請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90692
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李佳翰 | zh_TW |
dc.contributor.advisor | Jia-Han Li | en |
dc.contributor.author | 詹宗達 | zh_TW |
dc.contributor.author | Tsung-Ta Chan | en |
dc.date.accessioned | 2023-10-03T17:12:27Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | M. Von Sperling, Wastewater characteristics, treatment and disposal. IWA publishing 6, (2007).
Meena, Ramakrishnan Anu Alias, et al. "Trends and resource recovery in biological wastewater treatment system." Bioresource Technology Reports 7 (2019): 100235. Collivignarelli, Maria Cristina, et al. "Foams in wastewater treatment plants: from causes to control methods." Applied Sciences 10.8 (2020): 2716. Collivignarelli, Maria Cristina, et al. "Sewage sludge treatment in a thermophilic membrane reactor (TMR): factors affecting foam formation." Environmental Science and Pollution Research 24 (2017): 2316-2325 Di Bella G, Torregrossa M, Viviani G (2011) The role of EPS concentration in MBR foaming: analysis of a submerged pilot plant. Bioresource Technol 102(2):1628–1635. doi:10.1016/j.biortech.2010.09.028 Zhang, Haihong, et al. "Foam and interfacial properties of Tween 20–bovine serum albumin systems." Colloids and Surfaces A: Physicochemical and Engineering Aspects 416 (2013): 23-31. Petrovski, Steve, et al. "Biological control of problematic bacterial populations causing foaming in activated sludge wastewater treatment plants—phage therapy and beyond." Letters in Applied Microbiology 75.4 (2022): 776-784. Kulwa, Frank, et al. "A state-of-the-art survey for microorganism image segmentation methods and future potential." IEEE Access 7 (2019): 100243-100269. 應用 ISIS 高頻譜光學遙測影像於曾文水庫之水質監測 劉正千、張智華、許華宇、譚子健、溫清光 科儀新知第二十九卷第三期 (2007) https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/161/01610290.pdf Von Sperling, Marcos. Wastewater characteristics, treatment and disposal. IWA publishing, 2007. Boukhayma, Assim, Antonino Caizzone, and Christian Enz. "An ultra-low power PPG and mm-resolution ToF PPD-based CMOS chip towards all-in-one photonic sensors." IEEE Sensors Journal 19.24 (2019): 11858-11866. Nguyen, Thuy Tuong, et al. "Structured light-based 3D reconstruction system for plants." Sensors 15.8 (2015): 18587-18612. He, Yu, and Shengyong Chen. "Recent advances in 3D data acquisition and processing by time-of-flight camera." IEEE Access 7 (2019): 12495-12510. Wang, Wei, Xiaolei Huang, and Ali Esmaili. "Texture-based foam segmentation and analysis." Industrial & engineering chemistry research 50.10 (2011): 6071-6081. Khan, Muhammad Burhan, Humaira Nisar, and Ng Choon Aun. "Segmentation and quantification of activated sludge floes for wastewater treatment." 2014 IEEE Conference on Open Systems (ICOS). IEEE, 2014. Zhang, Wenkang, et al. "An Improved Python-Based Image Processing Algorithm for Flotation Foam Analysis." Minerals 12.9 (2022): 1126. Daiki Endo(2022).Application of laser speckles and deep learning in discriminating between the size and concentrations of supermicroplastics. Optics Continuum. 2259-2273. Microbial Discovery Group “Wastewater Foaming Problems.” (2015) https://www.mdgbio.com/wastewater/newsletter-wastewater-foaming-problems/ Meyler's Side Effects of Drugs (Sixteenth Edition) The International Encyclopedia of Adverse Drug Reactions and Interactions 2016, Page 1045 Encyclopedia of Materials: Science and Technology (Second Edition) 2001, Pages 2769-2774 Lech, Frederik J.. “Foam properties of proteins, low molecular weight surfactants and their complexes.” (2016). Cascão Pereira, Luis G., et al. "Dilatational rheology of BSA conformers at the air/water interface." Langmuir 19.6 (2003): 2349-2356. Hall, G. M. (1995). Methods of testing protein functionality. Blackie Academic & Professional. Valkovska, Dimitrina S., and Krassimir D. Danov. "Determination of bulk and surface diffusion coefficients from experimental data for thin liquid film drainage." Journal of colloid and interface science 223.2 (2000): 314-316. Thermo Scientific UV-Vis 分光光譜儀總覽 (2023) https://www.scincotaiwan.tw/zh-cht/Products_Detail-51.html CSDN OpenCV中如何提取不规则ROI區域 (2020) https://blog.csdn.net/yangdashi888/article/details/104145715 Yaniv, Z. (2009). Median filtering. School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel. Intel® RealSense™ Depth Camera D435i (2023) https://www.intelrealsense.com/depth-camera-d435i/ KS5A00N MI5100 5 megapixel USB camera module 1/2.5 sensitization High shot instrument (2023) https://www.aliexpress.com/item/32944237752.html Pace, C. Nick, et al. "How to measure and predict the molar absorption coefficient of a protein." Protein science 4.11 (1995): 2411-2423. Li, Yongfei, et al. "Preparation of Multifunctional Surfactants Derived from Sodium Dodecylbenzene Sulfonate and Their Use in Oil-Field Chemistry." Molecules 28.8 (2023): 3640. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90692 | - |
dc.description.abstract | 以往污水處理廠水樣發生濃度過高的時候,再進行水質的檢測時,往往都要將水樣抽載並送檢,如此將花費大量心力,因此我們透過污水集濃產生的泡沫污染物,採用光學和影像技術應用於泡沫污染物型態智慧分析,以自動化視覺感知,進一步增進處理水污染檢測之效率和精準度。
本研究目標在開發一種高效的泡沫識別技術,通過使用影像辨識技術結合光學儀器輔助,以非接觸的方式來檢測水中的泡沫濃度和種類,實現對水中泡沫的自動監測和分析。樣品方面選擇了在污水中容易起泡的種類,生物性蛋白代表牛血清蛋白和界面活性劑代表十二烷基苯磺酸鹽,並去探討了其泡沫生成型態的變化。 在光學檢測部分,對其成份做基本分析,獲得吸收光譜並進行譜線特徵的比較,利用飛時測距儀器去檢測其液面泡沫堆疊高度。在影像處理部分,通過相機擷取泡沫特徵後,藉由灰度化、銳化、對比度強化、中值濾波等一系列影像處理的方法來分析擷取之泡沫影像,最終進行二值化處理,計算並框選泡沫覆蓋面積。 研究結果顯示,牛血清蛋白泡沫較十二烷基苯磺酸鹽泡沫更容易向上堆疊,而十二烷基苯磺酸鹽泡沫較牛血清蛋白泡沫容易向水平面擴散,這是因為蛋白質在界面處會吸附並與靜電、疏水鍵和共價鍵相互作用,導致泡沫形成多層膜並減緩擴散速率,而界面活性劑泡沫因為其親水端的特性,界面活性劑泡沫在水中擴散速度會較快。 這些技術的開發將為廢水處理廠操作人員提供寶貴的訊息,使他們能夠即時採取措施,有效處理持久性泡沫,從而提高系統的運行效率。 | zh_TW |
dc.description.abstract | In the past, when wastewater treatment plant samples showed excessively high concentrations, water quality testing often required the extraction and transportation of samples for analysis, entailing significant effort. To deal with this challenge, we have leveraged the foam pollutants generated during wastewater concentration, employing optical and imaging technologies for intelligent analysis of foam pollutant patterns. This approach introduces automated visual perception, thereby enhancing the efficiency and precision of water pollution detection.
The primary aim of this study is to develop an efficient foam identification technique. We achieve this by combining image recognition techniques with optical instrument assistance to non-invasively detect foam concentration and types in water. We accomplish automated monitoring and analysis of foam in water through this approach. For sample selection, we have chosen easily foaming substances typically found in wastewater - bovine serum albumin (BSA) representing biological proteins, and sodium dodecyl benzene sulfonate (SDBS) representing surfactants. We further investigate the variations in their foam generation characteristics. In the optical inspection phase, we conduct fundamental analysis of the foam components, obtaining absorption spectra and comparing spectral features. Additionally, we utilize time-of-flight (ToF) distance measurement instruments to assess the stacking height of liquid surface foam. In the image processing phase, we capture foam characteristics using a camera. Subsequently, through a series of image processing techniques such as grayscale conversion, sharpening, contrast enhancement, and median filtering, we analyze the captured foam images. This culminates in binary processing to calculate and delineate the foam coverage area. Research outcomes reveal that foam generated by bovine serum albumin tends to stack upward, while foam produced by sodium dodecyl benzene sulfonate exhibits a greater tendency to spread horizontally. This disparity arises from the interaction of proteins at interfaces, involving electrostatic, hydrophobic, and covalent bonds, resulting in the formation of multi-layered membranes that slow down diffusion rates. Conversely, surfactant foam, due to its hydrophilic end, exhibits faster diffusion in water. The development of these techniques furnishes wastewater treatment plant operators with valuable insights, enabling them to promptly implement measures and effectively address persistent foam issues, thereby enhancing overall system operational efficiency. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:12:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:12:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 III 英文摘要 IV 目錄 VI 圖目錄 VIII 表目錄 XI CHAPTER 1 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 動機 8 1.4 架構 9 CHAPTER 2 研究方法和理論 10 2.1 泡沫污染物介紹 10 2.2 泡沫生成型態 12 2.3 光學方法 14 2.4 影像方法 19 CHAPTER 3 泡沫監控系統架構 28 CHAPTER 4 結果與討論 32 4.1 光學方法辨識結果 32 4.2 影像方法監測結果 37 CHAPTER 5 結論與未來展望 46 5.1 結論 46 5.2 未來展望 46 參考文獻 49 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於光學技術和影像處理應用於泡沫污染物監測與分析 | zh_TW |
dc.title | Monitoring and analysis of foam pollutants based on optical technology and image processing | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 丁肇隆;朱仁佑;高豐生;曾俊舜 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Lung Ting;Jen-You Chu;Feng-Sheng Kao;Chun-Shun Tseng | en |
dc.subject.keyword | 泡沫污染物,牛血清蛋白,十二烷基苯磺酸鹽,吸收光譜,飛時測距,影像處理, | zh_TW |
dc.subject.keyword | Foam pollutants,Bovine serum albumin,Sodium dodecyl benzene sulfonate,Absorption spectrum,Time-of-flight measurement,Image processing, | en |
dc.relation.page | 50 | - |
dc.identifier.doi | 10.6342/NTU202303370 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | 2025-09-01 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 2.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。