請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90670完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇偉儁 | zh_TW |
| dc.contributor.advisor | Wei-Jiun Su | en |
| dc.contributor.author | 林毓倫 | zh_TW |
| dc.contributor.author | Yu-Lun Lin | en |
| dc.date.accessioned | 2023-10-03T17:06:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | [1] A. Hosseinkhani, D. Younesian, P. Eghbali, A. Moayedizadeh, and A. Fassih, "Sound and vibration energy harvesting for railway applications: A review on linear and nonlinear techniques," Energy Reports, vol. 7, pp. 852-874, 2021, doi: 10.1016/j.egyr.2021.01.087.
[2] Rich Meier, Nicholas Kelly, Omri Almog, and P. Chiang, "A piezoelectric energy-harvesting shoe system for podiatric sensing.," 2014, doi: 10.1109/EMBC.2014.6943668. [3] W. Zhou, W.-H. Liao, and W. J. Li, "Analysis and design of a self-powered piezoelectric microaccelerometer," in SPIE, 2005, doi: 10.1117/12.601131. [4] S. Panda et al., "Piezoelectric energy harvesting systems for biomedical applications," Nano Energy, vol. 100, 2022, doi: 10.1016/j.nanoen.2022.107514. [5] L. Zhao, H. Li, J. Meng, and Z. Li, "The recent advances in self‐powered medical information sensors," InfoMat, vol. 2, no. 1, pp. 212-234, 2019, doi: 10.1002/inf2.12064. [6] A. Erturk and D. J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations," Smart Materials and Structures, vol. 18, no. 2, 2009, doi: 10.1088/0964-1726/18/2/025009. [7] A. Erturk and D. J. Inman, "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters," Journal of Vibration and Acoustics, vol. 130, no. 4, 2008, doi: 10.1115/1.2890402. [8] Y. Yang, H. Wu, and C. K. Soh, "Experiment and modeling of a two-dimensional piezoelectric energy harvester," Smart Materials and Structures, vol. 24, no. 12, 2015, doi: 10.1088/0964-1726/24/12/125011. [9] D. Wang, H. Lu, L. Deng, and D. Zhang, "An H-shaped two-dimensional piezoelectric vibration energy harvester," Japanese Journal of Applied Physics, vol. 58, no. 10, 2019, doi: 10.7567/1347-4065/ab4074. [10] R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, "Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester," Sensors and Actuators A: Physical, vol. 230, pp. 1-8, 2015, doi: 10.1016/j.sna.2015.03.038. [11] M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, and C. Trigona, "Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters," Procedia Chemistry, vol. 1, no. 1, pp. 1203-1206, 2009, doi: 10.1016/j.proche.2009.07.300. [12] Y. Zhu, J. Zu, and W. Su, "Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading," Smart Materials and Structures, vol. 22, no. 4, 2013, doi: 10.1088/0964-1726/22/4/045007. [13] S. M. Osinaga, S. P. Machado, and M. Febbo, "An analytical model of the electromechanical coupling for a piezoelectric stepped buckled beam for energy harvesting applications," Mechanical Systems and Signal Processing, vol. 179, 2022, doi: 10.1016/j.ymssp.2022.109355. [14] Y. Chen and Z. Yan, "Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity," International Journal of Mechanical Sciences, vol. 173, 2020, doi: 10.1016/j.ijmecsci.2020.105473. [15] K. Chen et al., "An M−shaped buckled beam for enhancing nonlinear energy harvesting," Mechanical Systems and Signal Processing, vol. 188, 2023, doi: 10.1016/j.ymssp.2022.110066. [16] P. Kumar, S. K. Dwivedy, and P. Kumari, "Dynamic Analysis of Piezoelectric Based Energy Harvester under Periodic Excitation," Procedia Engineering, vol. 144, pp. 635-644, 2016, doi: 10.1016/j.proeng.2016.05.057. [17] E. S. Leland and P. K. Wright, "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload," Smart Materials and Structures, vol. 15, no. 5, pp. 1413-1420, 2006, doi: 10.1088/0964-1726/15/5/030. [18] Y.-H. Shin et al., "Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting," Nano Energy, vol. 77, 2020, doi: 10.1016/j.nanoen.2020.104986. [19] M. D. Dhone, P. G. Gawatre, and S. S. Balpande, "Frequency band widening technique for cantilever-based vibration energy harvesters through dynamics of fluid motion," Materials Science for Energy Technologies, vol. 1, no. 1, pp. 84-90, 2018, doi: 10.1016/j.mset.2018.06.002. [20] A. Erturk, J. M. Renno, and D. J. Inman, "Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs," Journal of Intelligent Material Systems and Structures, vol. 20, no. 5, pp. 529-544, 2008, doi: 10.1177/1045389x08098096. [21] Y. Zhao, Y. Qin, L. Guo, and B. Tang, "Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester," Shock and Vibration, vol. 2018, pp. 1-15, 2018, doi: 10.1155/2018/7082724. [22] H. Xue, Y. Hu, and Q. M. Wang, "Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, no. 9, pp. 2104-8, Sep 2008, doi: 10.1109/TUFFC.903. [23] D. Upadrashta and Y. Yang, "Trident-Shaped Multimodal Piezoelectric Energy Harvester," Journal of Aerospace Engineering, vol. 31, no. 5, 2018, doi: 10.1061/(asce)as.1943-5525.0000899. [24] B. Ren, S. W. Or, X. Zhao, and H. Luo, "Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal," Journal of Applied Physics, vol. 107, no. 3, 2010, doi: 10.1063/1.3296156. [25] S. Wen, Q. Xu, and B. Zi, "Design of a New Piezoelectric Energy Harvester Based on Compound Two-Stage Force Amplification Frame," IEEE Sensors Journal, vol. 18, no. 10, pp. 3989-4000, 2018, doi: 10.1109/jsen.2018.2820221. [26] Z. Yang, J. Zu, J. Luo, and Y. Peng, "Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester," Journal of Intelligent Material Systems and Structures, vol. 28, no. 3, pp. 357-366, 2016, doi: 10.1177/1045389x16642536. [27] Y. Zhu and J. W. Zu, "Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force," Applied Physics Letters, vol. 103, no. 4, 2013, doi: 10.1063/1.4816518. [28] A. A. A. Zayed, S. F. M. Assal, K. Nakano, T. Kaizuka, and A. El-Bab, "Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester," Sensors (Basel), vol. 19, no. 13, Jun 29 2019, doi: 10.3390/s19132893. [29] H.-X. Zou et al., "Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester," Smart Materials and Structures, vol. 26, no. 11, 2017, doi: 10.1088/1361-665X/aa8eb8. [30] H.-L. Chang and W.-J. Su, "Design and development of a high-performance tensile-mode piezoelectric energy harvester based on a three-hinged force-amplification mechanism," Smart Materials and Structures, vol. 31, no. 7, 2022, doi: 10.1088/1361-665X/ac7489. [31] J. Yang, An Introduction to the Theory of Piezoelectricity (Advances in Mechanics and Mathematics). Springer, 2005. [32] Y.-B. Yang and W. McGuire, "Stiffness Matrix for Geometric Nonlinear Analysis," Journal of Structural Engineering, vol. 112, no. 4, pp. 853-877, 1986, doi: 10.1061/(ASCE)0733-9445(1986)112:4(853). [33] G. J. Simitses., An introduction to the elastic stability of structures (Prentice-Hall civil engineering and engineering mechanics series.). Englewood Cliffs, N.J. : Prentice-Hall, 1976. [34] M. I. Friswell, S. F. Ali, O. Bilgen, S. Adhikari, A. W. Lees, and G. Litak, "Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass," Journal of Intelligent Material Systems and Structures, vol. 23, no. 13, pp. 1505-1521, 2012, doi: 10.1177/1045389x12455722. [35] Y. Siva Sankara Rao, K. Mallikarjuna Rao, and V. V. Subba Rao, "Estimation of damping in riveted short cantilever beams," Journal of Vibration and Control, vol. 26, no. 23-24, pp. 2163-2173, 2020, doi: 10.1177/1077546320915313. [36] K. B. Swamy, Z. A. Mohammed, B. Mukherjee, S. Chakraborty, and S. Sen, "Performance evaluation of perforated micro-cantilevers for MEMS applications," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 13, no. 02, 2014, doi: 10.1117/1.Jmm.13.2.023001. [37] D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H. C. Wikle, and D.-J. Kim, "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, no. 5, 2008, doi: 10.1088/0960-1317/18/5/055017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90670 | - |
| dc.description.abstract | 傳統的壓電懸臂梁採集器具有採集頻寬窄、電壓輸出小等問題,為了進一步改善能量採集效率,本研究提出弓形梁採集器,弓形主體由PVDF壓電片及不鏽鋼基梁所組成。藉由末端質量將基梁及壓電片兩端相互固定,兩者的長度差異使不鏽鋼基梁受到軸向預力並發生挫曲,而壓電片則會被基梁的抗彎力繃直,形成弓形結構。在此結構下,系統受到的軸向預力使頻率響應產生非線性的特性,進而拓展採集頻寬。由於挫曲梁末端的位移會比基底激振更大,連帶使壓電片受到的垂直激振提高,可以達到力量放大的效果。且透過挫曲梁的幾何關係,會將垂直方向所受到的基底激振轉為水平方向的軸向力,拉伸壓電片來進行能量採集。本研究的動態模型以古典梁理論及Lagrange’s equation為基礎,將壓電片視為等效彈簧,並加入軸向預力的影響;電學模型的部分則是以壓電本構方程式為基礎,僅考慮壓電片軸向位移來計算力電耦合方程式,以此建立理論模型。本研究也針對弓形梁採集器的各項參數進行實驗驗證,探討不同基梁厚度、末端質量、壓電片偏移量、基梁等效長度以及不同加速度對採集器性能所帶來的影響,最後與傳統懸臂梁採集器相互比較。實驗結果顯示,弓形梁採集器與懸臂梁採集器相比,最大電壓將提高2倍,且具有較寬的採集頻寬及較小的末端位移,節省工作空間的同時也使採集器性能得到提升。由最佳阻抗實驗結果得知弓形梁採集器於10 MΩ的外接阻抗下具有最佳輸出功率0.86 mW。 | zh_TW |
| dc.description.abstract | Conventional cantilever piezoelectric energy harvester have problems such as narrow bandwidth and low voltage output. To enhance efficiency, this study proposes a bow-shaped energy harvester composed of PVDF piezoelectric sheet and a stainless steel beam. The introduction of axial preload in this design results in nonlinear characteristics in the frequency response, expanding the bandwidth. Due to the greater displacement at the end of the buckled beam compared to the base excitation, the vertical excitation of PVDF is increased, leading to force amplification. By utilizing the geometric relationship of the buckled beam, the vertical force is converted into a horizontal force, thereby stretching the piezoelectric sheet. The dynamic model in this study is based on beam theory and Lagrange’s equation, considering PVDF as an equivalent spring and accounting for the influence of preload. The electrical model is based on the piezoelectric constitutive equation, focusing solely on the axial displacement of PVDF to establish a theoretical model. Experimental verification of our design's parameters is also conducted. The influence of beam thickness, tip mass, PVDF offset, beam length, and acceleration on performance is discussed and compared with the conventional cantilever energy harvester. The experimental results show that the maximum voltage of bow-shaped PEH is twice higher than that of cantilever PEH. Furthermore, it exhibits a wider bandwidth and smaller terminal displacement. According to the impedance experiment results, the bow-shaped PEH achieves a maximum output power of 0.86 mW with an external impedance of 10 MΩ. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:06:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:06:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 x 符號表 xi Chapter 1 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機及方法 8 1.4 論文架構 9 Chapter 2 壓電能量擷取理論 10 2.1 壓電效應 10 2.2 壓電本構方程式 12 Chapter 3 弓形能量採集器模型 14 3.1 採集器之力學模型 14 3.1.1 預力分析 15 3.1.2 模態分析 18 3.1.3 運動方程式 22 3.2 採集器之電學模型 29 Chapter 4 實驗設計 31 4.1 原型設計 31 4.2 實驗設備 33 4.3 實驗流程 36 Chapter 5 結果驗證與討論 37 5.1 驗證模型位移的準確性 38 5.2 模型參數對系統之影響 44 5.2.1 彎曲剛性的影響 44 5.2.2 末端質量的影響 49 5.2.3 壓電片偏移量的影響 53 5.2.4 等效長度的影響 58 5.2.5 加速度的影響 64 5.3 弓形梁與懸臂梁比較結果 67 5.4 系統功率與最佳阻抗 71 Chapter 6 結論與未來展望 75 6.1 結論 75 6.2 未來展望 76 參考文獻 77 附錄A 懸臂梁之撓度 81 附錄B 剛性矩陣元素 [32] 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電能量採集器 | zh_TW |
| dc.subject | 力放大機構 | zh_TW |
| dc.subject | 非線性軟化效應 | zh_TW |
| dc.subject | 挫曲梁 | zh_TW |
| dc.subject | softening effect | en |
| dc.subject | Piezoelectric energy harvester | en |
| dc.subject | buckled beam | en |
| dc.subject | amplifying mechanism | en |
| dc.title | 弓形壓電能量採集器之設計與分析 | zh_TW |
| dc.title | Design and Analysis of Bow-shaped Piezoelectric Energy Harvester | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王建凱;陳蓉珊 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Kai Wang;Jung-San Chen | en |
| dc.subject.keyword | 壓電能量採集器,非線性軟化效應,力放大機構,挫曲梁, | zh_TW |
| dc.subject.keyword | Piezoelectric energy harvester,softening effect,amplifying mechanism,buckled beam, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202301869 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2028-07-29 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
