Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃心豪zh_TW
dc.contributor.advisorHsin-Haou Huangen
dc.contributor.author馮冠倫zh_TW
dc.contributor.authorKuan-Lun Fengen
dc.date.accessioned2023-10-03T17:08:53Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation第七章 參考文獻

[1] W. Xu, C. Jiang, and J. Zhang, "Improvement in underwater acoustic absorption performance of open-celled SiC foam," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 482, pp. 568-574, 2015.
[2] X. Sagartzazu, L. Hervella-Nieto, and J. Pagalday, "Review in sound absorbing materials," Archives of Computational Methods in Engineering, vol. 15, pp. 311-342, 2008.
[3] A. M. Willemsen and M. D. Rao, "Sound absorption characteristics of nanocomposite polyurethane foams infused with carbon nanotubes," Noise Control Engineering Journal, vol. 63, no. 5, pp. 424-438, 2015.
[4] N. H. Bhingare, S. Prakash, and V. S. Jatti, "A review on natural and waste material composite as acoustic material," Polymer Testing, vol. 80, p. 106142, 2019.
[5] D. Lee, Y. Jang, J. Park, I. S. Kang, J. Li, and J. Rho, "Underwater stealth metasurfaces composed of split-orifice–conduit hybrid resonators," Journal of Applied Physics, vol. 129, no. 10, p. 105103, 2021.
[6] K. I. Jung, S. W. Yoon, S. J. Sung, and J. K. Park, "Carbon black effect on the acoustic properties of nitrile butadiene rubber," Journal of applied polymer science, vol. 94, no. 2, pp. 678-683, 2004.
[7] H. Jiang and Y. Wang, "Phononic glass: A robust acoustic-absorption material," The Journal of the Acoustical Society of America, vol. 132, no. 2, pp. 694-699, 2012.
[8] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing," The Journal of the Acoustical Society of America, vol. 141, no. 6, pp. 4694-4704, 2017.
[9] S. Qu, N. Gao, A. Tinel, B. Morvan, V. Romero-García, J.-P. Groby, and P. Sheng, "Underwater metamaterial absorber with impedance-matched composite," Science Advances, vol. 8, no. 20, p. eabm4206, 2022.
[10] Y. Fu, I. I. Kabir, G. H. Yeoh, and Z. Peng, "A review on polymer-based materials for underwater sound absorption," Polymer Testing, vol. 96, p. 107115, 2021.
[11] Z. Zhang, Y. Zhao, and N. Gao, "Recent study progress of underwater sound absorption coating," Engineering Reports, p. e12627, 2023.
[12] X. Chen, L. Meng, Z. Liu, F. Yang, X. Jiang, and J. Yang, "Multifunctional Integrated Underwater Sound Absorption Materials: A Review," Applied Sciences, vol. 13, no. 9, p. 5368, 2023.
[13] J. Heng, W. Yu-Ren, Z. Mi-Lin, H. Yan-Ping, L. Ding, W. Qun-Li, and L. Huan-Tong, "Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure," Chinese Physics B, vol. 19, no. 2, p. 026202, 2010.
[14] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Sound absorption by rubber coatings with periodic voids and hard inclusions," Applied Acoustics, vol. 143, pp. 200-210, 2019.
[15] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium," Journal of Sound and Vibration, vol. 443, pp. 652-665, 2019.
[16] N. Gao and K. Lu, "An underwater metamaterial for broadband acoustic absorption at low frequency," Applied Acoustics, vol. 169, p. 107500, 2020.
[17] H.-W. Dong, S.-D. Zhao, P. Xiang, B. Wang, C. Zhang, L. Cheng, Y.-S. Wang, and D. Fang, "Porous-Solid Metaconverters for Broadband Underwater Sound Absorption and Insulation," Physical Review Applied, vol. 19, no. 4, p. 044074, 2023.
[18] C. Ye, X. Liu, F. Xin, and T. J. Lu, "Influence of hole shape on sound absorption of underwater anechoic layers," Journal of Sound and Vibration, vol. 426, pp. 54-74, 2018.
