canadian weeds.: 61. Sorghum halepense (L.) Pers. Can. J. Plant Sci. 63(4), 997-1014. Warwick, S. I., Phillips, D. and Andrews, C. (1986). Rhizome depth: the critical factor in winter survival of Sorghum halepense (L.) Pers. (Johnsongrass). Weed Res. 26(6), 381-388. Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358-1370. Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 1358-1370. Whitney, K. D. and Gabler, C. A. (2008). Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14(4), 569-580. Wiersema, J. H. and Dahlberg, J. (2007). The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon 56(3), 941-946. Wondimu, Z., Dong, H., Paterson, A. H., Worku, W. and Bantte, K. (2021). Genetic diversity, population structure, and selection signature in Ethiopian sorghum [Sorghum bicolor L. (Moench)] germplasm. G3-Genes Genom. Genet. 11(6), jkab087. Wright, S. (1949). The genetical structure of populations. Ann. Eugen. 15(1), 323-354. Wu, S.-H, Hsieh, C.-F., Rejma´nek, M. (2004). Catalogue of the naturalized flora of Taiwan. Taiwania 49, 16-31. Wu, S. H., Yang, T. A., Teng, Y. C., Chang, C. Y., Yang, K. C., et al. (2010). Insights of the latest naturalized flora of Taiwan: change in the past eight years. Taiwania 55(2), 139-159. Wu, X., Liu, Y., Luo, H., Shang, L., Leng, C., et al. (2022). Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Mol. Plant 15(3), 537-551. You, T. R. (2021). Cultivation techniques of brewing sorghum. Tainan District Agricultural News 116, 1-7. Zimmerman, S. J., Aldridge, C. L. and Oyler-McCance, S. J. (2020). An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC genom. 21(1), 1-16. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90700 | - |
| dc.description.abstract | 高粱屬 (Sorghum) 總共有25個物種,包含第五大禾穀類作物的栽培種高粱 (S. bicolor (L.) Moench) 和世界惡名昭彰的雜草詹森草 (S. halepense)。由於臺灣地理位置特殊,造就多變的氣候和多樣的環境,非常適合許多生物物種生長。臺灣野外可發現四個高粱屬類群,包含栽培高粱、掃帚高粱 (S. bicolor var. technicum)、葦狀高粱 (S. bicolor ssp. verticilliflorum) 和詹森草。這四個高粱類群在臺灣各地的分布具明顯差異,係因每個高粱類群不同之特性與人類活動導致其侵略程度相異。此外,野外觀察到不同高粱類群共同生長的情形,增加基因流佈或基因漸滲之可能性,進而造成分類鑑定上的困難。因此,更精準的物種鑑定結果進一步則以倍體數測定確認。最終,本研究根據五年之田野調查、形態鑑定和倍體數測定結果,認為前人文獻提及的擬高粱 (S. propinquum) 目前不存在於臺灣野外。另一方面,本研究發現近年來野生高粱族群有增加和擴大的趨勢,根據Kolmogorov–Smirnov 試驗結果指出五年間葦狀高粱 (p = 0.004) 和詹森草 (p = 0.035) 族群有顯著擴散的趨勢。對於正在擴大的野生高粱族群須特別小心其成為臺灣野外具侵略性之危害雜草。而棲地調查結果顯示,栽培型高粱偏好與人為和農業活動相關的棲地,反之,野生型高粱則偏好屬於自然環境的棲地。由於野生型高粱在農業區易被農民剷除,且相較栽培型高粱,野生型高粱具耐旱特性和休眠性的種子,因此其在野外環境具有較高的生存率。值得注意的是,栽培型高粱的棲地五年間從農業類型棲地轉換為自然類型棲地,表示栽培種子逸散至臺灣野外的情形變多。本研究以25個簡單重複性序列 (Simple sequence repeat, SSR) 分析2014-2015年間蒐集之121個野生高粱蒐集系,結果發現,具有地下走莖的詹森草之遺傳歧異度最高 (He > 0.776);而近年來歸化臺灣的葦狀高粱遺傳歧異度最低 (He < 0.272)。此外,分別自屏東和高雄蒐集的葦狀高粱族群間具有高度的遺傳分化 (FST = 0.5207),顯示此兩族群受天然地理隔離之影響。而2018-2019年間共248個野生高粱蒐集系則以2,751個高品質的單一核甘酸多型性 (Single nucleotide polymorphism, SNP) 評估遺傳歧異度,同樣發現四個高粱類群的歧異度由高至低分別是詹森草 > 栽培高粱 > 掃帚高粱 > 葦狀高粱。值得注意的是,5個蒐集自桃園和彰化的中間型高粱在主座標分析和親緣樹結果皆被獨立出來,在族群結構結果分群至較複雜的次族群中且為混合型個體,顯示這些中間型高粱之間可能發生基因流佈或基因漸滲的現象。此外,栽培高粱族群與掃帚高粱 (Nm = 1.443) 和詹森草 (Nm = 0.98) 族群間可能有較高程度的基因流佈的之現象。臺灣多變的環境與豐富的生態多樣性提供這些高粱屬族群適合的生長條件,對於族群和演化遺傳的研究是絕佳的試驗材料。同時,不同類群間複雜的「作物-雜草-野生」關係也進一步藉由地理分布和棲地調查,以及SSR和SNP分子標誌之分析深入淺出的探究與解開。 | zh_TW |
| dc.description.abstract | The genus Sorghum consists of 25 species, including S. bicolor (L.) Moench, one of the top five cereal crops, and S. halepense, one of the most noxious weeds. The geographic location of Taiwan is unique, creating diverse climates and environments suitable for many species to live, including four Sorghum taxa, S. bicolor ssp. bicolor, var. technicum, ssp. verticilliflorum, and S. halepense, identified in the field. The four Sorghum taxa showed distinct geographic distributions, revealing that invasiveness was influenced by their characteristics and human activities. Besides, the observed co-existence of different taxa would increase the possibility of gene flow or introgression, causing troubles with the taxonomic identifications. The precise classifications for these four Sorghum taxa were further examined by the ploidy test. It was concluded that S. propinquum does not exist in Taiwan based on thorough field investigations, taxonomic identifications, and ploidy test over five years. On the other hand, the increasing abundance and dispersal of wild sorghum in Taiwan have caught our attention. S. bicolor ssp. verticilliflorum (p = 0.004) and S. halepense (p = 0.035) significantly expanded over five years according to the Kolmogorov–Smirnov test. More attention should be paid to these expanding wild sorghum populations becoming invasive and noxious weeds in Taiwan. The habitat preferences of feral cultivated sorghum were human-disturbed and agricultural areas, on the other hand, the wild relatives were natural habitats. The wild and weedy sorghum will not be eliminated by farmers and possess higher survival rates in the wild compared to feral cultivated ones due to drought tolerance and small dormant seeds. Moreover, the habitat switch of feral cultivated sorghum was observed, indicating that the ferality of cultivated sorghum took place more often in Taiwan recently. In this study, 121 Sorghum collections collected in Taiwan in 2014-2015 were evaluated by using 25 high polymorphic SSRs. The rhizomatous S. halepense showed the highest genetic diversity (He > 0.776); in contrast, the newly naturalized S. bicolor ssp. verticilliflorum was confined to and dominant in southern Taiwan, with the lowest genetic diversity (He < 0.272). Significant genetic differentiation (FST = 0.5207) between the two ssp. verticilliflorum subpopulations assessed by population structure was associated with natural geographic isolation. On the other hand, 248 Sorghum collections in 2018 and 2019 were evaluated by 2,751 high-quality pruned SNPs obtained from GBS. Similarly, the genetic diversity of these four Sorghum taxa was S. halepense > S. bicolor ssp. bicolor > S. bicolor var. technicum > S. bicolor ssp. verticilliflorum. Notably, five intermediate types of sorghum collected in Taoyuan and Changhua were obviously separated in PCA and phylogenetic tree. In addition, these five intermediates were grouped in the complex subpopulation (Pop 5) and also defined as admixed individuals, providing the evidence that gene flow or introgression may have occurred in Taiwan. Besides, higher number of migrants were detected between S. bicolor ssp. bicolor and var. technicum (Nm = 1.443), and ssp. bicolor and S. halepense (Nm = 0.98), indicating more possible gene flow occurred among them. The heterogeneous environments and abundant biodiversity of Sorghum in Taiwan provided advantages for conducting genetic and evolutionary studies for feral and wild sorghum, including the sympatric interaction of a crop-weed-wild complex for a species in agroecosystems. Meanwhile, the in situ geographic and habitat investigations combined with SSRs and SNPs assessment of these four Sorghum taxa in Taiwan delivered new insights into their favored habitats, proliferation, genetic diversity, relatedness, and differentiation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:14:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:14:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭……………………………………………………………….................................i
中文摘要………………………………………………………………........................ii Abstract………………………………………………………………........................iv List of Figures……………………………………………………………...................x List of Tables………………………………………………………………...............xii List of Supplementary Data…………………………………………….................xiv Chapter 1 Introduction…………………………………………................................1 Chapter 2 The taxonomic identifications and geographic distributions of Sorghum taxa collected in Taiwan 2.1 Introduction……………………………………............................................15 2.2 Materials and methods………………………...............................................18 2.2.1 Morphological identifications of four Sorghum taxa in Taiwan 2.2.2 Field surveys and collections in different periods years in Taiwan 2.2.3 Nuclear DNA content 2.3 Results……………………………………....................................................25 2.3.1 The identification of four Sorghum taxa 2.3.2 Geographic distributions and co-existence of four Sorghum taxa inTaiwan 2.3.3 The nuclear DNA content of four Sorghum taxa 2.4 Discussion………………………………......................................................34 2.4.1 The confusing identification of wild types of sorghum 2.4.2 The occurrence and dispersal of feral and wild sorghum in Taiwan 2.4.3 Sorghum propinquum does not exist in Taiwan Chapter 3 The population expansion and habitat preferences of four Sorghum taxa in Taiwan over five years 3.1 Introduction……………………………………............................................64 3.2 Materials and methods…………………………...........................................68 3.2.1 The descriptions of habitats and co-existences of Sorghum 3.2.2 Statistics analysis of collecting data 3.3 Results……………………………………....................................................74 3.3.1 The change of geographic distributions of Sorghum in three differentperiods 3.3.2 The habitat survey for feral cultivated and wild sorghum in Taiwan 3.3.3 The habitat preferences of four Sorghum taxa collected in the field ofTaiwan 3.4 Discussion……………………………..........................................................85 3.4.1 The invading naturalized S. bicolor ssp. verticilliflorum and S.halepense in southern Taiwan 3.4.2 Habitat switch of cultivated types of sorghum Chapter 4 Genetic diversity and complex genetic relationship and differentiation among four Sorghum taxa in Taiwan 4.1 Introduction……………………………......................................................100 4.2 Materials and methods……………….........................................................102 4.2.1 DNA extraction and genotyping 4.2.2 Assessments of genetic diversity and clustering analysis 4.3 Results…………………………..................................................................108 4.3.1 Assessments of genetic diversity of subpopulations simulated bypopulation structure 4.3.2 Genetic relatedness of the morphologically identified Sorghumcollections in Taiwan 4.3.3 Pairwise genetic distance and genetic differentiation betweensubpopulations 4.4 Discussion……………….............................................................................118 4.4.1 Genetic diversity and relatedness of wild and cultivated sorghum inTaiwan 4.4.2 The high genetic diversity in S. halepense but extremely low in S.bicolor ssp. verticilliflorum Chapter 5 The intermediate types of Sorghum identified in mixed places and possible gene flow revealed by single nucleotide polymorphisms 5.1 Introduction…………..................................................................................137 5.2 Materials and methods.................................................................................140 5.2.1 DNA extraction and GBS library construction 5.2.2 SNP calling 5.2.3 Genetic diversity parameters 5.2.4 Clustering and specific-SNPs analysis 5.2.5 Genetic distance, differentiation, and FST outlier detection 5.3 Results…….................................................................................................146 5.3.1 SNP discovery and variations 5.3.2 Assessment of genetic diversity of four Sorghum taxa 5.3.3 Population structure 5.3.4 The genetic relatedness of four Sorghum revealed by PCA and NJ tree 5.3.5 Specific-SNPs potentially related to morphotypes 5.3.6 Pairwise Nei’s genetic distance and differentiation among fourSorghum taxa 5.3.7 Detection of selection signature 5.4 Discussion……............................................................................................175 5.4.1 The genetic diversity of four Sorghum taxa assessed by SNPs 5.4.2 The genetic relatedness of four Sorghum taxa identified in Taiwan 5.4.3 The admixed and intermediate type of Sorghum observed inoverlapped habitats 5.4.4 Genetic diversity and clustering analyses of Sorghum assessed by SSRs and SNPs | - |
| dc.language.iso | en | - |
| dc.subject | 高粱屬 | zh_TW |
| dc.subject | 中間型 | zh_TW |
| dc.subject | 親緣關係 | zh_TW |
| dc.subject | 遺傳歧異度 | zh_TW |
| dc.subject | 地理分布 | zh_TW |
| dc.subject | 棲地偏好 | zh_TW |
| dc.subject | geographic distribution | en |
| dc.subject | habitat preference | en |
| dc.subject | intermediate type | en |
| dc.subject | genetic relationship | en |
| dc.subject | genetic diversity | en |
| dc.subject | Sorghum | en |
| dc.title | 臺灣產高粱屬分類群之地理分布、遺傳多樣性及親緣關係 | zh_TW |
| dc.title | Geographic Distributions, Genetic Diversity, and Relatedness of Sorghum Taxa Identified in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 江友中;邱春火;陳志輝;侯藹玲;蔡元卿 | zh_TW |
| dc.contributor.oralexamcommittee | YU-CHUNG CHIANG;CHUN-HUO CHIU;CHIH-HUI CHEN;AI-LING HOUR;YUAN-CHING TSAI | en |
| dc.subject.keyword | 遺傳歧異度,地理分布,親緣關係,棲地偏好,中間型,高粱屬, | zh_TW |
| dc.subject.keyword | genetic diversity,geographic distribution,genetic relationship,habitat preference,intermediate type,Sorghum, | en |
| dc.relation.page | 213 | - |
| dc.identifier.doi | 10.6342/NTU202302850 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
