請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90661
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯淳涵 | zh_TW |
dc.contributor.advisor | Chun-Han Ko | en |
dc.contributor.author | 錢重愷 | zh_TW |
dc.contributor.author | Chung-Kai Chien | en |
dc.date.accessioned | 2023-10-03T17:04:16Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-12 | - |
dc.identifier.citation | Abdelhamid, H. N., & Mathew, A. P. (2022). Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews, 451, 214263.
Abdul Wahab, M. K., Ismail, H., & Othman, N. (2011). Characterization of citric acid-modified tapioca starch and its influence on thermal behavior and water absorption of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polymer-Plastics Technology and Engineering, 50(7), 748-753. Abeer, M. M., Mohd Amin, M. C. I., & Martin, C. (2014). A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. Journal of Pharmacy and Pharmacology, 66(8), 1047-1061. Afra, E., Mohammadnejad, S., & Saraeyan, A. (2016). Cellulose nanofibils as coating material and its effects on paper properties. Progress in Organic Coatings, 101, 455-460. Alves, L., Ferraz, E., Lourenço, A. F., Ferreira, P. J., Rasteiro, M. G., & Gamelas, J. A. F. (2020). Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids. Carbohydrate polymers, 237, 116109. de Amorim, J. D. P., de Souza, K. C., Duarte, C. R., da Silva Duarte, I., de Assis Sales Ribeiro, F., Silva, G. S., ... & Sarubbo, L. A. (2020). Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environmental Chemistry Letters, 18, 851-869. Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984. Arai, K., Horikawa, Y., & Shikata, T. (2018). Transport properties of commercial cellulose nanocrystals in aqueous suspension prepared from chemical pulp via sulfuric acid hydrolysis. ACS omega, 3(10), 13944-13951. Asem, M., Nawawi, W. M. F. W., & Jimat, D. N. (2018, June). Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: Optimization using Two-Level Factorial Design. In IOP Conference Series: Materials Science and Engineering (Vol. 368, p. 012005). IOP Publishing. Aulin, C., Gällstedt, M., & Lindström, T. (2010). Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17, 559-574. Azizian, S., & Khosravi, M. (2019). Advanced oil spill decontamination techniques. In Interface Science and Technology (Vol. 30, pp. 283-332). Elsevier. Babaei-Ghazvini, A., Cudmore, B., Dunlop, M. J., Acharya, B., Bissessur, R., Ahmed, M., & Whelan, W. M. (2020). Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties. Carbohydrate polymers, 247, 116688. Bang, J., Lee, H., Yang, Y., Oh, J. K., & Kwak, H. W. (2021). Nano/micro hybrid bamboo fibrous preforms for robust biodegradable fiber reinforced plastics. Polymers, 13(4), 636. Basavegowda, N., & Baek, K. H. (2021). Advances in functional biopolymer-based nanocomposites for active food packaging applications. Polymers, 13(23), 4198. Bhat, R., Abdullah, N., Din, R. H., & Tay, G. S. (2013). Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. Journal of Food Engineering, 119(4), 707-713. Blake, B. E., & Fenton, S. E. (2020). Early life exposure to per-and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri-and postnatal effects. Toxicology, 443, 152565. Camplisson, C. K., Schilling, K. M., Pedrotti, W. L., Stone, H. A., & Martinez, A. W. (2015). Two-ply channels for faster wicking in paper-based microfluidic devices. Lab on a Chip, 15(23), 4461-4466. Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. Chang, C. P., Wang, I. C., Hung, K. J., & Perng, Y. S. (2010). Preparation and characterization of nanocrystalline cellulose by acid hydrolysis of cotton linter. Taiwan Journal for Science, 25(3), 251-64. Chao, S., Liaw, Y., & Chou, J. H. (2021). The effects of filler shape, type, and size on the properties of encapsulation molding components. Electronics, 10(2), 98. Chen, K., Wang, S., Qi, Y., Guo, H., Guo, Y., & Li, H. (2021). State‐of‐the‐Art: Applications and Industrialization of Lignin Micro/Nano Particles. ChemSusChem, 14(5), 1284-1294. Chen, Q., Shi, Y., Chen, G., & Cai, M. (2020). Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. International Journal of Biological Macromolecules, 142, 846-854. Cheng, H., Zhou, Y., & Liu, Q. (2019). Kaolinite nanomaterials: preparation, properties and functional applications. In Nanomaterials from Clay Minerals (pp. 285-334). Elsevier. Cisneros‐Zevallos, L., & Krochta, J. M. (2003). Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. Journal of Food Science, 68(2), 503-510. Cui, Y., Kumar, S., Kona, B. R., & van Houcke, D. (2015). Gas barrier properties of polymer/clay nanocomposites. Rsc Advances, 5(78), 63669-63690. Cummings, S., Zhang, Y., Smeets, N., Cunningham, M., & Dubé, M. A. (2019). On the use of starch in emulsion polymerizations. Processes, 7(3), 140. Deshwal, G. K., Panjagari, N. R., & Alam, T. (2019). An overview of paper and paper based food packaging materials: health safety and environmental concerns. Journal of food science and technology, 56, 4391-4403. Du, D., Lu, Y., Li, Q., Zhou, Y., Cao, T., Cui, H., & Han, G. (2023). Estimating industrial process emission and assessing carbon dioxide equivalent of perfluorooctanoic acid (PFOA) and its salts in China. Science of The Total Environment, 867, 161507. Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., ... & Roberts, S. M. (2021). Per‐and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental toxicology and chemistry, 40(3), 606-630. Franz, R. (2002). Programme on the recyclability of food-packaging materials with respect to food safety considerations: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. Food Additives & Contaminants, 19(S1), 93-110. Fredriksson, F., Eriksson, U., Kärrman, A., & Yeung, L. W. (2022). Per-and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden—First findings of novel fluorinated copolymers in Europe including temporal analysis. Science of The Total Environment, 846, 157406. Gandhi, S. M., & Sarkar, B. C. (2016). Conventional and statistical resource/reserve estimation. Essentials of Mineral Exploration and Evaluation, Elsevier, 271-288. Garcia Gonzalez, M. N., Levi, M., Turri, S., & Griffini, G. (2017). Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. Journal of Applied Polymer Science, 134(38), 45318. Gaspar, R., & Fardim, P. (2023). Lignin-based materials for emerging advanced applications. Current Opinion in Green and Sustainable Chemistry, 100834. Gibbions, N., Clarke, N., & Long, D. R. (2021). Migration of nanoparticles across a polymer–polymer interface: theory and simulation. Soft Matter, 17(31), 7294-7310. Gloor, P. E. (2002). Coating control, quality, & paperboard packaging. Paper, Film and Foil Converter, 76(5), 46. Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites. Applied Sciences, 8(9), 1696. H. Tayeb, A., Tajvidi, M., & Bousfield, D. (2020). based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules, 25(6), 1344. Haslach, H. W. (2000). The moisture and rate-dependent mechanical properties of paper: a review. Mechanics of time-dependent materials, 4, 169-210. Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic basis of capillary pressure in porous media. Water resources research, 29(10), 3389-3405. Herrera, M. A., Mathew, A. P., & Oksman, K. (2017). Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose, 24, 3969-3980. Hossain, R., Tajvidi, M., Bousfield, D., & Gardner, D. J. (2022). Recyclable grease-proof cellulose nanocomposites with enhanced water resistance for food serving applications. Cellulose, 29(10), 5623-5643. Hosseini, H., Shojaee-Aliabadi, S., Hosseini, S. M., & Mirmoghtadaie, L. (2017). Nanoantimicrobials in food industry. In Nanotechnology applications in food (pp. 223-243). Academic Press. Huang, S., Wang, X., Zhang, Y., Meng, Y., Hua, F., & Xia, X. (2022). Cellulose nanofibers/polyvinyl alcohol blends as an efficient coating to improve the hydrophobic and oleophobic properties of paper. Scientific Reports, 12(1), 16148. Hubbe, M. A., & Pruszynski, P. (2020). Greaseproof paper products: A review emphasizing ecofriendly approaches. BioResources, 15(1), 1978-2004. Hubbe, M. A., Ferrer, A., Tyagi, P., Yin, Y., Salas, C., Pal, L., & Rojas, O. J. (2017). Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources, 12(1), 2143-2233. Huber, T., Müssig, J., Curnow, O., Pang, S., Bickerton, S., & Staiger, M. P. (2012). A critical review of all-cellulose composites. Journal of Materials Science, 47, 1171-1186. Huda, M. K., & Widiastuti, I. (2021, March). Natural fiber reinforced polymer in automotive application: a systematic literature review. In Journal of physics: conference series (Vol. 1808, No. 1, p. 012015). IOP Publishing. Iravani, S., & Varma, R. S. (2020). Greener synthesis of lignin nanoparticles and their applications. Green Chemistry, 22(3), 612-636. Islam, H. B. M. Z., Susan, M. A. B. H., & Imran, A. B. (2020). Effects of plasticizers and clays on the physical, chemical, mechanical, thermal, and morphological properties of potato starch-based nanocomposite films. ACS omega, 5(28), 17543-17552. Isogai, A. (2021). Emerging nanocellulose technologies: recent developments. Advanced Materials, 33(28), 2000630. Jambu, M. (1991). Exploratory and multivariate data analysis. Elsevier. Janeni, J., & Adassooriya, N. M. (2021). Nanocellulose biopolymer-based biofilms: Applications and challenges. Biopolymer-Based Nano Films, 43-62. Jin, K., Tang, Y., Liu, J., Wang, J., & Ye, C. (2021). Nanofibrillated cellulose as coating agent for food packaging paper. International Journal of Biological Macromolecules, 168, 331-338. Kar, F., & Arslan, N. (1999). Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity–molecular weight relationship. Carbohydrate polymers, 40(4), 277-284. Kassem, I., Ablouh, E. H., El Bouchtaoui, F. Z., Kassab, Z., Khouloud, M., Sehaqui, H., ... & El Achaby, M. (2021). Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. International Journal of Biological Macromolecules, 189, 1029-1042. Knutson, C. M., Hilker, A. P., Tolstyka, Z. P., Anderson, C. B., Wilbon, P. A., Mathers, R. T., ... & Wissinger, J. E. (2019). Dyeing to Degrade: A Bioplastics Experiment for College and High School Classrooms. Journal of Chemical Education, 96(11), 2565-2573. Koca, H. D., Doganay, S., Turgut, A., Tavman, I. H., Saidur, R., & Mahbubul, I. M. (2018). Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 82, 1664-1674.Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in colloid and interface science, 81(3), 167-249. Lao, T. L., Pengson, L. T., Placido, J., & Diaz, L. J. (2019, May). Synthesis of Montmorillonite Nanoclay Reinforced Chitin-cellulose Nanocomposite Film. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012010). IOP Publishing. Lau, W. W., Shiran, Y., Bailey, R. M., Cook, E., Stuchtey, M. R., Koskella, J., ... & Palardy, J. E. (2020). Evaluating scenarios toward zero plastic pollution. Science, 369(6510), 1455-1461. Lavrič, G., Zamljen, A., Juhant Grkman, J., Jasiukaitytė-Grojzdek, E., Grilc, M., Likozar, B., ... & Vrabič-Brodnjak, U. (2021). Organosolv lignin barrier paper coatings from waste biomass resources. Polymers, 13(24), 4443. Leon-Bejarano, M., Durmus, Y., Ovando-Martínez, M., & Simsek, S. (2020). Physical, barrier, mechanical, and biodegradability properties of modified starch films with nut by-products extracts. Foods, 9(2), 226. Lerch, M., Fengler, R., Mbog, G. R., Nguyen, K. H., & Granby, K. (2023). Food simulants and real food–What do we know about the migration of PFAS from paper based food contact materials?. Food Packaging and Shelf Life, 35, 100992. Li, H., Qi, Y., Zhao, Y., Chi, J., & Cheng, S. (2019). Starch and its derivatives for paper coatings: A review. Progress in Organic Coatings, 135, 213-227. Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325. Lisý, A., Ház, A., Nadányi, R., Jablonský, M., & Šurina, I. (2022). About Hydrophobicity of lignin: A review of selected chemical methods for lignin valorisation in biopolymer production. Energies, 15(17), 6213. Liu, D., Duan, Y., Wang, S., Gong, M., & Dai, H. (2022). Improvement of oil and water barrier properties of food packaging paper by coating with microcrystalline wax emulsion. Polymers, 14(9), 1786. Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., ... & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546. Long, Z., Wu, M., Peng, H., Dai, L., Zhang, D., & Wang, J. (2015). Preparation and oil-resistant mechanism of chitosan/cationic starch oil-proof paper. BioResources, 10(4), 7907-7920. Lopes, C. M., & Felisberti, M. I. (2006). Composite of low‐density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. Journal of applied polymer science, 101(5), 3183-3191. Lu, X., Gu, X., & Shi, Y. (2022). A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. International Journal of Biological Macromolecules, 210, 716-741. MacLeod, D. M. (1991). Wire-wound rod coating (pp. 18-1). Marcel Dekker, New York, NY, USA. Magnin, A., Entzmann, L., Pollet, E., & Avérous, L. (2021). Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes. Waste Management, 132, 23-30. Mahardika, M., Amelia, D., & Syafri, E. (2023). Applications of nanocellulose and its composites in bio packaging-based starch. Materials Today: Proceedings, 74, 415-418. Mai, C., Schmitt, U., & Niemz, P. (2022). A brief overview on the development of wood research. Holzforschung, 76(2), 102-119. Mariano, M., El Kissi, N., & Dufresne, A. (2014). Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science Part B: Polymer Physics, 52(12), 791-806. Mikriukova, M., Lahti, J., & Kuusipalo, J. (2022). Permeation of vegetable oils and slippery properties of extrusion coated paperboard. Packaging Technology and Science, 35(5), 445-458. Moon, D., Yagishita, T., Minowa, T., & Sun, X. Z. (2013). Evaluation of energy consumption and greenhouse gas emissions in preparation of cellulose nanofibers from woody biomass. Transactions of the ASABE, 56(3), 1061-1067. Mousavi, S. M. M., Afra, E., Tajvidi, M., Bousfield, D. W., & Dehghani-Firouzabadi, M. (2018). Application of cellulose nanofibril (CNF) as coating on paperboard at moderate solids content and high coating speed using blade coater. Progress in Organic Coatings, 122, 207-218. Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Characterization of nanomaterials: Tools and challenges. Nanomaterials for food applications, 313-353. Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 952. Muthukumar, J., Shukla, G., Bhattacharyya, S., Pathak, R., Kumar, L., & Chidambaram, R. (2023). Nanotechnology applications in food packaging. In Nanotechnology Applications for Food Safety and Quality Monitoring (pp. 301-320). Academic Press. Mutiso, R. M., & Winey, K. I. (2012). Electrical conductivity of polymer nanocomposites. Polymer Science: A Comprehensive Reference, 327-344. Ni, S., Bian, H., Zhang, Y., Fu, Y., Liu, W., Qin, M., & Xiao, H. (2022). Starch-based composite films with enhanced hydrophobicity, thermal stability, and UV-shielding efficacy induced by lignin nanoparticles. Biomacromolecules, 23(3), 829-838. Owi, W. T., Ong, H. L., Sam, S. T., Tsai, C. K., & Akil, H. M. (2019). Unveiling the physicochemical properties of natural Citrus aurantifolia crosslinked tapioca starch/nanocellulose bionanocomposites. Industrial Crops and Products, 139, 111548. Park, H. J., Kim, S. H., Lim, S. T., Shin, D. H., Choi, S. Y., & Hwang, K. T. (2000). Grease resistance and mechanical properties of isolated soy protein‐coated paper. Journal of the American Oil Chemists' Society, 77(3), 269-273. Patil, S., Bharimalla, A. K., Nadanathangam, V., Dhakane-Lad, J., Mahapatra, A., Jagajanantha, P., & Saxena, S. (2022). Nanocellulose reinforced corn starch-based biocomposite films: Composite optimization, characterization and storage studies. Food Packaging and Shelf Life, 33, 100860. Pei, W., Shang, W., Liang, C., Jiang, X., Huang, C., & Yong, Q. (2020). Using lignin as the precursor to synthesize Fe3O4@ lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Industrial Crops and Products, 154, 112638. Peña-Parás, L., Sánchez-Fernández, J. A., & Vidaltamayo, R. (2018). Nanoclays for biomedical applications. Handbook of ecomaterials, 5, 3453-3471. Pinto, P. I., Magina, S., Fateixa, S., Pinto, P. C., Liebner, F., & Evtuguin, D. V. (2022). Modification of paper surface by all-lignin coating formulations. Materials, 15(22), 7869. Provin, A. P., dos Reis, V. O., Hilesheim, S. E., Bianchet, R. T., de Aguiar Dutra, A. R., & Cubas, A. L. V. (2021). Use of bacterial cellulose in the textile industry and the wettability challenge—a review. Cellulose, 28(13), 8255-8274. Punia, S., Sandhu, K. S., Dhull, S. B., & Kaur, M. (2019). Dynamic, shear and pasting behaviour of native and octenyl succinic anhydride (OSA) modified wheat starch and their utilization in preparation of edible films. International journal of biological macromolecules, 133, 110-116. Rammak, T., Boonsuk, P., & Kaewtatip, K. (2021). Mechanical and barrier properties of starch blend films enhanced with kaolin for application in food packaging. International Journal of Biological Macromolecules, 192, 1013-1020. Randhawa, A., Dutta, S. D., Ganguly, K., Patil, T. V., Patel, D. K., & Lim, K. T. (2022). A review of properties of nanocellulose, its synthesis, and potential in biomedical applications. Applied Sciences, 12(14), 7090. Rastogi, V. K., & Samyn, P. (2015). Bio-based coatings for paper applications. Coatings, 5(4), 887-930. Rodríguez-Fabià, S., Torstensen, J., Johansson, L., & Syverud, K. (2022). Hydrophobization of lignocellulosic materials part II: Chemical modification. Cellulose, 29(17), 8957-8995. Román-Ramírez, L. A., Apachitei, G., Faraji-Niri, M., Lain, M., Widanage, D., & Marco, J. (2022). Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries. International Journal of Energy and Environmental Engineering, 13(3), 943-953. Santos, A. D. A. D., Matos, L. C., Mendonça, M. C., Muguet, M. C. D. S., Ponzecchi, A., Sanadi, A. R., & Tonoli, G. H. D. (2023). Addition of bentonite to cationic starch matrix for coating on kraftliner paper to improve grease resistance. Nordic Pulp & Paper Research Journal, (0). Santulli, C., & Mastrolonardo, L. (2021). LCA of biomass-based food packaging materials. In Biopolymers and Biocomposites from Agro-Waste for Packaging Applications (pp. 219-234). Woodhead Publishing. Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E., ... & Peaslee, G. F. (2017). Fluorinated compounds in US fast food packaging. Environmental science & technology letters, 4(3), 105-111. Selinger, J. V., & Ratna, B. R. (2004). Isotropic-nematic transition in liquid-crystalline elastomers: lattice model with quenched disorder. Physical Review E, 70(4), 041707. Sharma, M., Aguado, R., Murtinho, D., Valente, A. J., De Sousa, A. P. M., & Ferreira, P. J. (2020). A review on cationic starch and nanocellulose as paper coating components. International journal of biological macromolecules, 162, 578-598. Shen, Z., Kwon, S., Oh, K., Abhari, A. R., & Lee, H. L. (2019). Facile fabrication of hydrophobic cellulosic paper with good barrier properties via PVA/AKD dispersion coating. Nordic Pulp & Paper Research Journal, 34(4), 516-524. Sheng, J., Li, J., & Zhao, L. (2019). Fabrication of grease resistant paper with non-fluorinated chemicals for food packaging. Cellulose, 26, 6291-6302. Shi, J., Xu, L., & Qiu, D. (2022). Effective antifogging coating from hydrophilic/hydrophobic polymer heteronetwork. Advanced Science, 9(14), 2200072. Shorey, R., & Mekonnen, T. H. (2022). Sustainable paper coating with enhanced barrier properties based on esterified lignin and PBAT blend. International Journal of Biological Macromolecules, 209, 472-484. Siddiqui, S. H., & ul Karim, E. (2022). IMPACT OF PACKAGING ON CONSUMER BUYING INTENTIONS TOWARDS FMCG PRODUCTS. Journal of Business Strategies, 16(1), 25. Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in food science & technology, 19(12), 634-643. Slavutsky, A. M., & Bertuzzi, M. A. (2014). Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrate polymers, 110, 53-61. Soares, C. (2008). Gas turbine fuel systems and fuels. Gas Turbines: 213-291. Song, J. W., & Fan, L. W. (2021). Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer. Advances in colloid and interface science, 288, 102339. Spasojević, D., Zmejkoski, D., Glamočlija, J., Nikolić, M., Soković, M., Milošević, V., ... & Radotić, K. (2016). Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. International journal of antimicrobial agents, 48(6), 732-735. Sreejaya, M. M., Sankar, R. J., Ramanunni, K., Pillai, N. P., Ramkumar, K., Anuvinda, P., ... & Sadanandan, S. (2022). Lignin-based organic coatings and their applications: A review. Materials Today: Proceedings, 60, 494-501. Stokke, D. D., Wu, Q., & Han, G. (2013). Introduction to wood and natural fiber composites. John Wiley & Sons. Sundar, N., Stanley, S. J., Kumar, S. A., Keerthana, P., & Kumar, G. A. (2021). Development of dual purpose, industrially important PLA–PEG based coated abrasives and packaging materials. Journal of Applied Polymer Science, 138(21), 50495. Szymońska, J., Targosz-Korecka, M., & Krok, F. (2009). Characterization of starch nanoparticles. In Journal of Physics: Conference Series (Vol. 146, No. 1, p. 012027). IOP Publishing. Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific reports, 11(1), 13900. Thakur, V. K., & Thakur, M. K. (2015). Recent advances in green hydrogels from lignin: a review. International journal of biological macromolecules, 72, 834-847. Thitsartarn, W., & Jinkarn, T. (2020). Water resistance improvement of paperboard by coating formulations based on nanoscale pigments. Journal of Coatings Technology and Research, 17, 1609-1617. Trezza, T. A., & Vergano, P. J. (1994). Grease resistance of corn zein coated paper. Journal of food science, 59(4), 912-915. Upton, B. M., & Kasko, A. M. (2016). Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chemical reviews, 116(4), 2275-2306. Usmani, M. A., Khan, I., Gazal, U., Haafiz, M. M., & Bhat, A. H. (2018). Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal. In Polymer-Based Nanocomposites for Energy and Environmental Applications (pp. 441-463). Woodhead Publishing. Vaezi, K., Asadpour, G., & Sharifi, S. H. (2019). Effect of coating with novel bio nanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper. Polymer Testing, 80, 106080. Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic pollutants from plastic waste-a review. Procedia Environmental Sciences, 35, 701-708. Vincent, S., & Kandasubramanian, B. (2021). Cellulose nanocrystals from agricultural resources: Extraction and functionalisation. European Polymer Journal, 160, 110789. Wang, K., Zhao, L., & He, B. (2021). Chitosan/montmorillonite coatings for the fabrication of food-safe greaseproof paper. Polymers, 13(10), 1607. Wang, W., Guo, T., Sun, K., Jin, Y., Gu, F., & Xiao, H. (2019). Lignin redistribution for enhancing barrier properties of cellulose-based materials. Polymers, 11(12), 1929. Ward, C. P., & Reddy, C. M. (2020). We need better data about the environmental persistence of plastic goods. Proceedings of the National Academy of Sciences, 117(26), 14618-14621. Weber, C. J., Haugaard, V., Festersen, R., & Bertelsen, G. (2002). Production and applications of biobased packaging materials for the food industry. Food Additives & Contaminants, 19(S1), 172-177. Yadav, S., Shire, S. J., & Kalonia, D. S. (2010). Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. Journal of pharmaceutical sciences, 99(12), 4812-4829. Yokoyama, T., & Nakai, K. (2007). Evaluation of in-plane orthotropic elastic constants of paper and paperboard. Dimensions, 60, 50. Yook, S., Park, H., Park, H., Lee, S. Y., Kwon, J., & Youn, H. J. (2020). Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose, 27, 4509-4523. Zareitalabad, P., Siemens, J., Hamer, M., & Amelung, W. (2013). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater–A review on concentrations and distribution coefficients. Chemosphere, 91(6), 725-732. Zhang, M., Biesold, G. M., Choi, W., Yu, J., Deng, Y., Silvestre, C., & Lin, Z. (2022). Recent advances in polymers and polymer composites for food packaging. Materials Today, 53, 134-161. Zhang, X. F., Wang, Z., Ding, M., Feng, Y., & Yao, J. (2021). Advances in cellulose-metal organic framework composites: preparation and applications. Journal of Materials Chemistry A, 9(41), 23353-23363. Zhang, Z., Terrasson, V., & Guénin, E. (2021). Lignin nanoparticles and their nanocomposites. Nanomaterials, 11(5), 1336. Zhao, Y., & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period?. International journal of hospitality management, 91, 102683. Zhang, P., Wei, Y., Liu, Y., Gao, J., Chen, Y., & Fan, Y. (2018). Heat-induced discoloration of chromophore structures in Eucalyptus lignin. Materials, 11(9), 1686. Zhong, L., Ding, Y., Zhang, B., Wang, Z., Li, C., Fu, X., & Huang, Q. (2019). Effect of octenylsuccinylation of oxidized cassava starch on grease resistance and waterproofing of food wrapping paper. Starch‐Stärke, 71(7-8), 1800284.Tarique, J., et al. (2021). "Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers." Scientific Reports 11(1): 1-17. 周有信(2013)。改質聚乙烯醇及其防油性塗料之研究。﹝碩士論文。大葉大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5284y5。 蘇裕昌(2007)。防油紙(耐油紙)。漿紙技術,頁1-7。 蘇裕昌(2005)。塗布紙印刷適性之評估。漿紙技術,頁1-21。 2021 Global Consumer Research Reveals Escalating Concerns about Climate Change and Threats to Forestry Biodiversity. https://fsc.org/en/newscentre/general-news/2021-global-consumer-research-reveals-escalating-concerns-about-climate National Overview: Facts and Figures on Materials, Wastes and Recycling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials Parchment paper. https://commons.wikimedia.org/wiki/File:Leivinarkki.jpg?uselang=en#Licensing Glassine Paper: Application and Characteristics. https://www.michaelpackage.com/post/glassine-paper-application-and-characteristics What is Glassine. https://www.ecoenclose.com/blog/what-is-glassine/ What is Glassine Paper. https://pakfactory.com/blog/what-is-glassine-paper/ Starch Europe. https://starch.eu/the-european-starch-industry/ Gelatinised extruded feed: Does it matter. https://www.allaboutfeed.net/animal-feed/feed-processing/gelatinised-extruded-feed-does-it-matter/ Nanocellulose Market Size, Share & Trends Analysis Report By Type (Cellulose Nanofibers, Bacterial Cellulose, Crystalline Nanocellulose), By Application, By Region, And Segment Forecasts, 2023 - 2030. https://www.grandviewresearch.com/industry-analysis/nanocellulose-market Nature offers green alternative to non-renewable materials. https://www.gea.com/en/stories/nanocellulose.jsp Lignin Market Analysis, Size, Growth, Share, Trend, Forecast 2023 - 2030. https://issuu.com/jitendra.magar1590/docs/lignin_market_2ea158de9c7dbf Kaolin Market Size, Share & Trends Analysis Report By Application (Paper, Ceramics, Paint & Coatings, Fiber Glass, Plastic, Rubber, Cosmetics), By Region, And Segment Forecasts, 2023 - 2030. https://www.grandviewresearch.com/industry-analysis/kaolin-market ADHESIVE COATING EQUIPMENT. http://www.holoeast.com/machines/coating/adhesive-coating-Meyer-Bar.html Why Is Wet Paper So Weak And East To Tear. https://www.scienceabc.com/eyeopeners/why-is-wet-paper-so-weak-and-easy-to-tear.html Web of Science. https://www.webofscience.com/wos/woscc/citation-report/267f96bf-8e23-4476-8cc4-f1657eeed446-9972bdff | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90661 | - |
dc.description.abstract | 人們為降低環境污染及資源浪費,環境友善材料逐漸受到重視。紙質材料不僅擁有良好的機械性能,其輕巧且環保的先天優勢使其具有取代傳統塑膠包裝的潛力,然而,紙包裝材料的多孔結構及親水性官能基使其在應用上受到諸多限制,為了改善其防油性、防水性及氣體阻隔性,表面塗布被視為有效的解決方法之一。
為因應綠色化學之發展趨勢,本研究配製不同濃度(10 wt%、15 wt%、20 wt%)的辛烯基琥珀酸酐澱粉(OSA starch)塗料(OS10、OS15、OS20),塗布於紙張表面後測定其防油性及防水性,探討最佳的塗布濃度。接著,與不同比例的生物材料,微晶纖維素(MCC)、纖維素奈米結晶(CNC)、纖維素奈米纖維(CNF)、奈米高嶺土(NCK)及奈米木質素顆粒(LNPs),與OSA澱粉(最佳濃度)混合並配製成塗料(基於OSA澱粉之1 wt%、3 wt%、5 wt%),塗布於紙張表面後測定其防油性、防水性、機械性能及白度,探討最佳的塗布配方。結果顯示,較低濃度的塗料難以均勻塗布於紙張表面,OS10及OS15表現出較差的防油性及防水性,而OS20表現出較佳的防油性及防水性,因此,本研究將OSA澱粉塗料的濃度設定為20 wt%,與上述的生物材料混合後進行後續實驗。後續實驗結果顯示,纖維素材料的粒徑對於塗布紙的防油性及防水性並無顯著的影響,對於機械性能的影響較為顯著。此外,相較於OSA澱粉塗布紙,CNF、CNC及LNPs的添加皆可提升塗布紙的防油性及機械性能,但過量添加會對塗布紙的防水性及機械性能造成負面影響,其中,CNF3表現出最佳的防水性及防油性,上膠度增加了18.07%,抗油度由9提升至10,顯示此配方具有應用於防油紙塗層並做為食品包裝材料的潛力。 | zh_TW |
dc.description.abstract | To reduce environmental pollution and resource waste, environmentally friendly materials have gained international attention. Paper-based materials not only possess good mechanical properties but also have the inherent advantages of being lightweight and environmentally friendly, making them potential alternatives to traditional plastic packaging. However, the porous structure and hydrophilic functional groups of paper packaging materials pose various limitations in their applications. Surface coating is considered an effective solution to improve their grease resistance, water resistance, and gas barrier properties.
To meet the trend of green chemistry development, this study prepared octenyl succinic anhydride starch ( OSA starch ) coatings at different concentrations ( 10, 15, 20 wt% ) and applied them to the paper surfaces to evaluate their grease resistance and water resistance, aiming to determine the optimal coating concentration. Subsequently, various proportions of bio-based materials, microcrystalline cellulose ( MCC ), cellulose nanocrystals ( CNC ), cellulose nanofibers ( CNF ), lignin nanoparticles ( LNPs ), and nanoclay kaolinite ( NCK ), were mixed with the optimized concentration of OSA starch coating to develop the composite coatings ( 1, 3, and 5 wt% based on the dried weight of OSA starch ), which were then applied to paper surfaces to evaluate their grease resistance, water resistance, mechanical properties, and optical properties, aiming to determine the optimal coating formulation. The results showed that lower concentrations of coatings are hard to uniformly apply to the paper surface, with OS10 and OS15 exhibiting poor grease resistance and water resistance. OS20 demonstrated better grease resistance and water resistance, thus the concentration of OSA starch coatings was set at 20 wt%. The subsequent experiments showed that the particle size of cellulose materials has no significant impact on the grease resistance and water resistance of coated paper but has a more notable effect on the mechanical properties. Furthermore, compared to the paper coated with OSA starch coating, the addition of CNF, CNC, and LNPs improves the grease resistance and mechanical properties of coated paper, but excessive addition has a negative impact on water resistance and mechanical properties. Among them, CNF3 exhibits the best water resistance and grease resistance, with an increase in sizing degree of 18.07%, and an increase in grease resistance from 9 to 10, demonstrating the potential of this formulation for application as a greaseproof paper coating and food packaging material. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:04:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:04:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌 謝 i
摘 要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xii LIST OF ABBREVIATION xiii Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 Food packaging 5 2.2 Greaseproof paper 9 2.2.1 Mechanism of grease resistance 9 2.2.2 Parchmentized paper 12 2.2.3 Glassine paper 13 2.2.4 Waxed paper 15 2.2.5 Fluorocarbon technology for greaseproof paper 15 2.2.6 Biopolymer coating 18 2.3 Starch 20 2.3.1 Octenyl succinic anhydride starch 24 2.4 Cellulose 26 2.4.1 Nanocellulose 28 2.4.1.1 Cellulose nanofiber 29 2.4.1.2 Cellulose nanocrystal 30 2.4.2 The effects of NC on barrier properties 31 2.4.2.1 Diffusion 31 2.4.2.2 Tortuosity 32 2.5 Lignin 33 2.5.1 Lignin nanoparticles 34 2.5.2 The effects of LNPs on barrier properties 35 2.6 Nanoclay ( kaolinite ) 36 2.6.1 The effects of NCK on barrier properties 37 Chapter 3 Materials and Methods 38 3.1 Research Framework 38 3.2 Materials 39 3.3 Chemicals 40 3.4 Instruments 41 3.5 Equipment 42 3.6 Preparation and properties of nanomaterials 43 3.6.1 Preparation of CNC 43 3.6.2 Preparation of LNPs 44 3.6.3 Particle size analysis 44 3.7 Preparation and properties of coating materials 45 3.7.1 Preparation of coating materials 45 3.7.2 Viscosity 48 3.8 Preparation and properties of coated paper 48 3.8.1 Preparation of coated paper 48 3.8.2 Coating weight measurement 50 3.8.3 Grease resistance test ( kit test ) 51 3.8.4 Water contact angle ( WCA ) 52 3.8.5 Water absorption test ( Cobb test ) 53 3.8.6 Sizing degree test ( Stöckigt test ) 54 3.8.7 Tearing strength test 55 3.8.8 Tensile strength test 56 3.8.9 Brightness test 56 3.8.10 Statistical analysis 57 Chapter 4 Results and Discussion 58 4.1 Properties of nanomaterials 58 4.1.1 Particle size analysis 58 4.2 Properties of coating materials and coated paper 63 4.2.1 Optimal concentration of OSA starch 63 4.2.1.1 Viscosity 63 4.2.1.2 Coating weight 64 4.2.1.3 Grease resistance 66 4.2.1.4 Water absorption 68 4.2.1.5 Sizing degree 70 4.2.2 Optimal content of nanomaterials 72 4.2.2.1 Viscosity 72 4.2.2.2 Coating weight 75 4.2.2.3 Paper thickness 77 4.2.2.4 Grease resistance 79 4.2.2.5 Water contact angle 81 4.2.2.6 Water absorption 84 4.2.2.7 Sizing degree 86 4.2.2.8 Relationship between WCA, Cobb value, and sizing degree 89 4.2.2.9 Folding endurance 91 4.2.2.10 Tearing index 93 4.2.2.11 Tensile index 95 4.2.2.12 Brightness 97 4.2.3 Comparison with literature 99 Chapter 5 Conclusion 101 Chapter 6 Reference 103 | - |
dc.language.iso | en | - |
dc.title | 生物材料於澱粉系防油紙塗層之應用 | zh_TW |
dc.title | Application of Biomaterials in Starch-based Greaseproof Paper Coating | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 藍浩繁;蔡正偉 | zh_TW |
dc.contributor.oralexamcommittee | Haw-Farn Lan;Jeng-We Tsai | en |
dc.subject.keyword | 食品包裝,防油紙,辛烯基琥珀酸酐澱粉,奈米纖維素,奈米高嶺土,木質素奈米顆粒, | zh_TW |
dc.subject.keyword | Food packaging,greaseproof paper,octenyl succinic anhydride starch,nanocellulose,nanoclay kaolinite,lignin nanoparticles, | en |
dc.relation.page | 117 | - |
dc.identifier.doi | 10.6342/NTU202303759 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-12 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 森林環境暨資源學系 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 6.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。