Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌zh_TW
dc.contributor.advisorShih-Huang Tungen
dc.contributor.author林亨宸zh_TW
dc.contributor.authorHeng-Chen Linen
dc.date.accessioned2023-10-03T17:13:29Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-03-
dc.identifier.citation1. Choi, S.; Jeon, H.; Jang, M.; Kim, H.; Shin, G.; Koo, J. M.; Lee, M.; Sung, H. K.; Eom, Y.; Yang, H. S., Biodegradable, efficient, and breathable multi‐use face mask filter. Advanced Science 2021, 8 (6), 2003155.
2. Polybutylene Succinate Market Size, Share & Trends Analysis Report By Type (Bio-based, Petro-based), By Application (Mulch Films, Packaging, Medicine), By Region, And Segment Forecasts, 2022 - 2030
https://www.grandviewresearch.com/industry-analysis/polybutylene-succinate-market-report/methodology.
3. Biomass Power Market Size, Share & Trends Analysis Report By Feedstock (Solid Biofuel, Liquid Biofuel), By Technology (Combustion, Gasification), By Region (North America, EU, APAC), And Segment Forecasts, 2022 - 2030. https://www.grandviewresearch.com/industry-analysis/biomass-power-market.
4. Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P., A brief review of poly (butylene succinate)(PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications. Polymers 2022, 14 (4), 844.
5. Jacquel, N.; Freyermouth, F.; Fenouillot, F.; Rousseau, A.; Pascault, J. P.; Fuertes, P.; Saint-Loup, R., Synthesis and properties of poly(butylene succinate): Efficiency of different transesterification catalysts. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (24), 5301-5312.
6. Xu, J.; Guo, B.-H., Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology Journal 2010, 5 (11), 1149-1163.
7. Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H., Poly (butylene succinate)(PBS): Materials, processing, and industrial applications. Progress in Polymer Science 2022, 101579.
8. Zhao, X.; Cornish, K.; Vodovotz, Y., Narrowing the gap for bioplastic use in food packaging: an update. Environmental science & technology 2020, 54 (8), 4712-4732.
9. Nomadolo, N.; Dada, O. E.; Swanepoel, A.; Mokhena, T.; Muniyasamy, S., A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly (butylene succinate), Poly (butylene adipate terephthalate) and Poly (lactic acid). Polymers 2022, 14 (9), 1894.
10. Chen, G.-Q.; Wu, Q., The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26 (33), 6565-6578.
11. Rafiqah, S. A.; Khalina, A.; Harmaen, A. S.; Tawakkal, I. A.; Zaman, K.; Asim, M.; Nurrazi, M. N.; Lee, C. H., A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers 2021, 13 (9), 1436.
12. Ishii, N.; Inoue, Y.; Tagaya, T.; Mitomo, H.; Nagai, D.; Kasuya, K.-i., Isolation and characterization of poly(butylene succinate)-degrading fungi. Polymer Degradation and Stability 2008, 93 (5), 883-888.
13. Zhao, J.-H.; Wang, X.-Q.; Zeng, J.; Yang, G.; Shi, F.-H.; Yan, Q., Biodegradation of poly(butylene succinate) in compost. Journal of Applied Polymer Science 2005, 97 (6), 2273-2278.
14. Liu, L.; Yu, J.; Cheng, L.; Yang, X., Biodegradability of poly (butylene succinate)(PBS) composite reinforced with jute fibre. Polymer Degradation and Stability 2009, 94 (1), 90-94.
15. Huang, Z.; Qian, L.; Yin, Q.; Yu, N.; Liu, T.; Tian, D., Biodegradability studies of poly (butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing 2018, 66, 319-326.
16. Kim, H.-S.; Kim, H.-J.; Lee, J.-W.; Choi, I.-G., Biodegradability of bio-flour filled biodegradable poly (butylene succinate) bio-composites in natural and compost soil. Polymer degradation and stability 2006, 91 (5), 1117-1127.
17. Picard, M. C.; Rodriguez-Uribe, A.; Thimmanagari, M.; Misra, M.; Mohanty, A. K., Sustainable biocomposites from poly (butylene succinate) and apple pomace: A study on compatibilization performance. Waste and biomass valorization 2020, 11, 3775-3787.
18. Bahremand, A. H.; Mousavi, S. M.; Ahmadpour, A.; Taherian, M., Biodegradable blend membranes of poly (butylene succinate)/cellulose acetate/dextran: Preparation, characterization and performance. Carbohydrate polymers 2017, 173, 497-507.
19. Teramoto, N.; Urata, K.; Ozawa, K.; Shibata, M., Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability 2004, 86 (3), 401-409.
20. Hu, X.; Su, T.; Pan, W.; Li, P.; Wang, Z., Difference in solid-state properties and enzymatic degradation of three kinds of poly (butylene succinate)/cellulose blends. RSC advances 2017, 7 (56), 35496-35503.
21. Nunes, L. J. R.; Causer, T. P.; Ciolkosz, D., Biomass for energy: A review on supply chain management models. Renewable and Sustainable Energy Reviews 2020, 120, 109658.
22. Xue, Y.; Mou, Z.; Xiao, H., Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 2017, 9 (39), 14758-14781.
23. Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews 2010, 110 (6), 3479-3500.
24. Sugiarto, S.; Pong, R. R.; Tan, Y. C.; Leow, Y.; Sathasivam, T.; Zhu, Q.; Loh, X. J.; Kai, D., Advances in sustainable polymeric materials from lignocellulosic biomass. Materials Today Chemistry 2022, 26, 101022.
25. Zhou, C.; Wu, Q. In Recent Development in Applications of Cellulose Nanocrystals for Advanced Polymer-Based Nanocomposites by Novel Fabrication Strategies, 2012.
26. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011, 40 (7), 3941-3994.
27. Zhou, C.; Wu, Q.; Yue, Y.; Zhang, Q., Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science 2011, 353 (1), 116-123.
28. Kamal, M. R.; Khoshkava, V., Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydrate Polymers 2015, 123, 105-114.
29. Yu, H.-Y.; Qin, Z.-Y.; Liu, Y.-N.; Chen, L.; Liu, N.; Zhou, Z., Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydrate Polymers 2012, 89 (3), 971-978.
30. Zhang, Q.; Lei, H.; Cai, H.; Han, X.; Lin, X.; Qian, M.; Zhao, Y.; Huo, E.; Villota, E. M.; Mateo, W., Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. Journal of Cleaner Production 2020, 252, 119898.
31. Li, M.; Li, D.; Wang, L.-j.; Adhikari, B., Creep behavior of starch-based nanocomposite films with cellulose nanofibrils. Carbohydrate polymers 2015, 117, 957-963.
32. Gong, G.; Pyo, J.; Mathew, A. P.; Oksman, K., Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Composites Part A: Applied Science and Manufacturing 2011, 42 (9), 1275-1282.
33. Wu, F.; Misra, M.; Mohanty, A. K., Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science 2021, 117, 101395.
34. Dhar, P.; Bhardwaj, U.; Kumar, A.; Katiyar, V., Poly (3‐hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: Barrier and migration studies. Polymer Engineering & Science 2015, 55 (10), 2388-2395.
35. Rader, C.; Weder, C.; Marti, R., Biobased Polyester-Amide/Cellulose Nanocrystal Nanocomposites for Food Packaging. Macromolecular Materials and Engineering 2021, 306 (3), 2000668.
36. Savadekar, N. R.; Mhaske, S. T., Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers 2012, 89 (1), 146-151.
37. Savadekar, N.; Karande, V.; Vigneshwaran, N.; Bharimalla, A.; Mhaske, S., Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. International journal of biological macromolecules 2012, 51 (5), 1008-1013.
38. Wang, L.; Chen, C.; Wang, J.; Gardner, D. J.; Tajvidi, M., Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life 2020, 23, 100464.
39. Nazrin, A.; Sapuan, S.; Zuhri, M.; Ilyas, R.; Syafiq, R.; Sherwani, S., Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Frontiers in chemistry 2020, 8, 213.
40. Butron, A.; Llorente, O.; Fernandez, J.; Meaurio, E.; Sarasua, J.-R., Morphology and mechanical properties of poly(ethylene brassylate)/cellulose nanocrystal composites. Carbohydrate Polymers 2019, 221, 137-145.
41. Sapkota, J.; Natterodt, J. C.; Shirole, A.; Foster, E. J.; Weder, C., Fabrication and Properties of Polyethylene/Cellulose Nanocrystal Composites. Macromolecular Materials and Engineering 2017, 302 (1), 1600300.