[19] Z. Wang, Y. Huang, X. Zhang, L. Li, M. Chen, and D. Fang, "Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb," Journal of Sound and Vibration, vol. 479, p. 115375, 2020.
[20] J. C. Baena, C. Wang, Y. Fu, I. I. Kabir, A. C. Y. Yuen, Z. Peng, and G. H. Yeoh, "A new fabrication method of designed metamaterial based on a 3D-printed structure for underwater sound absorption applications," Applied Acoustics, vol. 203, p. 109221, 2023.
[21] S. Wang, B. Hu, and Y. Du, "Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium," Applied Acoustics, vol. 170, p. 107501, 2020.
[22] K. Li, Z. Zhou, Z. Huang, Y. Lin, M. Chen, P. Yang, and Y. Li, "Underwater sound absorption characteristic of the rubber core sandwich structure with funnel-shaped cavities reinforced by carbon fiber columns," Applied Acoustics, vol. 208, p. 109375, 2023.
[23] J. Feng, Q. Liang, Y. Dou, J. He, J. He, and T. Chen, "Ultrathin Underwater Sound-Absorbing Metasurface by Coupling Local Resonance with Cavity Resonance," Physical Review Applied, vol. 18, no. 3, p. 034054, 2022.
[24] D. Zhao, H. Zhao, H. Yang, and J. Wen, "Optimization and mechanism of acoustic absorption of Alberich coatings on a steel plate in water," Applied Acoustics, vol. 140, pp. 183-187, 2018.
[25] H. Wu, H. Zhang, and C. Hao, "Reconfigurable spiral underwater sound-absorbing metasurfaces," Extreme Mechanics Letters, vol. 47, p. 101361, 2021.
[26] X. Zhou, M. Duan, and F. Xin, "Low-frequency underwater sound absorption of hybrid metamaterials using dissipative slow-sound," Physics Letters A, vol. 450, p. 128361, 2022.
[27] L. Li, Z. Zhang, Q. Huang, and S. Li, "A sandwich anechoic coating embedded with a micro-perforated panel in high-viscosity condition for underwater sound absorption," Composite Structures, vol. 235, p. 111761, 2020.
[28] C. Wang, W.-G. Zheng, and Q.-B. Huang, "Acoustic absorption characteristics of new underwater omnidirectional absorber," Chinese Physics Letters, vol. 36, no. 4, p. 044301, 2019.
[29] J. Zhong, J.-H. Wen, H.-G. Zhao, J.-F. Yin, and H.-B. Yang, "Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel," Chinese Physics B, vol. 24, no. 8, p. 084301, 2015.
[30] X. Jia, G. Jin, K. Shi, C. Bu, and T. Ye, "A hybrid acoustic structure for low-frequency and broadband underwater sound absorption," Journal of Low Frequency Noise, Vibration and Active Control, vol. 41, no. 3, pp. 1160-1177, 2022.
[31] H. Zhao, J. Wen, H. Yang, L. Lv, and X. Wen, "Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers," Applied Acoustics, vol. 76, pp. 48-51, 2014.
[32] Y. Gu, H. Zhong, B. Bao, Q. Wang, and J. Wu, "Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption," Applied Acoustics, vol. 172, p. 107605, 2021.
[33] T. Wang, J. Liu, and M. Chen, "Underwater sound absorption of a meta-absorption layer with double negativity," Applied Acoustics, vol. 181, p. 108182, 2021.
[34] T. Yu, F. Jiang, J. Wang, Z. Wang, Y. Chang, and C. Guo, "Acoustic insulation and absorption mechanism of metallic hollow spheres composites with different polymer matrix," Composite Structures, vol. 248, p. 112566, 2020.
[35] Y. Zhang and L. Cheng, "Ultra-thin and broadband low-frequency underwater acoustic meta-absorber," International Journal of Mechanical Sciences, vol. 210, p. 106732, 2021.
[36] H. Zhong, Y. Gu, B. Bao, Q. Wang, and J. Wu, "2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms," Composite Structures, vol. 220, pp. 1-10, 2019.
[37] C. Yu, M. Duan, W. He, F. Xin, and T. J. Lu, "Underwater anechoic layer with parallel metallic plate insertions: theoretical modelling," Journal of Micromechanics and Microengineering, vol. 31, no. 7, p. 074002, 2021.
[38] Y. Feng, J. Qiao, and L. Li, "Acoustic behavior of composites with gradient impedance," Materials & Design, vol. 193, p. 108870, 2020.
[39] R. Liu, D. Pei, and Y. Wang, "Experimental research on sound absorption properties of impedance gradient composite with multiphase," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 733, no. 1: IOP Publishing, p. 012009.
[40] C. Liu, J. Luo, X. Liu, and Y. Lai, "Hydroacoustic High Absorption with Broadband and Wide-Angle Impedance Matching," Physical Review Applied, vol. 18, no. 4, p. 044008, 2022.
[41] M. S. Kim, W. R. Lee, Y. Y. Kim, and J. H. Oh, "Transmodal elastic metasurface for broad angle total mode conversion," Applied Physics Letters, vol. 112, no. 24, p. 241905, 2018.
[42] F. A. Viana, "A tutorial on Latin hypercube design of experiments," Quality and reliability engineering international, vol. 32, no. 5, pp. 1975-1985, 2016.
[43] T. M. Cioppa, "Efficient nearly orthogonal and space-filling experimental designs for high-dimensional complex models," NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2002.
[44] A. Vosoughi and S. Gerist, "New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams," Composite Structures, vol. 118, pp. 68-73, 2014.
[45] F. Aymerich and M. Serra, "Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic," Composites Part A: Applied Science and Manufacturing, vol. 39, no. 2, pp. 262-272, 2008.
[46] Z. Wang and A. Sobey, "A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation," Composite Structures, vol. 233, p. 111739, 2020.
[47] M. Kumar, D. M. Husain, N. Upreti, and D. Gupta, "Genetic algorithm: Review and application," Available at SSRN 3529843, 2010.
[48] L. Lemarchand, A. Plantec, B. Pottier, and S. Zanati, "An object-oriented environment for specification and concurrent execution of genetic algorithms," in Addendum to the proceedings on Object-oriented programming systems, languages, and applications (Addendum), 1992, pp. 163-165.
[49] R. K. Bhattacharjya, "Introduction to genetic algorithms," IIT Guwahati, vol. 12, 2012.
[50] A. Lambora, K. Gupta, and K. Chopra, "Genetic algorithm-A literature review," in 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), 2019: IEEE, pp. 380-384.
[51] S. Mirjalili and S. Mirjalili, "Genetic algorithm," Evolutionary Algorithms and Neural Networks: Theory and Applications, pp. 43-55, 2019.
[52] S. Katoch, S. S. Chauhan, and V. Kumar, "A review on genetic algorithm: past, present, and future," Multimedia Tools and Applications, vol. 80, pp. 8091-8126, 2021.
[53] H. Weeratunge, Z. Shireen, S. Iyer, A. Menzel, A. W. Phillips, S. Halgamuge, R. Sandberg, and E. Hajizadeh, "A machine learning accelerated inverse design of underwater acoustic polyurethane coatings," Structural and Multidisciplinary Optimization, vol. 65, no. 8, p. 213, 2022.
[54] L. Yang and A. Shami, "On hyperparameter optimization of machine learning algorithms: Theory and practice," Neurocomputing, vol. 415, pp. 295-316, 2020.
[55] P. Srinivas and R. Katarya, "hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost," Biomedical Signal Processing and Control, vol. 73, p. 103456, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90678-
dc.description.abstract本研究使用前人歸納出的多種吸音機制,提取複數機制結合後的模型特徵,並進行基因演算法優化,使用目標函數對初始結果進行轉換之後帶入進化/變異算法,找出優化的特徵組合為何,但由於基因驗算法優化後的結果為一個數值,無法得知真實的吸音表現,所以建立由機器學習所建構而成的替代模型,以便快速了解優化後的特徵組合具有何種吸音表現,最後藉由此套方法開發出在2 kHz ~ 20 kHz 範圍中,皆具有高達0.9以上吸音係數的高性能水下吸音超材料,同時解決了在吸音超材料中無法兼顧高低頻吸音的問題,達到寬帶吸音。zh_TW
dc.description.abstractThis study utilizes various absorption mechanisms identified by previous research to extract combined features of multiple mechanisms. The extracted features are then optimized using a genetic algorithm, where an objective function is applied to transform the initial results and input them into an evolutionary/mutation algorithm. The goal is to identify the optimized combination of features. However, since the results of the genetic algorithm optimization are numerical values, the actual absorption performance cannot be determined. Therefore, an alternative model constructed by machine learning is established to quickly understand the absorption performance of the optimized feature combination. Finally, using this approach, a high-performance underwater absorption metamaterial is developed with absorption coefficients exceeding 0.9 across the range of 2 kHz to 20 kHz. This solution simultaneously addresses the challenge of achieving broadband absorption in metamaterials, which typically struggle with absorbing both high and low frequencies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:08:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:08:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 簡介 1
1.1 動機 1
1.2 研究背景 1
1.3 研究目的 2
1.4 重要性與貢獻 3
1.5 名詞對照與符號說明 5
1.5.1 英文專有名詞與中文翻譯對照 5
1.5.2 符號說明表 8
第二章 文獻探討 9
2.1 水下吸音機制 9
2.2 數據均勻化 14
2.3 優化方法 20
2.4 替代模型-快速預測方法 23
第三章 吸音機制篩選與超穎材料模型建立 27
3.1 有限元素法模擬 27
3.2 吸音機制組合 29
3.2.1 吸音機制篩選與組合 29
3.2.2 初始模型之性能分析 33
3.3 均勻化實驗設計 35
3.3.1 拉丁超立方取樣 35
3.3.2 模型幾何特徵萃取 (Feature extraction) 36
第四章 基因優化演算法 38
4.1 目標函數轉換 38
4.2 基因優化演算法框架 41
4.3 種群的交叉與變異 44
4.3.1 交叉與變異算法 45
4.3.2 算法性能比較 48
4.4 估計器精確度與最終優化結果 52
第五章 機器學習預測 63
5.1 替代模型精度指標 63
5.2 替代模型預測與比較 67
5.2.1 特徵工程 (Feature engineering) 69
5.2.2 XGBoost回歸器 72
5.2.3 RandomForest回歸器 81
5.2.4 CatBoost回歸器 86
5.2.5 替代模型性能比較 91
第六章 結論與未來展望 94
6.1 結論 94
6.2 未來展望 95
第七章 參考文獻 96
附錄 101
附錄 A : 近正交拉丁超立方規劃均勻實驗設計組合 101
附錄 B : 估計器精度測試結果 & 測試誤差 104
附錄 C : 優化後的幾何參數組合 (GAO算法、ACO算法) 105
-
dc.language.isozh_TW-
dc.subject高性能水下吸音超材料zh_TW
dc.subject基因演算法優化zh_TW
dc.subject目標函數zh_TW
dc.subject機器學習zh_TW
dc.subject寬帶吸音zh_TW
dc.subjecthigh-performance underwater absorption metamaterialen
dc.subjectGenetic algorithm optimizationen
dc.subjectbroadband absorptionen
dc.subjectmachine learningen
dc.subjectobjective functionen
dc.title基於機器學習模型與基因演算法優化對高性能水下寬帶吸音超材料的設計與優化zh_TW
dc.titleDesign and optimization of high-performance underwater broadband sound-absorbing metamaterials based on machine learning models and genetic algorithmen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃勝翊;張恆華;黃乾綱zh_TW
dc.contributor.oralexamcommitteeHseng-Ji Huang;Heng-Hua Chang;Chien-Kang Huangen
dc.subject.keyword基因演算法優化,目標函數,機器學習,高性能水下吸音超材料,寬帶吸音,zh_TW
dc.subject.keywordGenetic algorithm optimization,objective function,machine learning,high-performance underwater absorption metamaterial,broadband absorption,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202303266-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2028-08-07-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved