請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9068
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳義裕 | |
dc.contributor.author | Hsuan-Shao Kuo | en |
dc.contributor.author | 郭軒劭 | zh_TW |
dc.date.accessioned | 2021-05-20T20:08:13Z | - |
dc.date.available | 2009-08-20 | |
dc.date.available | 2021-05-20T20:08:13Z | - |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-03 | |
dc.identifier.citation | [1] G.E. Uhlenbeck and S.A. Goudsmit, Naturwissenschaften 47, 953 (1925).
[2] S.A. Goudsmit and G. E. Uhlenbeck, “Spinning Electrons and the Structure of Spectra,” Nature, 117, 264-265, (1926). [3] L.H. Thomas, “The motion of the spinning electron,” Nature, April 10, 514 (1926). [4] L.H. Thomas, “The Kinematics of an Electron with an Axis,” Phil. Mag and J. Science, Ser. 7, 1-22 (1927). [5] L. Silberstein, The Theory of Relativity, Chapter IV, MacMillan, 1914. [6] E.G.P. Rowe, “The Thomas Precession,” Eur. J. Phys. 5, 40-45 (1984). [7] Mu˜noz, “Spin-orbit interaction and the Thomas precession: A comment on the lab frame point of view,” Am. J. Phys. 69, 554-556 (2001). [8] J.A. Rhodes and M.D. Semon, “Relativistic velocity space, Wigner rotation, and Thomas precession,” Am. J. Phys. 72, 943-960 (2004). [9] J.D. Jackson, Classical Electrodynamics, 2nd ed, pp 541-547, Wiley & Sons, 1975. [10] G.B. Malykin, “Thomas precession: correct and incorrect solutions,” Phys.-Uspekhi 49, 837-853 (2006). [11] G.P.Fisher, “The electric dipole moment of a moving magnetic dipole,” Am. J. Phys. 39, 1528-1533 (1971). [12] W.H.Furry, ”Examples of Momentum Distribution in the Eletromagnetic Field and in Matter”, Am. J. Phys. 37, 621-636 (1969). [13] Lev Vaidman, ”Torque and force on a magnetic dipole”, Am. J. Phys. 58, 978-983 (1990). [14] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, pp 171-174, 3rd ed, Pearson Education, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9068 | - |
dc.description.abstract | Historically, Thomas precession came about as an attempt to explain why the thennew quantum theory involving electron spins could still correctly explain certain spectra
of anomalous Zeeman effect, despite a puzzling missing factor of 1/2 in a standard calculation. In 1926, L.H.Thomas showed that people had overlooked a then-little-known relativistic kinematic effect in their calculations to resolve the puzzle. Because Thomas precession can and should be checked against experiments in the lab, it seems reasonable and worthwhile to investigate how a magnetic dipole interacts with a given static electric field directly from the point of view of a lab observer. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:08:13Z (GMT). No. of bitstreams: 1 ntu-98-R92222037-1.pdf: 174060 bytes, checksum: 10110e61e13a0a9bddc0dd498ca34342 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 1 Introduction ......................................1
1.1 Origin of the Thomas precession .................1 1.2 Motivation of the present work ..................2 2 The spin-orbit energy for an electron: the traditional approach ............................................4 2.1 Conventions adopted ............................ 4 2.2 The original problem Thomas solved ..............4 2.3 Summary of the work of Thomas .................. 5 3 Thomas Precession: In the lab frame ...............8 3.1 The electric dipole accompanying a moving magnetic dipole ..............................................9 3.2 The hidden momentum .............................9 3.3 The inclusion of the hidden momentum by Mu˜noz .11 3.4 Missing the right turn..........................12 4 Two wrongs corrected .............................14 5 Deriving it via the Lorentz transformation .......17 5.1 The dynamical equation rederived ...............17 5.2 Conclusion .....................................19 Bibliography .......................................20 | |
dc.language.iso | en | |
dc.title | 湯馬斯進動於實驗室座標系之研究 | zh_TW |
dc.title | Thomas Precession and the Torque Equation from the Lab Frame Point of View | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾玄哲,陳輝樺 | |
dc.subject.keyword | 湯馬斯進動, | zh_TW |
dc.subject.keyword | Thomas Precession, | en |
dc.relation.page | 21 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 169.98 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。