42. Shumigin, D.; Tarasova, E.; Krumme, A.; Meier, P., Rheological and mechanical properties of poly (lactic) acid/cellulose and LDPE/cellulose composites. Materials Science 2011, 17 (1), 32-37.
43. Girija, B. G.; Sailaja, R. R. N.; Madras, G., Thermal degradation and mechanical properties of PET blends. Polymer Degradation and Stability 2005, 90 (1), 147-153.
44. Mathew, A. P.; Oksman, K.; Sain, M., Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science 2005, 97 (5), 2014-2025.
45. Platnieks, O.; Gaidukovs, S.; Barkane, A.; Sereda, A.; Gaidukova, G.; Grase, L.; Thakur, V. K.; Filipova, I.; Fridrihsone, V.; Skute, M., Bio-based poly (butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies. Polymers 2020, 12 (7), 1472.
46. Kurokawa, N.; Kimura, S.; Hotta, A., Mechanical properties of poly(butylene succinate) composites with aligned cellulose-acetate nanofibers. Journal of Applied Polymer Science 2018, 135 (24), 45429.
47. Khoshkava, V.; Kamal, M. R., Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites. Biomacromolecules 2013, 14 (9), 3155-3163.
48. Olonisakin, K.; Li, R.; Zhang, X.-X.; Xiao, F.; Gao, J.; Yang, W., Effect of TDI-Assisted Hydrophobic Surface Modification of Microcrystalline Cellulose on the Tensile Fracture of MCC/PLA Composite, and Estimation of the Degree of Substitution by Linear Regression. Langmuir 2021, 37 (2), 793-801.
49. Roy, D.; Semsarilar, M.; Guthrie, J. T.; Perrier, S., Cellulose modification by polymer grafting: a review. Chemical Society Reviews 2009, 38 (7), 2046-2064.
50. Eyley, S.; Thielemans, W., Surface modification of cellulose nanocrystals. Nanoscale 2014, 6 (14), 7764-7779.
51. Xiao, L.; Mai, Y.; He, F.; Yu, L.; Zhang, L.; Tang, H.; Yang, G., Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose. Journal of Materials Chemistry 2012, 22 (31), 15732-15739.
52. Pasquini, D.; Teixeira, E. d. M.; Curvelo, A. A. d. S.; Belgacem, M. N.; Dufresne, A., Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology 2008, 68 (1), 193-201.
53. Rahman, M.; Brazel, C. S., The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Progress in Polymer Science 2004, 29 (12), 1223-1248.
54. Gutiérrez-Rocca, J.; McGinity, J. W., Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of acrylic resin copolymers. International Journal of Pharmaceutics 1994, 103 (3), 293-301.
55. Stachowiak, N.; Kowalonek, J.; Kozlowska, J., Effect of plasticizer and surfactant on the properties of poly (vinyl alcohol)/chitosan films. International Journal of Biological Macromolecules 2020, 164, 2100-2107.
56. Sothornvit, R.; Krochta, J. M., Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering 2001, 50 (3), 149-155.
57. DONHOWE, I. G.; FENNEMA, O., THE EFFECTS of PLASTICIZERS ON CRYSTALLINITY, PERMEABILITY, and MECHANICAL PROPERTIES of METHYLCELLULOSE FILMS. Journal of Food Processing and Preservation 1993, 17 (4), 247-257.
58. Jacobsen, S.; Fritz, H. G., Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polymer Engineering & Science 1999, 39 (7), 1303-1310.
59. Matuana, L. M.; Park, C. B.; Balatinecz, J. J., The effect of low levels of plasticizer on the rheological and mechanical properties of polyvinyl chloride/newsprint‐fiber composites. Journal of Vinyl and Additive Technology 1997, 3 (4), 265-273.
60. Yoshie, N.; Nakasato, K.; Fujiwara, M.; Kasuya, K.; Abe, H.; Doi, Y.; Inoue, Y., Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate). Polymer 2000, 41 (9), 3227-3234.
61. Pradhan, D. K.; Samantaray, B.; Choudhary, R.; Thakur, A. K., Effect of plasticizer on structure—property relationship in composite polymer electrolytes. Journal of power sources 2005, 139 (1-2), 384-393.
62. Choi, J. S.; Park, W. H., Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polymer Testing 2004, 23 (4), 455-460.
63. Etang Ayuk, J.; Mathew, A. P.; Oksman, K., The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. Journal of Applied Polymer Science 2009, 114 (5), 2723-2730.
64. Jamarani, R.; Erythropel, H. C.; Nicell, J. A.; Leask, R. L.; Marić, M., How green is your plasticizer? Polymers 2018, 10 (8), 834.
65. Liu, D.; Qi, Z.; Zhang, Y.; Xu, J.; Guo, B., Poly (butylene succinate)(PBS)/ionic liquid plasticized starch blends: Preparation, characterization, and properties. Starch‐Stärke 2015, 67 (9-10), 802-809.
66. Liminana, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N., Optimization of maleinized linseed oil loading as a biobased compatibilizer in poly (butylene succinate) composites with almond shell flour. Materials 2019, 12 (5), 685.
67. Zhao, Y.; Qu, J.; Feng, Y.; Wu, Z.; Chen, F.; Tang, H., Mechanical and thermal properties of epoxidized soybean oil plasticized polybutylene succinate blends. Polymers for Advanced Technologies 2012, 23 (3), 632-638.
68. Tsujimoto, T.; Takayama, T.; Uyama, H., Biodegradable shape memory polymeric material from epoxidized soybean oil and polycaprolactone. Polymers 2015, 7 (10), 2165-2174.
69. Chow, W. S.; Tan, S. G.; Ahmad, Z.; Chia, K. H.; Lau, N. S.; Sudesh, K., Biodegradability of Epoxidized Soybean Oil Based Thermosets in Compost Soil Environment. Journal of Polymers and the Environment 2014, 22 (1), 140-147.
70. Vieira, M. G. A.; da Silva, M. A.; dos Santos, L. O.; Beppu, M. M., Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 2011, 47 (3), 254-263.
71. Xu, Y.-Q.; Qu, J.-P., Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science 2009, 112 (6), 3185-3191.
72. Siemann, U., Solvent cast technology–a versatile tool for thin film production. In Scattering methods and the properties of polymer materials, Springer: 2005; pp 1-14.
73. Yang, W.; Fortunati, E.; Dominici, F.; Kenny, J. M.; Puglia, D., Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. European Polymer Journal 2015, 71, 126-139.
74. Jiang, L.; Morelius, E.; Zhang, J.; Wolcott, M.; Holbery, J., Study of the poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. Journal of composite materials 2008, 42 (24), 2629-2645.
75. Strobl, G.; Schneider, M., Direct evaluation of the electron density correlation function of partially crystalline polymers. Journal of Polymer Science: Polymer Physics Edition 1980, 18 (6), 1343-1359.
76. Garin, M.; Tighzert, L.; Vroman, I.; Marinkovic, S.; Estrine, B., The influence of molar mass on rheological and dilute solution properties of poly (butylene succinate). Journal of Applied Polymer Science 2014, 131 (20).
77. Bourg, V.; Valette, R.; Le Moigne, N.; Ienny, P.; Guillard, V.; Bergeret, A., Shear and extensional rheology of linear and branched polybutylene succinate blends. Polymers 2021, 13 (4), 652.
78. He, Y.; Zhu, B.; Kai, W.; Inoue, Y., Nanoscale-confined and fractional crystallization of poly (ethylene oxide) in the interlamellar region of poly (butylene succinate). Macromolecules 2004, 37 (9), 3337-3345.
79. Cser, F., About the Lorentz correction used in the interpretation of small angle X-ray scattering data of semicrystalline polymers. Journal of Applied Polymer Science 2001, 80 (12), 2300-2308.
80. Mahmud, S.; Long, Y.; Abu Taher, M.; Xiong, Z.; Zhang, R.; Zhu, J., Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. Journal of Applied Polymer Science 2019, 136 (46), 48221.
81. Ludueña, L. N.; Fortunati, E.; Morán, J. I.; Alvarez, V. A.; Cyras, V. P.; Puglia, D.; Manfredi, L. B.; Pracella, M., Preparation and characterization of polybutylene‐succinate/poly (ethylene‐glycol)/cellulose nanocrystals ternary composites. Journal of Applied Polymer Science 2016, 133 (15).
82. Toda, A., Oscillation and instability of neck propagation in poly (ethylene terephthalate) films. Polymer 1993, 34 (11), 2306-2314.
83. Bazhenov, S.; Rodionova, Y. A.; Kechek yan, A., Self-oscillation neck propagation in various polymers. POLYMER SCIENCE SERIES AC/C OF VYSOKOMOLEKULIARNYE SOEDINENIIA 2003, 45 (7), 635-639.
84. Ronkay, F.; Czigány, T., Cavity formation and stress-oscillation during the tensile test of injection molded specimens made of PET. Polymer Bulletin 2006, 57, 989-998.
85. Wan, C.; Heeley, E. L.; Zhou, Y.; Wang, S.; Cafolla, C. T.; Crabb, E. M.; Hughes, D. J., Stress-oscillation behaviour of semi-crystalline polymers: the case of poly (butylene succinate). Soft Matter 2018, 14 (45), 9175-9184.
86. Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Jiang, S.; Wang, D., Reversible lamellar thickening induced by crystal transition in poly (butylene succinate). Macromolecules 2012, 45 (13), 5487-5493.
87. Hongsriphan, N.; Pinpueng, A., Properties of agricultural films prepared from biodegradable poly (butylene succinate) adding natural sorbent and fertilizer. Journal of Polymers and the Environment 2019, 27, 434-443.
88. Wu, W.; Cao, X.; Luo, J.; He, G.; Zhang, Y., Morphology, thermal, and mechanical properties of poly (butylene succinate) reinforced with halloysite nanotube. Polymer Composites 2014, 35 (5), 847-855.
89. Lee, S. M.; Cho, D.; Park, W. H.; Lee, S. G.; Han, S. O.; Drzal, L. T., Novel silk/poly (butylene succinate) biocomposites: the effect of short fibre content on their mechanical and thermal properties. Composites Science and Technology 2005, 65 (3-4), 647-657.
90. Radu, E.-R.; Panaitescu, D. M.; Nicolae, C.-A.; Gabor, R. A.; Rădiţoiu, V.; Stoian, S.; Alexandrescu, E.; Fierăscu, R.; Chiulan, I., The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. Journal of Polymers and the Environment 2021, 29, 2310-2320.
91. Ozkoc, G.; Kemaloglu, S., Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. Journal of Applied Polymer Science 2009, 114 (4), 2481-2487.
92. Mergaert, J.; Anderson, C.; Wouters, A.; Swings, J.; Kersters, K., Biodegradation of polyhydroxyalkanoates. FEMS microbiology reviews 1992, 9 (2-4), 317-321.
93. Lotto, N. T.; Calil, M. R.; Guedes, C. G. F.; Rosa, D. S., The effect of temperature on the biodegradation test. Materials Science and Engineering: C 2004, 24 (5), 659-662.
94. Wang, H.; Wei, D.; Zheng, A.; Xiao, H., Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polymer Degradation and Stability 2015, 116, 14-22.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90696-
dc.description.abstract聚丁二酸丁二醇酯 (Polybutylene succinate, PBS) 是一個石油提煉的生物可降解的高分子,被視為塑膠包材新興的材料。為了增加生物降解性及機械強度,本研究選用纖維素奈米微晶 (Cellulose nanocrystal, CNC) 與PBS混摻,但因為纖維素易形成應力集中點導致機械性質下降,需要添加增塑劑提升摻合物的延伸率。本研究選用環氧大豆油 (Epoxidized soybean oil, ESO)作為增塑劑。
在溶劑鑄造 (Solvent casting) 的製程中,PBS混摻ESO後的延伸率上升,這歸因於PBS結晶度的下降及微結構中長週期序列的改變。在DSC及DMA也可發現ESO能夠讓PBS的玻璃轉移溫度下降。這兩項變化與增塑劑的功能有直接的關係,代表ESO可作為此摻合物有效的增塑劑。另外在生物降解性方面,添加CNC的摻合物的降解速率相對於PBS是四倍,證明此摻合物不會對環境產生極大的危害。
在混煉 (Compounding) 製程中,由於機械性質會受混煉條件影響,經由極限黏度及拉伸試驗發現最適合摻合物的混煉時間為一分鐘。在此混煉條件下,機械性質、熱性質及微結構的變化皆與溶劑鑄造製程中相符合並且保留了PBS原有的機械性質,再利用預先混合的方式使CNC和ESO混合,增加CNC的分散性進而提升摻合物的阻氣性質。總結來說,摻合物的性質具有再現性,並且保有良好的機械性質、熱穩定性及生物降解性。
zh_TW
dc.description.abstractPolybutylene succinate (PBS) is one of the fossil-based biodegradable polymer, which is regarded as the emerging material for plastic packaging. Cellulose nanocrystal (CNC) is chosen to be incorporated with PBS for enhancement of biodegradability and mechanical strength. Unfortunately, the brittle cellulose particles form stress concentration points easily that sabotage the elongation of the composite. Therefore, epoxidized soybean oil (ESO) is employed as the plasticizer, which is required for the composite.
The composite is processed by two techniques: solvent casting and compounding. In the case of solvent casting, the elongation of the composite raises siginificantly with the addition of ESO, which attributes to the remarkable declination of the crystallinity and the alternation of the microstructure. In addition, the glass transition temperature of PBS drops with the addition of ESO according to the data of DMA and DSC. These two circumstances are closely related to the functions of plasticizer, proving that ESO can be an efficient plasticizer of the composite. The biodegradability of the composite is also found to be four times greater than the neat PBS in the biodegradation test, indicating that the composite is able to be decomposed faster in nature without being hazardous to the environment.
In the case of compounding, the molecular weight and intrinsic viscosity of PBS decrease with the increasing time of compounding due to the impact of thermal degradation and the shear force of the compounder, which determines that the optimized condition of compounding is one minute. The microstructure, thermal stability and mechanical properties of composite processed by compounder show a similar tendency compared to solvent casting. Moreover, the pre-mix of CNC and ESO serves as a conducive approach to the dispersion of CNC in the matrix of PBS, resulting in the better gas barrier properties. In conclusion, the composite which retains outstanding mechanical properties and advantages of biodegradable plastic is reproducible.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:13:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:13:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xvi
第一章 前言及研究動機 1
第二章 文獻回顧 3
2.1聚丁二酸丁二醇酯 (Polybutylene succinate, PBS) 3
2.2 纖維素 5
2.3 高分子與纖維素混摻 6
2.4 增塑劑 10
2.5混煉 (Compounding) 及溶劑鑄造 (Solvent casting) 性質差異 13
第三章 實驗方法與器材 17
3.1 實驗方法 17
3.1.1 PBS/CNC/ESO 溶劑鑄造樣品 (Solvent casting) 17
3.1.2 PBS/CNC/ESO 混煉樣品製備 (Compounder) 18
3.1.2.1 CNC/ESO無預先混合 18
3.1.2.2 CNC/ESO 預先混合 19
3.2 實驗藥品 20
3.2.1聚丁二酸丁二醇酯 (Polybutylene succinate, PBS) 20
3.2.2纖維素奈米微晶 (Cellulose nanocrystal, CNC) 21
3.2.3環氧大豆油 (Epoxidized soybean oil, ESO) 21
3.2.4 1,1,2,2-四氯乙烷 (1,1,2,2-tetrachloroethane,TeCA) 22
3.3實驗儀器 22
3.3.1熱差分析儀 (Differential scanning calorimetry, DSC) 22
3.3.2熱重分析儀 (Thermogravimetric analysis, TGA) 23
3.3.3動態機械分析 (Dynamic mechanical analysis, DMA) 23
3.3.4萬能試驗機 (Universal testing machine, UTM) 24
3.3.5小角及廣角X光散射 (Small/Wide angle X-ray scattering, SAXS/WAXS) 26
3.3.6場發射式電子顯微鏡 (Scanning electron microscope, SEM) 30
3.3.7熱壓成型機 (Hot-pressing) 31
3.3.8微量雙螺桿混煉機 (Micro twin screw compounder) 31
3.3.9氧氣通過分析儀 (Oxygen transmission rate, OTR) 32
3.3.10生物降解性測試 (Biodegradation test) 33
3.3.11極限黏度 (Intrinsic viscosity, IV) 34
3.3.12全反射式衰減紅外光譜儀 (Attenuated total reflection infared spectroscopy, ATR-IR) 36
3.3.13偏光顯微鏡 (Polarized optical microscope, POM) 37
第四章 結果與討論-溶劑鑄造製程 39
4.1.溶解度測試 39
4.1.1增塑劑與PBS溶解度測試 39
4.1.2增塑劑與纖維素溶解度測試 40
4.2 熱重分析 (TGA) 41
4.3機械性質 (UTM) 44
4.4熱差分析儀 (DSC) 49
4.4.1 PBS/CNC/ESO 鏈段運動 49
4.4.2 PBS/CNC/ESO 結晶度 51
4.5動態機械分析 (DMA) 53
4.5.1 PBS/CNC/ESO 儲存模量 53
4.5.2 PBS/CNC/ESO 阻尼係數 55
4.5.3 蠕變測試 (Creep) 57
4.6小角 X光散射 (SAXS) 60
4.6.1 PBS/CNC/ESO 一維SAXS數據 60
4.6.2 一維相關方程式 (One dimensional correlation function) 63
4.6.3 SAXS/DSC 數據計算長週期序列分佈 66
4.7掃描式電子顯微鏡 (SEM) 69
4.7.1 PBS/ESO 拉伸試驗後截面比較 69
4.7.2 PBS/5CNC/ESO 拉伸試驗後截面比較 71
4.7.3 PBS/10CNC/ESO 拉伸試驗後截面比較 72
4.8偏光顯微鏡 (POM) 74
4.9 阻氣性質分析 (OTR) 76
4.10生物降解 (Biodegradation test) 78
4.10.1 生物降解重量變化 78
4.10.2生物降解實驗前後形貌 (SEM) 80
4.10.3 降解前後官能基分析(ATR-IR) 82
4.11 PBS順向誘導結晶及應力振盪現象 83
第五章 結果與討論--混煉製程 98
5.1機械性質 (UTM) 98
5.1.1 PBS經過不同混煉時間後的機械性質比較 98
5.1.2 PBS混摻5 phr的CNC及不同比例ESO經過不同製程的機械性質比較 102
5.2 極限黏度 (IV) 105
5.3熱重分析儀 (TGA) 107
5.3.1 PBS/CNC/ESO 摻合物熱重分析 (TGA) 107
5.4熱差分析儀 (DSC) 110
5.5動態機械分析儀 (DMA) 112
5.5.1 PBS/CNC/ESO 動態模式 (Oscillation) 112
5.6小角X光散射 (SAXS) 115
5.6.1 PBS/CNC/ESO 摻合物 115
5.6.2 不同混煉時間對於摻合物之微結構的影響 117
5.7掃描式電子顯微鏡 (SEM) 119
5.8偏光顯微鏡 (POM) 122
5.9 阻氣性質 (OTR) 123
5.10預先混合性質分析 (Pre-mix) 124
第六章 結論 129
第七章 參考資料 131
附錄 143
壹、 溶劑鑄造(Solvent casting) 143
一、 機械性質 143
二、 DSC 145
三、 DMA 147
四、 SAXS 149
五、 TGA 151
六、 PBS應力震盪 155
貳、 混煉 --無預先混合 (Compounder) 157
一、 PBS/CNC/ESO混煉2分鐘的機械性質 157
二、 TGA 160
參、 混煉—預先混合(Compounder) 161
一、 機械性質 161
二、 DSC 162
三、 TGA 164
四、 SEM 164
五、 SAXS 166
六、 POM 166
-
dc.language.isozh_TW-
dc.title聚丁二酸丁二醇酯/纖維素奈米微晶/環氧大豆油生物可降解摻合物zh_TW
dc.titleDevelopment of Polybutylene Succinate/Cellulose Nanocrystal/Epoxidized Soybean Oil Biodegradable Compositeen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖英志;張豐丞;杜安邦zh_TW
dc.contributor.oralexamcommitteeYing-Chih Liao;Feng-Cheng Chang;An-pang Tuen
dc.subject.keyword聚丁二酸丁二醇酯,纖維素奈米微晶,增塑劑,機械性質,微結構,溶劑鑄造,混煉,zh_TW
dc.subject.keywordpolybutylene succinate,cellulose nanocrystal,,plasticizer,mechanical properties,microstructure,solvent casting,compounder,en
dc.relation.page167-
dc.identifier.doi10.6342/NTU202302141-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
11.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved