請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90687完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 江良錕 | zh_TW |
| dc.contributor.author | Liang-Kun Jiang | en |
| dc.date.accessioned | 2023-10-03T17:11:10Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | Abdel-Monaem Zytoon, M., Ahmad AlZahrani, A., Hamed Noweir, M., & Ahmed El-Marakby, F. (2014). Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor. The Scientific World Journal, 2014.
Al Mamun, M. R., & Torii, S. (2015). Removal of hydrogen sulfide (H2S) from biogas using zero-valent iron. Journal of Clean Energy Technologies, 3(6), 428-432. Arellano‐García, L., Revah, S., Ramírez, M., Gomez, J., & Cantero, D. (2009). Dimethyl sulphide degradation using immobilized Thiobacillus thioparus in a biotrickling filter. Environmental Technology, 30(12), 1273-1279. Bagreev, A., & Bandosz, T. (2004). Carbonaceous materials for gas phase desulfurization: role of surface heterogeneity. Am. Chem. Soc., Div. Fuel Chem, 49(2), 817. Bagreev, A., & Bandosz, T. J. (2002). A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Industrial & Engineering Chemistry Research, 41(4), 672-679. Bagreev, A., & Bandosz, T. J. (2005). On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Industrial & Engineering Chemistry Research, 44(3), 530-538. Bu, H., Carvalho, G., Huang, C., Sharma, K. R., Yuan, Z., Song, Y., Bond, P., Keller, J., Yu, M., & Jiang, G. (2022). Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. Chemosphere, 291, 132723. Chiang, H.-L., Tsai, J.-H., Tsai, C.-L., & Hsu, Y.-C. (2000). Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas. Separation science and technology, 35(6), 903-918. Chung, Y.-C., Cheng, C.-Y., Chen, T.-Y., Hsu, J.-S., & Kui, C.-C. (2010). Structure of the bacterial community in a biofilter during dimethyl sulfide (DMS) removal processes. Bioresource technology, 101(18), 7165-7168. Das, J., Ravishankar, H., & Lens, P. N. (2022). Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 304, 114198. Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2014). Biogas generation through anaerobic digestion process-an overview. Research Journal of Chemistry and Environment, 18, 5. Díaz, I., Ramos, I., & Fdz-Polanco, M. (2015). Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresource Technology, 192, 280-286. Duan, H., Koe, L. C., Yan, R., & Chen, X. (2006). Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter. Water Research, 40(14), 2629-2636. Ghosh, P., Shah, G., Chandra, R., Sahota, S., Kumar, H., Vijay, V. K., & Thakur, I. S. (2019). Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresource Technology, 272, 611-615. Giri, B., Mudliar, S., Deshmukh, S., Banerjee, S., & Pandey, R. (2010). Treatment of waste gas containing low concentration of dimethyl sulphide (DMS) in a bench-scale biofilter. Bioresource technology, 101(7), 2185-2190. Hort, C., Gracy, S., Platel, V., & Moynault, L. (2009). Evaluation of sewage sludge and yard waste compost as a biofilter media for the removal of ammonia and volatile organic sulfur compounds (VOSCs). Chemical Engineering Journal, 152(1), 44-53. Hou, N., Xia, Y., Wang, X., Liu, H., Liu, H., & Xun, L. (2018). H 2 S biotreatment with sulfide-oxidizing heterotrophic bacteria. Biodegradation, 29, 511-524. Jaber, M. B., Anet, B., Amrane, A., Couriol, C., Lendormi, T., Le Cloirec, P., Cogny, G., & Fillieres, R. (2014). Impact of nutrients supply and pH changes on the elimination of hydrogen sulfide, dimethyl disulfide and ethanethiol by biofiltration. Chemical Engineering Journal, 258, 420-426. Jiang, X., Yan, R., & Tay, J. H. (2008). Reusing H2S-exhausted carbon as packing material for odor biofiltration. Chemosphere, 73(5), 698-704. Kao, C.-Y., Chiu, S.-Y., Huang, T.-T., Dai, L., Hsu, L.-K., & Lin, C.-S. (2012). Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Applied Energy, 93, 176-183. Kelly, D. (1982). Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 298(1093), 499-528. Kobayashi, T., Li, Y.-Y., Kubota, K., Harada, H., Maeda, T., & Yu, H.-Q. (2012). Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Applied Microbiology and Biotechnology, 93, 847-857. Krischan, J., Makaruk, A., & Harasek, M. (2012). Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. Journal of Hazardous Materials, 215, 49-56. Kuenen, J. G., Robertson, L. A., & Van Gemerden, H. (1985). Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. Advances in Microbial Ecology: Volume 8, 1-59. Le Borgne, S., & Baquerizo, G. (2019). Microbial ecology of biofiltration units used for the desulfurization of biogas. ChemEngineering, 3(3), 72. Lestari, R., Sediawan, W., & Syamsiah, S. (2014). The exploratory study on sulfide removal ability of sulfur-oxidizing bacteria in biofilm on Salak fruit seeds. International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE), 74, 16-19. Li, L., Han, Y., Yan, X., & Liu, J. (2013). H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site. Bioresource Technology, 147, 52-58. Lien, C.-C., Lin, J.-L., & Ting, C.-H. (2014). Water scrubbing for removal of hydrogen sulfide (H2S) inbiogas from hog farms. Journal of Agricultural Chemistry and Environment, 3(02), 1-6. Liu, D. J., Li, B., Wu, J., & Liu, Y. X. (2020). Sorbents for hydrogen sulfide capture from biogas at low temperature: a review. Environmental Chemistry Letters, 18(1), 113-128. https://doi.org/10.1007/s10311-019-00925-6 López, L., Dorado, A., Mora, M., Gamisans, X., Lafuente, J., & Gabriel, D. (2016). Modeling an aerobic biotrickling filter for biogas desulfurization through a multi-step oxidation mechanism. Chemical Engineering Journal, 294, 447-457. Malakar, S., Saha, P. D., Baskaran, D., & Rajamanickam, R. (2017). Comparative study of biofiltration process for treatment of VOCs emission from petroleum refinery wastewater—A review. Environmental Technology & Innovation, 8, 441-461. Marzouk, S. A., Al-Marzouqi, M. H., Abdullatif, N., & Ismail, Z. M. (2010). Removal of percentile level of H2S from pressurized H2S–CH4 gas mixture using hollow fiber membrane contactors and absorption solvents. Journal of Membrane Science, 360(1-2), 436-441. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours–A review. Journal of Environmental Management, 91(5), 1039-1054. Nguyen, P. M., Do, P. T., Pham, Y. B., Doan, T. O., Nguyen, X. C., Lee, W. K., Nguyen, D. D., Vadiveloo, A., Um, M.-J., & Ngo, H. H. (2022). Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Science of the Total Environment, 852, 158203. Nitta, M., & Hirura, H. (1993). Biofiltration system for gas-deodoring. J. Bioeng, 3(1), 29-33. Omri, I., Bouallagui, H., Aouidi, F., Godon, J.-J., & Hamdi, M. (2011). H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresource Technology, 102(22), 10202-10209. Pipatmanomai, S., Kaewluan, S., & Vitidsant, T. (2009). Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Applied Energy, 86(5), 669-674. Pirolli, M., da Silva, M. L. B., Mezzari, M. P., Michelon, W., Prandini, J. M., & Soares, H. M. (2016). Methane production from a field-scale biofilter designed for desulfurization of biogas stream. Journal of Environmental Management, 177, 161-168. Plugge, C. M. (2017). Biogas. Microbial Biotechnology, 10(5), 1128-1130. Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246-1259. Rabbani, K., Charles, W., Kayaalp, A., Cord-Ruwisch, R., & Ho, G. (2016a). Biofilter for generation of concentrated sulphuric acid from H2S. Environmental Science and Pollution Research, 23, 16781-16789. Rabbani, K., Charles, W., Kayaalp, A., Cord-Ruwisch, R., & Ho, G. (2016b). Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal, 107, 1-10. Rattanapan, C., Kantachote, D., Yan, R., & Boonsawang, P. (2010). Hydrogen sulfide removal using granular activated carbon biofiltration inoculated with Alcaligenes faecalis T307 isolated from concentrated latex wastewater. International Biodeterioration & Biodegradation, 64(5), 383-387. Ren, B., Zhao, Y., Lyczko, N., & Nzihou, A. (2019). Current status and outlook of odor removal technologies in wastewater treatment plant. Waste and Biomass Valorization, 10(6), 1443-1458. Rethmeier, J., Rabenstein, A., Langer, M., & Fischer, U. (1997). Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. Journal of Chromatography A, 760(2), 295-302. San-Valero, P., Penya-Roja, J. M., Álvarez-Hornos, F. J., Buitron, G., Gabaldon, C., & Quijano, G. (2019). Fully aerobic bioscrubber for the desulfurization of H2S-rich biogas. Fuel, 241, 884-891. Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., & Laosiripojana, N. (2014). Performance of sodium-impregnated activated carbons toward low and high temperature H2S adsorption. Chemical Engineering Communications, 201(2), 257-271. Su, J.-J., Chang, Y.-C., Chen, Y.-J., Chang, K.-C., & Lee, S.-Y. (2013). Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system. Water Science and Technology, 67(6), 1288-1293. Su, J.-J., Chen, Y.-J., & Chang, Y.-C. (2014). A study of a pilot-scale biogas bio-filter system for utilization on pig farms. The Journal of Agricultural Science, 152(2), 217-224. Su, J.-J., & Hong, Y.-Y. (2020). Removal of hydrogen sulfide using a photocatalytic livestock biogas desulfurizer. Renewable Energy, 149, 181-188. Syed, M., Soreanu, G., Falletta, P., & Béland, M. (2006). Removal of hydrogen sulfide from gas streams using biological processes• a review. Canadian Biosystems Engineering, 48, 2. Tsai, J.-H., Jeng, F.-T., & Chiang, H.-L. (2001). Removal of H2S from exhaust gas by use of alkaline activated carbon. Adsorption, 7, 357-366. Valle, A., Fernández, M., Ramírez, M., Rovira, R., Gabriel, D., & Cantero, D. (2018). A comparative study of eubacterial communities by PCR-DGGE fingerprints in anoxic and aerobic biotrickling filters used for biogas desulfurization. Bioprocess and Biosystems Engineering, 41(8), 1165-1175. Vikrant, K., Kailasa, S. K., Tsang, D. C., Lee, S. S., Kumar, P., Giri, B. S., Singh, R. S., & Kim, K.-H. (2018). Biofiltration of hydrogen sulfide: Trends and challenges. Journal of cleaner production, 187, 131-147. Yang, Y., & Allen, E. R. (1994a). Biofiltration control of hydrogen sulfide 1. Design and operational parameters. Air & Waste, 44(7), 863-868. Yang, Y., & Allen, E. R. (1994b). Biofiltration control of hydrogen sulfide 2. Kinetics, biofilter performance, and maintenance. Air & Waste, 44(11), 1315-1321. 衛生福利部全國解毒劑儲備網:https://www.pccvghtpe.tw/antidote/page_detail.asp?cid=6&nid=16 雷鵬魁、尤瓊琦、陳俊明,(1991)養豬場沼氣之應用研究I。行政院農業委員會八無年度試驗研究計畫研究報告 行政院勞委會勞工安全衛生研究所「物質安全資料表」 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90687 | - |
| dc.description.abstract | 厭氧消化產生的沼氣可以做為發電機的使用能源,但是沼氣組成中的硫化氫成分會對發電機組造成影響,造成發電機組損害,無法有效利用沼氣進行發電,而透過生物脫硫可以有效降低沼氣中硫化氫的濃度,達到純化沼氣的功效。
本研究藉由在污水處理廠設置模廠規模的生物濾床,並運用實廠中經厭氧發酵而產生的沼氣作為生物濾床沼氣脫硫的實驗對象,將經本研究控制的參數變化與硫化氫的去除效率進行比較,並同時將填充載體進行菌相分析、元素分析以及觀察掃描式電子顯微鏡,將實驗結果進行整理可做為實廠使用建議。 生物濾床中添加拉西環以及發泡煉石作為生物載體,並在預實驗階段決定氧氣的進氣濃度以及質淋洗頻率。在氧氣進氣濃度為 3 % 以及基質淋洗頻率為兩天一次的條件下,可以使生物濾床有穩定的運行效果。在為期將近5個月的運行時間下,透過改變沼氣進流負荷的條件 (15, 30, 60 L/min ),找到最適合的沼氣停留時間,在停留時間為7.28 - 14.56 min,生物濾床可以達到去除率有85 %的穩定運行狀況。 採集在模廠規模生物濾床運行100天的載體進行菌相分析,生物濾床在運行期間會產生硫酸根以及氫離子使得濾料產生酸化,因此整體環境讓嗜酸菌更適合生存,而參照菌相分析的結果在生物濾床內部主要為 Acidithiobacillus 以及 Sulfobacillus 為內部主導的菌群,與實際操作的結果相符合,主要都是以嗜酸菌為主。 在各項現場的運行參數使硫化氫去除率達穩定後,為了提供未來實廠運用的操作便利性,將進流基質的來源從原先實驗室自行條配的基質轉變為使用合作污水處理廠的初沉池出流水,在更換進流基質後,而為了彌補兩者進流基質的差異,提升添加體積以維持營養源的濃度,在採用初沉池出流水的生物濾床經過此調整後,硫化氫的去除率可以維持在高於 90 % 的理想狀況。 綜合了本研究在污水處理廠的模廠試驗中試驗了各項操作參數包含停留時間、氧氣濃度、進流基質成分以及基質淋洗頻率後,生物濾床的去除率保持穩定有效的結果,本研究可以供未來實廠運作生物濾床的參考建議。 | zh_TW |
| dc.description.abstract | Anaerobic digestion produces biogas that can be used as a source of energy for generators. However, the presence of hydrogen sulfide in the biogas composition can have adverse effects on generator units, leading to damage and ineffective use of biogas for power generation. Through the process of biological desulfurization, the concentration of hydrogen sulfide in biogas can be effectively reduced, achieving the purification of biogas.
This study set up a pilot-scale biological filter bed at a wastewater treatment plant and used biogas generated through anaerobic fermentation as the subject of the biological desulfurization experiment. The study compared the variations in controlled parameters with the efficiency of hydrogen sulfide removal. Additionally, the study analyzed the microbial community, conducted elemental analysis, and observed scanning electron microscopy of the filled carriers, providing valuable data for practical plant recommendations. The biological filter bed was supplemented with Lasiococcus and expanded perlite as biological carriers. During the pre-experimental phase, the oxygen inlet concentration and substrate leaching frequency were optimized. Under the conditions of 3% oxygen inlet concentration and a substrate leaching frequency of once every two days, the biological filter bed demonstrated stable performance. By adjusting the biogas inlet flow rates (15, 30, 60 L/min) over a period of nearly five months, the optimal biogas retention time was determined, which ranged from 7.28 to 14.56 minutes, ensuring the stable operation of the biological filter bed. Microbial community analysis was performed on the carriers collected from the pilot-scale biological filter bed after 100 days of operation. The operation of the biological filter bed led to acidification of the filter material, creating an environment conducive to the survival of acidophilic bacteria. The results of the microbial community analysis revealed that Acidithiobacillus and Sulfobacillus were the dominant bacterial species inside the biological filter bed, aligning with the actual operational findings, indicating a prevalence of acidophilic bacteria. Once the operational parameters for stable hydrogen sulfide removal were established on-site, to facilitate future practical implementation, the source of the influent substrate was changed from laboratory-prepared media to the effluent from the primary settling tank of a cooperative wastewater treatment plant. To compensate for differences in the influent substrate, the addition volume was increased to maintain the nutrient concentration. After making these adjustments, the biological filter bed using the effluent from the primary settling tank maintained an ideal hydrogen sulfide removal efficiency of over 90%. In conclusion, this study conducted various operational parameter tests, including retention time, oxygen concentration, influent substrate composition, and substrate leaching frequency, on a pilot-scale biological filter bed at a wastewater treatment plant. The results demonstrated stable and effective hydrogen sulfide removal rates, providing valuable recommendations for the future operation of biological filter beds in practical settings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:11:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:11:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II 中文摘要 IV Abstract VI 目錄 VIII 圖目錄 XII 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及目標 3 第二章 文獻回顧 4 2.1 沼氣介紹 4 2.1.1沼氣基本特性 4 2.1.2沼氣燃燒特性 5 2.2 硫化氫介紹 7 2.2.1 硫化氫基本特性 7 2.2.2 硫化氫的危害 9 2.3 環境中的硫循環以及硫氧化菌 11 2.3.1 環境中的硫循環 11 2.3.2 環境中的硫氧化菌 12 2.4 沼氣純化方法 14 2.4.1 物理純化方法 15 2.4.2 化學脫硫方法 17 2.4.3 生物脫硫法 17 2.5 生物濾床操作 23 2.5.1 生物脫硫方法選擇 23 2.5.2 生物濾床濾料選擇 24 2.5.3 生物濾床反應控制參數 25 第三章 方法與材料 27 3.1 實驗藥品與設備 27 3.1.1 實驗用藥品及耗材 27 3.1.2 實驗室儀器與設備 29 3.2 實驗流程 31 3.3 污水處理廠硫化氫模廠處理系統 32 3.3.1 生物濾床設計 32 3.3.2 生物濾床硫化氫處理系統 34 3.3.3初期生物濾床參數 36 3.3.4優化生物濾床 37 3.4 植種用污泥 39 3.4.1 污泥來源以及硫氧化能力測試 39 3.5實驗分析方法 41 3.5.1 水中硫化物濃度分析 41 3.5.2 現場沼氣成分分析 42 3.5.3 酸鹼度、導電度分析 43 3.5.4 總懸浮固體以及揮發性總懸浮固體 44 3.5.5 化學需氧量 45 3.5.6硫酸根之離子層析 46 3.5.7 高效液相層析色譜法 48 3.5.8 去氧核醣核酸 ( Deoxyribonucleic Acid, DNA ) 萃取 49 3.5.9 16S rRNA基因定序以及次世代定序 50 3.5.10元素分析 51 3.5.11 掃描式電子顯微鏡 52 第四章 結果與討論 53 4.1 污泥馴養結果 53 4.1.1 污泥pH之變化 53 4.1.2 污泥硫氧化能力測試 55 4.2生物濾床脫硫成果 58 4.2.1 污水處理廠之沼氣組成 59 4.2.2 氧氣濃度與去除率之關係 61 4.2.3 淋洗頻率變化導致的去除率差異 63 4.2.4 進流負荷與去除率之關係 65 4.3液相分析 68 4.3.1 酸鹼度以及導電度檢測結果 68 4.3.2 離子層析結果 70 4.3.3 總懸浮固體以及S0濃度 72 4.3.4 化學需氧量 75 4.4生物載體分析 77 4.4.1 生物載體外觀 77 4.4.2 生物載體之水質分析 78 4.4.3掃描式電子顯微鏡結果 81 4.4.4元素分析 84 4.5菌相分析 86 4.6 生物濾床實廠廢水應用 88 4.6.1 沼氣成分檢測數據 90 4.6.2 液相檢測數據 92 第五章 結論與建議 100 5.1 結論 100 5.2 建議 102 5.2.1 槽體設計建議 102 5.2.2 事前濾料準備建議 103 5.2.3 生物濾床啟動建議 103 參考文獻 104 附件 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 模廠試驗 | zh_TW |
| dc.subject | 生物濾床 | zh_TW |
| dc.subject | 生物脫硫 | zh_TW |
| dc.subject | 沼氣純化 | zh_TW |
| dc.subject | biofilter | en |
| dc.subject | biological desulfurization | en |
| dc.subject | biogas purification | en |
| dc.subject | pilot-scale | en |
| dc.title | 運用模廠規模生物濾床去除污水處理廠沼氣中的硫化氫 | zh_TW |
| dc.title | Utilizing Pilot-Scale Biofilter to Remove Hydrogen Sulfide from Biogas in Wastewater Treatment Plants | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童心欣;廖健森 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hsin Tung;Chien-Sen Liao | en |
| dc.subject.keyword | 沼氣純化,生物脫硫,生物濾床,模廠試驗, | zh_TW |
| dc.subject.keyword | biogas purification,biological desulfurization,biofilter,pilot-scale, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202302374 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-14 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
