Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳韻如zh_TW
dc.contributor.advisorYun-Ru Chenen
dc.contributor.author蔡天穎zh_TW
dc.contributor.authorTien-Ying Tsaien
dc.date.accessioned2023-10-03T17:11:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation1 Ruz, C., Alcantud, J. L., Vives Montero, F., Duran, R. & Bandres-Ciga, S. Proteotoxicity and neurodegenerative diseases. Int J Mol Sci 21, doi:10.3390/ijms21165646 (2020).
2 Erkkinen, M. G., Kim, M. O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10, doi:10.1101/cshperspect.a033118 (2018).
3 Gan, L., Cookson, M. R., Petrucelli, L. & La Spada, A. R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 21, 1300-1309, doi:10.1038/s41593-018-0237-7 (2018).
4 Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991-1995, doi:10.1126/science.1067122 (2002).
5 Stroo, E., Koopman, M., Nollen, E. A. & Mata-Cabana, A. Cellular regulation of amyloid formation in aging and disease. Front Neurosci 11, 64, doi:10.3389/fnins.2017.00064 (2017).
6 Koga, H., Kaushik, S. & Cuervo, A. M. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 10, 205-215, doi:10.1016/j.arr.2010.02.001 (2011).
7 Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188-1203, doi:10.1016/j.cell.2012.02.022 (2012).
8 Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15, 384-396, doi:10.1038/nrm3810 (2014).
9 Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19, 755-773, doi:10.1038/s41580-018-0060-8 (2018).
10 Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu Rev Biochem 86, 27-68, doi:10.1146/annurev-biochem-061516-045115 (2017).
11 Eichner, T. & Radford, S. E. A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43, 8-18, doi:10.1016/j.molcel.2011.05.012 (2011).
12 Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91, 795-826, doi:10.1152/physrev.00042.2009 (2011).
13 Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413-446, doi:10.1016/S0140-6736(20)30367-6 (2020).
14 Breijyeh, Z. & Karaman, R. Comprehensive review on Alzheimer's disease: Causes and treatment. Molecules 25, doi:10.3390/molecules25245789 (2020).
15 Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270-281, doi:10.1016/j.neuron.2010.10.013 (2010).
16 Barber, R. C. The genetics of Alzheimer's disease. Scientifica (Cairo) 2012, 246210, doi:10.6064/2012/246210 (2012).
17 Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204-1222, doi:10.1016/j.cell.2012.02.040 (2012).
18 Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923, doi:10.1126/science.8346443 (1993).
19 Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349-1356 (1997).
20 Agarwal, M., Alam, M. R., Haider, M. K., Malik, M. Z. & Kim, D. K. Alzheimer's disease: An overview of major hypotheses and therapeutic options in nanotechnology. Nanomaterials-Basel 11, doi:ARTN 59 10.3390/nano11010059 (2021).
21 Hampel, H. et al. The Amyloid-beta pathway in Alzheimer's disease. Mol Psychiatr 26, 5481-5503, doi:10.1038/s41380-021-01249-0 (2021).
22 Haass, C., Kaether, C., Thinakaran, G. & Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2, a006270, doi:10.1101/cshperspect.a006270 (2012).
23 Zhao, J., Liu, X., Xia, W., Zhang, Y. & Wang, C. Targeting amyloidogenic processing of APP in Alzheimer's disease. Front Mol Neurosci 13, 137, doi:10.3389/fnmol.2020.00137 (2020).
24 Vassar, R. ADAM10 prodomain mutations cause late-onset Alzheimer's disease: not just the latest FAD. Neuron 80, 250-253, doi:10.1016/j.neuron.2013.09.031 (2013).
25 Esch, F. S. et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248, 1122-1124, doi:10.1126/science.2111583 (1990).
26 Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A. & Price, D. L. Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492-495, doi:10.1126/science.1691865 (1990).
27 Wang, R., Meschia, J. F., Cotter, R. J. & Sisodia, S. S. Secretion of the beta/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells. J Biol Chem 266, 16960-16964 (1991).
28 Suzuki, N. et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264, 1336-1340, doi:10.1126/science.8191290 (1994).
29 Iwatsubo, T. et al. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45-53, doi:10.1016/0896-6273(94)90458-8 (1994).
30 Gravina, S. A. et al. Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270, 7013-7016, doi:10.1074/jbc.270.13.7013 (1995).
31 Gu, L. & Guo, Z. Alzheimer's Abeta42 and Abeta40 peptides form interlaced amyloid fibrils. J Neurochem 126, 305-311, doi:10.1111/jnc.12202 (2013).
32 De Jonghe, C. et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet 10, 1665-1671, doi:10.1093/hmg/10.16.1665 (2001).
33 Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81, 741-766, doi:10.1152/physrev.2001.81.2.741 (2001).
34 Chen, W. et al. Familial Alzheimer's mutations within APPTM increase Abeta42 production by enhancing accessibility of epsilon-cleavage site. Nat Commun 5, 3037, doi:10.1038/ncomms4037 (2014).
35 Sun, L., Zhou, R., Yang, G. & Shi, Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. Proc Natl Acad Sci U S A 114, E476-E485, doi:10.1073/pnas.1618657114 (2017).
36 Walker, E. S., Martinez, M., Brunkan, A. L. & Goate, A. Presenilin 2 familial Alzheimer's disease mutations result in partial loss of function and dramatic changes in Abeta 42/40 ratios. J Neurochem 92, 294-301, doi:10.1111/j.1471-4159.2004.02858.x (2005).
37 Smith, D. G., Cappai, R. & Barnham, K. J. The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochim Biophys Acta 1768, 1976-1990, doi:10.1016/j.bbamem.2007.02.002 (2007).
38 Cerpa, W., Dinamarca, M. C. & Inestrosa, N. C. Structure-function implications in Alzheimer's disease: effect of Abeta oligomers at central synapses. Curr Alzheimer Res 5, 233-243, doi:10.2174/156720508784533321 (2008).
39 Carrillo-Mora, P., Luna, R. & Colin-Barenque, L. Amyloid beta: multiple mechanisms of toxicity and only some protective effects? Oxid Med Cell Longev 2014, 795375, doi:10.1155/2014/795375 (2014).
40 Schmidt, C. et al. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 13, 953-969, doi:10.1038/sj.mp.4002077 (2008).
41 Puzzo, D. et al. Endogenous amyloid-beta is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69, 819-830, doi:10.1002/ana.22313 (2011).
42 Abramov, E. et al. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12, 1567-1576, doi:10.1038/nn.2433 (2009).
43 Giuffrida, M. L. et al. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Front Cell Neurosci 9, 297, doi:10.3389/fncel.2015.00297 (2015).
44 Paulson, H. Repeat expansion diseases. Handb Clin Neurol 147, 105-123, doi:10.1016/B978-0-444-63233-3.00009-9 (2018).
45 Tabrizi, S. J., Flower, M. D., Ross, C. A. & Wild, E. J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 16, 529-546, doi:10.1038/s41582-020-0389-4 (2020).
46 Lee, J. K. et al. Effect of trinucleotide repeats in the Huntington's gene on intelligence. EBioMedicine 31, 47-53, doi:10.1016/j.ebiom.2018.03.031 (2018).
47 Saudou, F. & Humbert, S. The biology of Huntingtin. Neuron 89, 910-926, doi:10.1016/j.neuron.2016.02.003 (2016).
48 Aylward, E. H. et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82, 405-410, doi:10.1136/jnnp.2010.208264 (2011).
49 Rosas, H. D. et al. Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity. Brain 131, 1057-1068, doi:10.1093/brain/awn025 (2008).
50 Bessert, D. A., Gutridge, K. L., Dunbar, J. C. & Carlock, L. R. The identification of a functional nuclear localization signal in the Huntington disease protein. Brain Res Mol Brain Res 33, 165-173, doi:10.1016/0169-328x(95)00124-b (1995).
51 Zheng, Z., Li, A., Holmes, B. B., Marasa, J. C. & Diamond, M. I. An N-terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1. J Biol Chem 288, 6063-6071, doi:10.1074/jbc.M112.413575 (2013).
52 Xia, J., Lee, D. H., Taylor, J., Vandelft, M. & Truant, R. Huntingtin contains a highly conserved nuclear export signal. Hum Mol Genet 12, 1393-1403, doi:10.1093/hmg/ddg156 (2003).
53 Zala, D., Hinckelmann, M. V. & Saudou, F. Huntingtin's function in axonal transport is conserved in Drosophila melanogaster. Plos One 8, doi:ARTN e60162
10.1371/journal.pone.0060162 (2013).
54 Wong, Y. C. & Holzbaur, E. L. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34, 1293-1305, doi:10.1523/JNEUROSCI.1870-13.2014 (2014).
55 Caviston, J. P., Zajac, A. L., Tokito, M. & Holzbaur, E. L. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol Biol Cell 22, 478-492, doi:10.1091/mbc.E10-03-0233 (2011).
56 Steffan, J. S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. P Natl Acad Sci USA 97, 6763-6768, doi:DOI 10.1073/pnas.100110097 (2000).
57 Takano, H. & Gusella, J. F. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci 3, 15, doi:10.1186/1471-2202-3-15 (2002).
58 Legendre-Guillemin, V. et al. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J Biol Chem 277, 19897-19904, doi:10.1074/jbc.M112310200 (2002).
59 Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell Biol 154, 1209-1223, doi:10.1083/jcb.200106089 (2001).
60 White, J. K. et al. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet 17, 404-410, doi:DOI 10.1038/ng1297-404 (1997).
61 Reiner, A. et al. Neurons lacking huntingtin differentially colonize brain and survive in chimeric mice. J Neurosci 21, 7608-7619, doi:10.1523/JNEUROSCI.21-19-07608.2001 (2001).
62 Elias, S. et al. Huntingtin regulates mammary stem cell division and differentiation. Stem Cell Reports 2, 491-506, doi:10.1016/j.stemcr.2014.02.011 (2014).
63 Lo Sardo, V. et al. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 15, 713-721, doi:10.1038/nn.3080 (2012).
64 Strehlow, A. N. T., Li, J. Z. & Myers, R. M. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Human Molecular Genetics 16, 391-409, doi:10.1093/hmg/ddl467 (2007).
65 Ho, L. W., Brown, R., Maxwell, M., Wyttenbach, A. & Rubinsztein, D. C. Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington's disease. J Med Genet 38, 450-452, doi:10.1136/jmg.38.7.450 (2001).
66 Zhang, Y. et al. Huntingtin inhibits caspase-3 activation. EMBO J 25, 5896-5906, doi:10.1038/sj.emboj.7601445 (2006).
67 Kim, M. W., Chelliah, Y., Kim, S. W., Otwinowski, Z. & Bezprozvanny, I. Secondary structure of Huntingtin amino-terminal region. Structure 17, 1205-1212, doi:10.1016/j.str.2009.08.002 (2009).
68 Urbanek, A. et al. Flanking regions determine the structure of the poly-glutamine in Huntingtin through mechanisms common among glutamine-rich human proteins. Structure 28, 733-746 e735, doi:10.1016/j.str.2020.04.008 (2020).
69 Baias, M. et al. Structure and dynamics of the Huntingtin exon-1 N-terminus: A solution NMR perspective. J Am Chem Soc 139, 1168-1176, doi:10.1021/jacs.6b10893 (2017).
70 Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549-558 (1997).
71 Tobin, A. J. & Signer, E. R. Huntington's disease: the challenge for cell biologists. Trends Cell Biol 10, 531-536 (2000).
72 Chen, S., Berthelier, V., Hamilton, J. B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391-7399 (2002).
73 Matlahov, I. & van der Wel, P. C. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Exp Biol Med (Maywood) 244, 1584-1595, doi:10.1177/1535370219856620 (2019).
74 Breydo, L., Redington, J. M. & Uversky, V. N. Effects of intrinsic and extrinsic factors on aggregation of physiologically important intrinsically disordered proteins. Int Rev Cell Mol Biol 329, 145-185, doi:10.1016/bs.ircmb.2016.08.011 (2017).
75 Chen, W. T., Liao, Y. H., Yu, H. M., Cheng, I. H. & Chen, Y. R. Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-beta stability, oligomerization, and aggregation: amyloid-beta destabilization promotes annular protofibril formation. J Biol Chem 286, 9646-9656, doi:10.1074/jbc.M110.177246 (2011).
76 Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 158, 47-52, doi:Doi 10.1016/S0022-510x(98)00092-6 (1998).
77 Lopez del Amo, J. M. et al. Structural properties of EGCG-induced, nontoxic Alzheimer's disease Abeta oligomers. J Mol Biol 421, 517-524, doi:10.1016/j.jmb.2012.01.013 (2012).
78 Thapa, A., Jett, S. D. & Chi, E. Y. Curcumin attenuates Amyloid-beta aggregate toxicity and modulates Amyloid-beta aggregation pathway. ACS Chem Neurosci 7, 56-68, doi:10.1021/acschemneuro.5b00214 (2016).
79 Sahoo, B. R. & Bardwell, J. C. A. SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions. FEBS J, doi:10.1111/febs.16555 (2022).
80 Scharf, J. M. et al. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 20, 83-86, doi:10.1038/1753 (1998).
81 van Ham, T. J. et al. Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity. Cell 142, 601-612, doi:10.1016/j.cell.2010.07.020 (2010).
82 Falsone, S. F. et al. SERF protein is a direct modifier of amyloid fiber assembly. Cell Rep 2, 358-371, doi:10.1016/j.celrep.2012.06.012 (2012).
83 Yoshimura, Y. et al. MOAG-4 promotes the aggregation of alpha-synuclein by competing with self-protective electrostatic interactions. J Biol Chem 292, 8269-8278, doi:10.1074/jbc.M116.764886 (2017).
84 Merle, D. A. et al. Increased aggregation tendency of alpha-synuclein in a fully disordered protein complex. J Mol Biol 431, 2581-2598, doi:10.1016/j.jmb.2019.04.031 (2019).
85 Meyer, N. H. et al. Structural fuzziness of the RNA-organizing protein SERF determines a toxic gain-of-interaction. J Mol Biol 432, 930-951, doi:10.1016/j.jmb.2019.11.014 (2020).
86 Nielsen, L. et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40, 6036-6046, doi:10.1021/bi002555c (2001).
87 Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp 34, 93-158, doi:Doi 10.1016/S0079-6565(98)00025-9 (1999).
88 Markley, J. L. et al. Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem 256, 1-15, doi:10.1046/j.1432-1327.1998.2560001.x (1998).
89 Kumar, S., Henning-Knechtel, A., Chehade, I., Magzoub, M. & Hamilton, A. D. Foldamer-mediated structural rearrangement attenuates Abeta oligomerization and cytotoxicity. J Am Chem Soc 139, 17098-17108, doi:10.1021/jacs.7b08259 (2017).
90 Liu, D. G. et al. Optical design and performance of the biological small-angle X-ray scattering beamline at the Taiwan Photon Source. J Synchrotron Radiat 28, 1954-1965, doi:10.1107/S1600577521009565 (2021).
91 Shih, O. et al. Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. J Appl Crystallogr 55, 340-352, doi:10.1107/S1600576722001923 (2022).
92 Petoukhov, M. V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45, 342-350, doi:10.1107/S0021889812007662 (2012).
93 Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804, 1405-1412, doi:10.1016/j.bbapap.2010.04.001 (2010).
94 Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2, 18, doi:10.1186/1750-1326-2-18 (2007).
95 Wu, J. W. et al. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. J Biol Chem 285, 6071-6079, doi:10.1074/jbc.M109.069542 (2010).
96 Bramanti, E., Lenci, F. & Sgarbossa, A. Effects of hypericin on the structure and aggregation properties of beta-amyloid peptides. Eur Biophys J 39, 1493-1501, doi:10.1007/s00249-010-0607-x (2010).
97 Goormaghtigh, E., Ruysschaert, J. M. & Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 90, 2946-2957, doi:10.1529/biophysj.105.072017 (2006).
98 Cerf, E. et al. Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochem J 421, 415-423, doi:10.1042/BJ20090379 (2009).
99 Cerda-Costa, N., De la Arada, I., Aviles, F. X., Arrondo, J. L. & Villegas, S. Influence of aggregation propensity and stability on amyloid fibril formation as studied by Fourier transform infrared spectroscopy and two-dimensional COS analysis. Biochemistry 48, 10582-10590, doi:10.1021/bi900960s (2009).
100 Bitan, G., Lomakin, A. & Teplow, D. B. Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276, 35176-35184, doi:10.1074/jbc.M102223200 (2001).
101 Loo, J. A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16, 1-23, doi:10.1002/(SICI)1098-2787(1997)16:1<1::AID-MAS1>3.0.CO;2-L (1997).
102 Liu, J. & Konermann, L. Protein-protein binding affinities in solution determined by electrospray mass spectrometry. J Am Soc Mass Spectrom 22, 408-417, doi:10.1007/s13361-010-0052-1 (2011).
103 Heck, A. J. & Van Den Heuvel, R. H. Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23, 368-389, doi:10.1002/mas.10081 (2004).
104 Fiumara, F., Fioriti, L., Kandel, E. R. & Hendrickson, W. A. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 143, 1121-1135, doi:10.1016/j.cell.2010.11.042 (2010).
105 Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162-1164, doi:10.1126/science.252.5009.1162 (1991).
106 Thakur, A. K. et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 16, 380-389, doi:10.1038/nsmb.1570 (2009).
107 Nelson, P. N. et al. Monoclonal antibodies. Mol Pathol 53, 111-117, doi:10.1136/mp.53.3.111 (2000).
108 Luhrs, T. et al. 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A 102, 17342-17347, doi:10.1073/pnas.0506723102 (2005).
109 Berthelot, K., Ta, H. P., Gean, J., Lecomte, S. & Cullin, C. In vivo and in vitro analyses of toxic mutants of HET-s: FTIR antiparallel signature correlates with amyloid toxicity. J Mol Biol 412, 137-152, doi:10.1016/j.jmb.2011.07.009 (2011).
110 Krimm, S. & Bandekar, J. Vibrational analysis of peptides, polypeptides, and proteins. V. Normal vibrations of beta-turns. Biopolymers 19, 1-29, doi:10.1002/bip.1980.360190102 (1980).
111 Sarroukh, R. et al. Transformation of amyloid beta(1-40) oligomers into fibrils is characterized by a major change in secondary structure. Cell Mol Life Sci 68, 1429-1438, doi:10.1007/s00018-010-0529-x (2011).
112 Sarroukh, R., Goormaghtigh, E., Ruysschaert, J. M. & Raussens, V. ATR-FTIR: a "rejuvenated" tool to investigate amyloid proteins. Biochim Biophys Acta 1828, 2328-2338, doi:10.1016/j.bbamem.2013.04.012 (2013).
113 Pras, A. et al. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation. EMBO J 40, e107568, doi:10.15252/embj.2020107568 (2021).
114 Bhattacharyya, A. et al. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 355, 524-535, doi:10.1016/j.jmb.2005.10.053 (2006).
115 Caron, N. S., Desmond, C. R., Xia, J. & Truant, R. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc Natl Acad Sci U S A 110, 14610-14615, doi:10.1073/pnas.1301342110 (2013).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90689-
dc.description.abstract隨著社會高齡化的現象,現今全球已有數千萬人受到神經退化性疾病的侵襲。在各種神經退化性疾病中,特定蛋白的聚集和堆積不僅使蛋白失去原本功能,也會產生神經毒性,進而造成神經功能的喪失。此類蛋白共同的特點為聚集後會形成由交叉β折疊所構成的纖維,即所謂類澱粉蛋白。近年,small EDRK-rich factor (SERF)蛋白被發現會促進類澱粉蛋白纖維化,因此被稱為類澱粉蛋白之調節蛋白。為了更進一步了解其機制,在此篇論文中,我們致力於研究SERF1a在阿茲海默症Amyloid-β (Aβ)和亨丁頓舞蹈症HttpolyQ纖維化過程中所扮演的角色。我們利用硫代黃素-T (Thioflavin-T) 和圓二色光譜儀(circular dichroism spectroscopy)證明SERF1a加速了Aβ纖維化,而Aβ纖維量並不會因SERF1a有所差異。傅立葉轉換紅外光譜 (Fourier-transform infrared spectroscopy)和穿透式電子顯微鏡 (transmission electron microscope)的結果顯示,SERF1a會改變Aβ纖維的二級結構組成和型態。我們更進一步藉由電噴灑游離質譜法 (electrospray ionization mass spectrometry)、分析型超高速離心機(analytical ultracentrifugation)和核磁共振(nuclear magnetic resonance)發現,SERF1a是利用其N端區域與Aβ形成1:1的結合。然而,SERF1a會在改變Aβ後離開,並非成為纖維中的一部分。另外,細胞毒性測試結果顯示,SERF1a會因加速Aβ纖維化而加重Aβ對細胞的毒性。此影響可利用SERF1a抗體阻斷SERF1a與Aβ的結合來排除。在HttpolyQ的研究中,實驗室前人發現SERF1a促進HttpolyQ纖維化,並以α螺旋的區域與HttpolyQ結合。接續其研究結果,為了針對蛋白結合做更進一步的探討,我們設計了一系列HTT短胜肽,並藉由等溫滴定量熱法(isothermal titration calorimetry)和小角度X光散射(small-angle X-ray scattering)發現,SERF1a主要是與HttpolyQ的N端17個胺基酸以1:2的方式結合。除此之外,我們生產了SERF1a單株抗體,以應用在SERF1a相關的研究中。整體而言,我們證實了SERF1a以不同機制對於Aβ和HttpolyQ纖維化產生影響,以提供未來阿茲海默症和亨丁頓舞蹈症療法的新方向。zh_TW
dc.description.abstractNeurodegenerative disorders have impacted millions of people worldwide with no effective cure currently. Most proteins involved in neurodegenerative diseases are prone to aggregate and deposit in the brain, leading to the loss of neuronal functions. These aggregates show fibrillary structures with a highly ordered cross β-sheet and display the characteristics of amyloid-like protein assemblies. Modifier of aggregation 4 (MOAG-4)/small EDRK-rich factor (SERF) has been identified as an amyloid modifier that promotes the aggregations of amyloidogenic proteins. To further discover the underlying mechanisms, in this dissertation, we focused on the role of SERF1a in Amyloid-β, one of the hallmarks of Alzheimer’s disease (AD), and HttpolyQ, involved in Huntington’s disease (HD), fibrillization. We first monitored SERF1a effect on Aβ fibril formation by Thioflavin T assay and far-UV circular dichroism (CD) spectroscopy combined with filter-trap assay, immunogold labeling, and partition analysis. We found that SERF1a expedited Aβ aggregation in a dose-dependent manner without affecting the fibril amount and was excluded from Aβ fibrils. Using Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM), we showed that SERF1a changed the secondary structures and the morphology of Aβ fibrils. We also investigated the complex formation of SERF1a and Aβ by photo-induced cross-linking of unmodified proteins (PICUP), electrospray ionization mass spectrometry (ESI-MS), and analytical ultracentrifugation (AUC) and the results revealed that SERF1a and Aβ mainly formed a 1:1 complex. Moreover, the NMR experiment suggested that SERF1a interacted with Aβ via its N-terminal region. Cytotoxicity assay demonstrated that SERF1a-accelerated Aβ intermediates enhanced the Aβ toxicity in neuroblastoma and the effect could be blocked by SERF1a antibody. As for HttpolyQ, based on our previous findings that SERF1a promoted HttpolyQ fibrillization and interacted with HttpolyQ, in a way different from that observed for Aβ, via its helical regions, we further investigated the interaction between SERF1a and HttpolyQ. Here, by using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS), the HTT peptide study showed that SERF1a preferentially bound to the region containing N-terminal 17 residues of HttpolyQ in a 1:2 ratio. In addition, we produced SERF1a monoclonal antibodies for further applications in our research. Altogether, our study demonstrated that SERF1a plays a promoting role in Aβ and HttpolyQ fibrillization and offers insight into the underlying mechanisms in which SERF1a accelerates the conformational changes of Aβ and HttpolyQ to be more aggregation-prone. Our work provides a new direction for the therapeutic development of both AD and HD.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:11:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:11:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
TABLE OF CONTENTS V
LIST OF FIGURES X
ABBREVIATIONS XII
CHAPTER 1. INTRODUCTION 1
1.1 Amyloid in neurodegenerative diseases 1
1.2 Alzheimer’s disease 3
1.2.1 Overview of Alzheimer’s disease 3
1.2.2 Amyloid β 4
1.3 Huntington’s disease 7
1.3.1 Overview of Huntington’s disease 7
1.3.2 Huntingtin protein 7
1.4 Modifying factors 9
1.4.1 Overview of modifying factors 9
1.4.2 SERF protein 10
1.5 Motivation and Objectives 13
CHAPTER 2. MATERIALS AND METHODS 15
2.1 Materials 15
2.1.1 Buffers 15
2.1.2 Plasmids 17
2.1.3 Brain lysates 20
2.1.4 Antibodies 20
2.1.5 Commercial reagents 20
2.2 Methods 21
2.2.1 Protein expression and purification 21
2.2.2 Aβ peptide preparation 24
2.2.3 Thioflavin T (ThT) assay 25
2.2.4 Far-UV circular dichroism (CD) spectroscopy 26
2.2.5 Filter-trap assay 26
2.2.6 Transmission Electron Microscopy (TEM) 27
2.2.7 Partition analysis 28
2.2.8 Photo-Induced Cross-linking of Unmodified Proteins (PICUP) 28
2.2.9 Fourier-transform infrared spectroscopy (FTIR) 29
2.2.10 Electrospray ionization mass spectrometry (ESI-MS) 29
2.2.11 Analytical ultracentrifugation (AUC) 30
2.2.12 Nuclear magnetic resonance (NMR) Spectroscopy 31
2.2.13 MTT cytotoxicity assay 32
2.2.14 HTT peptide preparation 33
2.2.15 Isothermal titration calorimetry (ITC) 33
2.2.16 Small-angle X-ray scattering (SAXS) 34
2.2.17 Dot blot and western blot for antibody selection 34
2.2.18 Enzyme-linked immunosorbent assay (ELISA) 35
2.2.19 Cell transfection and collection 35
2.2.20 Immunoprecipitation (IP) 36
2.2.21 In-gel digestion 36
2.2.22 Immunocytochemistry (ICC) 38
CHAPTER 3. RESULTS 39
Part I. Investigating the role of SERF1a in Aβ40 and Aβ42 fibrillization 39
3.1 SERF1a reduces the lag time of Aβ40 and Aβ42 fibril formation in a dose-dependent manner without change in the amount of fibrils 39
3.2 SERF1a changes morphology and secondary structure of Aβ40 and Aβ42 fibrils without being incorporated into the fibrils 46
3.3 SERF1a forms complexes with Aβ40 and Aβ42 primarily in a 1:1 stoichiometry 52
3.4 SERF1a interacts with Aβ40 through its N-terminal region 60
3.5 SERF1a enhances the cytotoxicity of Aβ40 and Aβ42 intermediates in neuroblastoma 63
3.6 The cytotoxicity caused by SERF1a-induced Aβ42 intermediates can be rescued by SERF1a antibody 67
Part II. Examining the effect of SERF1a on HttpolyQ fibrillization 69
3.7 SERF1a binds to N-terminus of HTT peptides 69
3.8 The expression level of SERF1a is higher in HD subjects 77
Part III. SERF1a antibody production and application 78
3.9 Production and selection of SERF1a antibodies 78
3.10 Application and examination of SERF#2 81
3.11 Examination of SERF#1 and SERF B5 86
3.12 Validation of SERF B1 90
CHAPTER 4. DISCUSSION 92
4.1 Investigating the role of SERF1a in Aβ40 and Aβ42 fibrillization 92
4.2 Examining the effect of SERF1a on HttpolyQ fibrillization 97
REFERENCES 103
APPENDIX 112
List of antibodies 112
List of commercial reagents 113
-
dc.language.isoen-
dc.title研究類澱粉蛋白之調節蛋白SERF1a對阿茲海默症Amyloid-β和亨丁頓舞蹈症HttpolyQ纖維化的影響zh_TW
dc.titleInvestigating the Effect of an Amyloid Modifier SERF1a on Alzheimer’s Amyloid-β and Huntington’s HttpolyQ Fibrillizationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.coadvisor陳佩燁zh_TW
dc.contributor.coadvisorPei-Yeh Chenen
dc.contributor.oralexamcommittee吳昆峯;李宗璘;黃英碩;杜玲嫻zh_TW
dc.contributor.oralexamcommitteeKuen-Phon Wu;Tsung-Lin Li;Ing-Shouh Hwang;Ling-Hsien Tuen
dc.subject.keyword阿茲海默症,亨丁頓舞蹈症,纖維化,細胞毒性,Amyloid-β,HttpolyQ,SERF1a,zh_TW
dc.subject.keywordAlzheimer’s disease,Amyloid-β,cytotoxicity,fibrillization,HttpolyQ,Huntington’s disease,SERF1a,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202303164-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2025-08-15
7.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved