Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90673
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為zh_TW
dc.contributor.advisorChee Wee Liuen
dc.contributor.author禹東秀zh_TW
dc.contributor.authorDong Soo Wooen
dc.date.accessioned2023-10-03T17:07:31Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, pp. 114-117, 1965.
[2] T. Ghani et al., "A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors," IEEE International Electron Devices Meeting 2003, Washington, DC, USA, 2003, pp. 11.6.1-11.6.3, doi: 10.1109/IEDM.2003.1269442.
[3] K. Mistry et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 2007, pp. 247-250, doi: 10.1109/IEDM.2007.4418914.
[4] C. Auth et al., "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 2012, pp. 131-132, doi: 10.1109/VLSIT.2012.6242496.
[5] M. Radosavljevic, “Advanced Logic Scaling Using Monolithic 3D Integration”, 2022 Symposium on VLSI, Short Course 1-1.
[6] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," 2017 Symposium on VLSI Technology, Kyoto, Japan, 2017, pp. T230-T231, doi: 10.23919/VLSIT.2017.7998183.
[7] S. Barraud et al., "7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing," 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265025.
[8] C. W. Liu, Östling, M. & Hannon, J.B. New materials for post-Si computing. MRS Bulletin 39, 658–662 (2014). https://doi.org/10.1557/mrs.2014.162
[9] Y. -C. Liu et al., "First Highly Stacked Ge0.95Si0.05 nGAAFETs with Record ION = 110 μA (4100 μA/μm) at VOV=VDS=0.5V and High Gm,max = 340 μS (13000 μS/μm) at VDS=0.5V by Wet Etching," 2021 Symposium on VLSI Technology, Kyoto, Japan, 2021, pp. 1-2.
[10] Y. -S. Huang et al., "Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016, pp. 33.1.1-33.1.4, doi: 10.1109/IEDM.2016.7838531.
[11] K. J. Kuhn, "Considerations for Ultimate CMOS Scaling," in IEEE Transactions on Electron Devices, vol. 59, no. 7, pp. 1813-1828, July 2012, doi: 10.1109/TED.2012.2193129.
[12] G. Bae et al., "3nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM.2018.8614629.
[13] A. Agrawal et al., "Enhancement mode strained (1.3%) germanium quantum well FinFET (WFin=20nm) with high mobility (μHole=700 cm2/Vs), low EOT (∼0.7nm) on bulk silicon substrate," 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014, pp. 16.4.1-16.4.4, doi: 10.1109/IEDM.2014.7047064.
[14] S. Gupta et al., "Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method," 2012 International Electron Devices Meeting, San Francisco, CA, USA, 2012, pp. 16.2.1-16.2.4, doi: 10.1109/IEDM.2012.6479052.
[15] C. -T. Tu et al., "First Vertically Stacked Tensily Strained Ge0.98Si0.02 nGAAFETs with No Parasitic Channel and LG = 40 nm Featuring Record ION = 48 μA at VOV=VDS=0.5V and Record Gm,max(μS/μm)/SSSAT(mV/dec) = 8.3 at VDS=0.5V," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 29.3.1-29.3.4, doi: 10.1109/IEDM19573.2019.8993537.
[16] Y. -C. Liu et al., "Highly Stacked GeSi Nanosheets and Nanowires by Low-Temperature Epitaxy and Wet Etching," in IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6599-6604, Dec. 2021, doi: 10.1109/TED.2021.3110838.
[17] Cerniglia, N., and P. Wang. " Dissolution of germanium in aqueous hydrogen peroxide solution." Journal of The Electrochemical Society 109.6 (1962): 508.
[18] C. -T. Tu et al., " Experimental Demonstration of TreeFETs Combining Stacked Nanosheets and Low Doping Interbridges by Epitaxy and Wet Etching," in IEEE Electron Device Letters, vol. 43, no. 5, pp. 682-685, May 2022, doi: 10.1109/LED.2022.3159268.
[19] Yang, Y-J., et al. " Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors." Applied Physics Letters 91.10 (2007): 102103.
[20] Choi, Yunho, et al. "Simulation of the effect of parasitic channel height on characteristics of stacked gate-all-around nanosheet FET." Solid-State Electronics 164 (2020): 107686.
[21] Cannon, Douglas D., et al. " Tensile strained epitaxial Ge films on Si (100) substrates with potential application in L-band telecommunications." Applied Physics Letters 84.6 (2004): 906-908.
[22] Wang, Feng, et al. "Highly Selective Chemical Etching of Si vs. Si1− x Ge x Using NH 4 OH Solution." Journal of the Electrochemical Society 144.3 (1997): L37.
[23] Y. -S. Huang et al., "First Vertically Stacked, Compressively Strained, and Triangular Ge0.91Sn0.09pGAAFETs with High of ION of 19.3μA at VOV=VDS= -0.5V, Gm of 50.2μS at VDS= -0.5V and Low SSlin of 84m V/dec by CVD Epitaxy and Orientation Dependent Etching," 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp. T180-T181, doi: 10.23919/VLSIT.2019.8776550.
[24] S. -Y. Lin, H. -H. Liu, C. -T. Tu, Y. -S. Huang, F. -L. Lu and C. W. Liu, "Optical Detection of Parasitic Channels of Vertically Stacked Ge0.98Si0.02 nGAAFETs," in IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4073-4078, Oct. 2020, doi: 10.1109/TED.2020.3016623.
[25] H. -Y. Ye and C. W. Liu, " On-Current Enhancement in TreeFET by Combining Vertically Stacked Nanosheets and Interbridges," in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1292-1295, Sept. 2020, doi: 10.1109/LED.2020.3010240.
[26] Johnson, F.S., Miles, D.S., Grider, D.T. et al. Selective chemical etching of polycrystalline SiGe alloys with respect to Si and SiO2 . J. Electron. Mater. 21, 805–810 (1992). https://doi.org/10.1007/BF02665519
[27] Sun, Shiyu, et al. " Surface termination and roughness of Ge (100) cleaned by HF and HCl solutions." Applied Physics Letters 88.2 (2006): 021903.
[28] Lee, T-E., et al. "Improvement of SiGe MOS interface properties with a wide range of Ge contents by using TiN/Y 2 O 3 gate stacks with TMA nassivation." 2019 Symposium on VLSI Technology. IEEE, 2019.
[29] Y. -S. Huang et al., "High-Mobility CVD-Grown Ge/Strained Ge0.9Sn0.1/Ge Quantum-Well pMOSFETs on Si by Optimizing Ge Cap Thickness," in IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2498-2504, June 2017, doi: 10.1109/TED.2017.2695664.
[30] Bloem, J., and J. C. Van Vessem. "Etching Ge with Mixtures of HF‐H 2 O 2‐H 2 O." Journal of the electrochemical society 109.1 (1962): 33.
[31] Kim, Joo-Hyung, et al. "Physical and electrical characterization of high-k ZrO2 metal–insulator–metal capacitor." Thin Solid Films 516.23 (2008): 8333-8336.
[32] I. -H. Wong, Y. -T. Chen, J. -Y. Yan, H. -J. Ciou, Y. -S. Chen and C. W. Liu, "Fabrication and Low Temperature Characterization of Ge (110) and (100) p-MOSFETs," in IEEE Transactions on Electron Devices, vol. 61, no. 6, pp. 2215-2219, June 2014, doi: 10.1109/TED.2014.2318083.
[33] H. Wu, W. Wu, M. Si and P. D. Ye, "Demonstration of Ge Nanowire CMOS Devices and Circuits for Ultimate Scaling," in IEEE Transactions on Electron Devices, vol. 63, no. 8, pp. 3049-3057, Aug. 2016, doi: 10.1109/TED.2016.2581862.
[34] Genquan Han et al., "High-mobility germanium-tin (GeSn) P-channel MOSFETs featuring metallic source/drain and sub-370 °C process modules," 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 16.7.1-16.7.3, doi: 10.1109/IEDM.2011.6131569.
[35] M. Liu et al., "Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001), (011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation," 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 2014, pp. 1-2, doi: 10.1109/VLSIT.2014.6894376.
[36] Y. -S. Huang et al., "First vertically stacked GeSn nanowire pGAAFETs with Ion = 1850μA/μm (Vov = Vds = −1V) on Si by GeSn/Ge CVD epitaxial growth and optimum selective etching," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 37.5.1-37.5.4, doi: 10.1109/IEDM.2017.8268512.
[37] Y. -S. Huang et al., "First Demonstration of 4-Stacked Ge0.915 Sn0.085 Wide Nanosheets by Highly Selective Isotropic Dry Etching with High S/D Doping and Undoped Channels," 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265056.
[38] Y. -S. Huang et al., "Vertically Stacked Strained 3-GeSn-Nanosheet pGAAFETs on Si Using GeSn/Ge CVD Epitaxial Growth and the Optimum Selective Channel Release Process," in IEEE Electron Device Letters, vol. 39, no. 9, pp. 1274-1277, Sept. 2018, doi: 10.1109/LED.2018.2852775.
[39] Y. Zhang et al., “Patterning Challenges and Opportunities: Etch and Film,” in Semicon Taiwan, 2016.
[40] T. -E. Lee, K. Kato, M. Ke, M. Takenaka and S. Takagi, "Improvement of SiGe MOS interface properties with a wide range of Ge contents by using TiN/Y2O3 gate stacks with TMA nassivation," 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp. T100-T101, doi: 10.23919/VLSIT.2019.8776523.
[41] Y. -S. Huang et al., "First Stacked Ge0.88Sn0.12 pGAAFETs with Cap, LG=4Onm, Compressive Strain of 3.3%, and High S/D Doping by CVD Epitaxy Featuring Record ION of 58µA at VOV=VDS= -0.5V, Record Gm,max of 172µS at VDS= -0.5V, and Low Noise," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 29.5.1-29.5.4, doi: 10.1109/IEDM19573.2019.8993594.
[42] C. -E. Tsai et al., "Highly Stacked 8 Ge0.9Sn0.1 Nanosheet pFETs with Ultrathin Bodies (~3nm) and Thick Bodies (~30nm) Featuring the Respective Record ION/IOFF of 1.4x107 and Record ION of 92μA at Vov=VDS= -0.5V by CVD Epitaxy and Dry Etching," 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 26.4.1-26.4.4, doi: 10.1109/IEDM19574.2021.9720660.
[43] C. -E. Tsai et al., "Nearly Ideal Subthreshold Swing and Delay Reduction of Stacked Nanosheets Using Ultrathin Bodies," 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, pp. 401-402, doi: 10.1109/VLSITechnologyandCir46769.2022.9830357.
[44] B. -W. Huang et al., "Highly Stacked GeSn Nanosheets by CVD Epitaxy and Highly Selective Isotropic Dry Etching," in IEEE Transactions on Electron Devices, vol. 69, no. 4, pp. 2130-2136, April 2022, doi: 10.1109/TED.2022.3144105.
[45] T. -C. Hong, W. -H. Lu, Y. -H. Wang, J. -Y. Li, Y. -J. Lee and T. -S. Chao, "Fabrication of GeSn Nanowire MOSFETs by Utilizing Highly Selective Etching Techniques," in IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2028-2033, April 2023, doi: 10.1109/TED.2023.3246952.
[46] Gupta, S., Chen, R., Huang, Y. C., Kim, Y., Sanchez, E., Harris, J. S., & Saraswat, K. C. (2013). Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge1–x Sn x): A Novel Route for Ge1–x Sn x Nanostructure Fabrication. Nano letters, 13(8), 3783-3790.
[47] Y. -C. Liu et al., "Extremely High-κ Hf0.2Zr0.8O2 Gate Stacks Integrated into Ge0.95Si0.05 Nanowire and Nanosheet nFETs Featuring Respective Record Ion per Footprint of 9200μA/μm and Record Ion per Stack of 360μA at VOV=VDS=0.5V," 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 1-2, doi: 10.23919/VLSITechnologyandCir57934.2023.10185327.
[48] D. S. Woo et al., “TreeFETs Combining Stacked Nanosheet and {110} Straight Interbridges”, International Electron Devices & Materials Symposium (IEDMS), Nantou, Taiwan, Oct. 27-28, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90673-
dc.description.abstract隨著摩爾定律引領元件尺寸微小化,應變工程、高-k 值材料、以及FinFET元件結構被發明以及對此技術趨勢有貢獻。然而,3奈米以下電晶體必要新技術的應用為在有限的面積上提高元件效能。因此,對短通道效應控制性能高以及通道面積大的閘極環繞式電晶體(Gate-All-Around FET)結構會取代FinFET。
我們利用高遷移率材料,鍺矽(GeSi),來製作比原本奈米片通道(Nanosheet)面積高的樹狀電晶體。樹狀電晶體控制H2O2濕蝕刻(wet etching)與磊晶層矽含量來形成個奈米片之間的橋樑(interbridge)區域。此區域和{111}/<110>與{110}/<110>表面,因此,提高元件通道面積,並提升驅動電流。我們利用化學沉積法長的高品質鍺矽磊晶層當奈米片與橋樑通道,Fin Formation和channel Release製程形成通道,通過PEALD與PVD製作Gate Stack。然後,利用黃光製程,PVD,Annealing製程製作S/D metal contact及做出完整的元件。
為獲得更大面積的{111}和{110}側面通道,我們設計不同GeSi磊晶層。我們利用三種奈米片結構Ge0.85Si0.15、 Ge0.9Si0.1 和Ge0.97Si0.03/Ge0.9Si0.1/Ge0.97Si0.03, 並用兩種橋樑結構n+ Ge/Ge0.95Si0.05/Ge與n+ Ge。結果,利用 Ge0.9Si0.1奈米片與n+ Ge IB通道的元件表示 SS=104mV/dec 與ION/IOFF~4E3 在VDS=0.05V,並表示 ION=26μA和ID per footprint =154 μA/ μm 在VOV=VDS=0.5V。然後利用Ge0.97Si0.03/Ge0.9Si0.1/Ge0.97Si0.03奈米片和n+ Ge IB通道的元件表示SS=111mV/dec 與ION/IOFF~2.1E3 在VDS=0.05V,並表示 ION=20μA和ID per footprint =111 μA/ μm 在VOV=VDS=0.5V。
我們也利用另高遷移率材料鍺錫(GeSn) 製作4根堆疊奈米片電晶體。此元件通過乾蝕刻(Dry Etching)形成通道均勻性高的元件。我們製作兩種不同厚度的GeSn(10%) 通道與GeSn(5%)以及Ge/GeSn(5%)蓋層。因Ge或GeSn(5%) 蓋層有量子阱效應分離Ge/Oxide 介面層的載子,並降低通道裡的雜質散射(Impurity Scattering)與表面粗糙度散射(Surface Roughness Scattering)。
我們通過製程和實驗發現厚GeSn(10%)通道和薄Ge/GeSn(5%)蓋層具有ION=924 μA/ μm 在VOV=VDS=0.5V。然而,薄GeSn(10%)通道和厚GeSn(5%) 蓋層提供ION=503 μA/ μm 在VOV=VDS=0.5V。通過試驗,展示了利用調整磊晶層厚度的方式可提高元件的效能。
zh_TW
dc.description.abstractAs Moore’s Law has led the continuous scaling of devices, strain engineering, high-k material, and FinFET architecture have been invented and contributed to the technology trends. Furthermore, further innovations such as high NA EUV lithography, 2.5D and 3D advanced packaging, and 3D transistor architecture have been invented for next generation transistors. Among these new technologies, Gate-All-Around Field Effect-Transistor (GAAFET) is suggested as the most promising solution to replace traditional FinFET. Co-optimizing this new transistor architecture with high quality epitaxy design of new channel materials with strain effects, highly selective channel release, and PEALD-based high-k dielectric gate stack formation would provide high device performance improvement.
In this thesis, GeSi channel TreeFET process integration is going to be introduced. TreeFET architecture expands the effective channel width compared to the traditional nanosheet structure by utilizing the sacrificial layers in between nanosheets. By controlling channel release, sufficient interbridge regions can be obtained. The wet etching-based channel release can be controlled to achieve {111} and {110} surface orientations of the interbridges that provide higher mobilities than {100} surfaces. Furthermore, parasitic channel removal is also going to be conducted in wet etching using H2O2 and NH4OH, which can further reduce leakage current.
For interbridge of highly stacked TreeFET, n+ Ge/Ge0.95Si0.05/Ge epi-structure might not provide ideal etching results due to difference in etching rate. Therefore, two other structures: Ge0.9Si0.1 channel with n+ Ge interbridge and Ge0.97Si0.03/Ge0.9Si0.1/Ge0.97Si0.03 channel with n+ Ge are going to be introduced and integrated with channel release and gate stack processes to compare performance difference. For Ge0.85Si¬0.15 channels with n+ Ge/Ge0.95Si0.05/Ge interbridge structure provides WNS=181~220nm, WIB=114~143nm, and SS=97mV/dec and ION/IOFF=2E3 at VDS=0.05V. The Ge0.9Si0.1 channel with n+ Ge interbridge structure results in WNS=171nm and SS=104mV/dec and ION/IOFF=4E3 at VDS=0.05V. Lastly, Ge0.97Si0.03/Ge0.9Si0.1/Ge0.97Si0.03 channel with n+ Ge interbridge structure obtain WNS=178nm and SS=111mV/dec and ION/IOFF=2.1E3 at VDS=0.05V. Further comparisons are going to be addressed throughout the chapters.
Process integration of GeSn nanosheet with capping layers FET is going to be introduced. The chapter introduces performance differences resulted by different thicknesses of GeSn channel and cap structures. Thick Ge¬Sn(10%) channel sandwiched between thin Ge/GeSn(5%) caps and thin GeSn(10%) channel located between thick GeSn(5%) caps are going to fabricated and compared. Highly selective isotropic dry etching is going to be used for channel release to achieve high etching selectivity and uniformity of each channel. And PEALD gate stack formation is going to be integrated for GAA property. As a result, thick Ge¬Sn(10%) channel combined with thin Ge/GeSn(5%) caps formation provides SS=126mV/dec and IONIOFF=6.4E3 at VDS=-0.05V. And, thin GeSn(10%) channel combined with thick GeSn(5%) caps formation provides SS=101mV/dec and ION/IOFF=11.3E3 at VDS=-0.05V.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:07:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:07:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents

Publication List (相關論文發表) i
摘要 ii
Abstract iv
Table of Contents vii
List of Figures ix
Chapter 1 1
1.1 Background and Motivation 1
1.2 Organization 5
Chapter 2 7
Channel Release for Highly Stacked GeSi TreeFETs 7
2.1 Introduction 7
2.2 Epitaxial Layer of GeSi TreeFET 8
2.3 Channel Release for GeSi TreeFET 11
2.4 Parasitic Channel Control 14
2.5 Summary 16
Chapter 3 17
Integration of Highly Stacked GeSi TreeFET 17
3.1 Introduction 17
3.2 TreeFET Channel Optimization 18
3.3 Device Integration 19
3.4 Electrical Characteristics and Device Analysis 24
3.5 Summary 30
Chapter 4 32
Integration of 4 Stacked GeSn Nanosheet Field-Effect Transistor 32
4.1 Introduction 32
4.2 GeSn Channel Epilayer Design 33
4.3 Channel Release of 4 Stacked GeSn Channels 36
4.4 Gate Stack Formation 39
4.5 Device Analysis 41
4.6 Summary 47
Chapter 5 49
Summary and Future Work 49
5.1 Summary 49
5.2 Future work 50
Reference 52
-
dc.language.isoen-
dc.subject鍺錫zh_TW
dc.subject樹狀電晶體zh_TW
dc.subject鍺矽zh_TW
dc.subject奈米片zh_TW
dc.subject橋樑zh_TW
dc.subjectGermanium-Siliconen
dc.subjectTreeFETen
dc.subjectNanosheeten
dc.subjectGermanium-Tinen
dc.subjectInterbridgeen
dc.title通道堆疊鍺錫閘極環繞式電晶體及鍺矽樹狀電晶體結合奈米片及橋樑之製程整合zh_TW
dc.titleIntegration of Stacked GeSn GAAFETs and GeSi TreeFETs Combining Nanosheets and Interbridgesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖洺漢 ;李敏鴻;林楚軒;林中一zh_TW
dc.contributor.oralexamcommitteeMing Han Liao;Min-Hung Lee;Chu-Hsuan Lin;Chung-Yi Linen
dc.subject.keyword鍺錫,鍺矽,樹狀電晶體,奈米片,橋樑,zh_TW
dc.subject.keywordGermanium-Tin,Germanium-Silicon,TreeFET,Nanosheet,Interbridge,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202303060-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2026-08-06-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved