請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90648完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳景然 | zh_TW |
| dc.contributor.advisor | Ching-Jan Chen | en |
| dc.contributor.author | 紀宏憲 | zh_TW |
| dc.contributor.author | Hong-Sian Chi | en |
| dc.date.accessioned | 2023-10-03T17:00:55Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-31 | - |
| dc.identifier.citation | [1] Dongwei Li, Wei Lu, Yufeng Jin, and Gary Chaw, “Real-Time Threshold Voltage and Mobility Compensation for Large-Size AMOLED Displays,” in 2019 IEEE International Conference on Computation, Communication Engineering (ICCCE), Fujian, China, Nov. 08-10, 2019.
[2] Do-Ik Kim, Yongin (KR), “Organic Light Emitting Display and Power Supply for the Same,” U.S. Patent No. 9,165,498 B2, Oct. 20, 2015. [3] Shi-Ping Hsu, Art Brown, Loman Rensink, and R. D. Middlebrook, “Modeling and Analysis of Switching DC-to-DC Converters in Constant-Frequency Current-Programmed Mode,” in 1979 IEEE Power Electronics Specialists Conference, San Diego, CA, USA, Jun. 18-22, 1979. [4] R. D. Middlebrook, “Topics in Multiple-Loop Regulators and Current-Mode Programming,” in IEEE Transactions on Power Electronics, vol. PE-2, no. 2, pp. 109-124, Apr. 1987. [5] R. B. Ridley, “Complete Small-Signal Model for Current-Mode Control,” in A New Small-Signal Model for Current-Mode Control, 1990, ch. 4, pp. 73-106. [6] R. B. Ridley, “A New Continuous Time Model for Current-Mode Control,” in IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 271-280, Apr. 1991. [7] F. D. Tan, R. D. Middlebrook, “A Unified Model for Current-Programmed Converters,” in IEEE Transactions on Power Electronics, vol. 10, no. 4, pp. 397-408, Jul. 1995. [8] Jian Li, Fred C. Lee, “Modeling of V2 Current-Mode Control,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, Feb. 15-19, 2009. [9] Jian Li, Fred C. Lee, “New Modeling Approach and Equivalent Circuit Representation for Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1218-1230, May. 2010. [10] P.-J. Liu, Y.-C. Hsu, and S.-R. Hsu, “Drain-Voltage Balance and Phase-Shifted PWM Control Schemes for High-Efficiency Parallel-String Dimmable LED Drivers,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6168-6176, Aug. 2018. [11] P. Melillo, A. Dago, A. Gasparini, S .Levantino and M. Ghioni, "A Novel Feedforward Technique for Improved Line Transient in Time-Based-Controlled Boost Converters," 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Villasimius, SU, Italy, pp. 257-260, Jun 2022. [12] B. Arbetter and D. Maksimovic, "Feed-forward pulse-width modulators for switching power converters," Proceedings of PESC '95 - Power Electronics Specialist Conference, Atlanta, GA, USA, pp. 601-607 vol.1, Omicron Lab, Klaus, Jun 1995. [13] E. A. Mayer, R. J. King, “An Improved Sampled-Data Current-Mode-Control Model Which Explains the Effects of Control Delay,” in IEEE Transactions on Power Electronics, vol. 16, no. 3, pp. 369-374, May. 2001. [14] Byungcho Choi, “Modeling PWM DC-to-DC Converters,” in Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs, 2013, ch. 5, pp. 199-244. [15] Signal Injector Manual, Picotest Corp, Kaohsiung, Taiwan, 2016, pp. 24-27. [16] J2120A Spec Sheet, Picotest Corp, Kaohsiung, Taiwan, 2011. [17] Bode 100 User Manual, Omicron Lab, Klaus, 2017. [18] R. D. Middlebrook and S. Cuk, "A general unified approach to modelling switching-converter power stages," in IEEE PESC, 1976, pp. 18-34. [19] V. Vorperian, "Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode," IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 497-505, 1990. [20] S. Jian, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, "Averaged modeling of PWM converters operating in discontinuous conduction mode," IEEE Trans. Power Electron., vol. 16, no. 4, pp. 482-492, 2001. [21] J. Sun and H. Grotstollen, "Averaged modelling of switching power converters: reformulation and theoretical basis," in IEEE PESC 1992, pp. 1165-1172 vol.2 [22] X. Zhou, P. Xu and F. C. Lee, “A high power density, high frequency and fast transient voltage regulator module with a novel current sharing and current sharing technique,” in Proc. IEEE APEC, 1999, pp. 289-294. [23] M.-T. Tsai, D. Chen, C.-J. Chen, C.-H. Chiu, W.-H. Chang, "Modeling and design of current balancing control in voltage-mode multiphase interleaved voltage regulators," in Proc. International Power Electronics Conference (IPEC), 2010, pp. 881-887. [24] W. Huang, "A new control for multi-phase buck converter with fast transient response," in Proc. IEEE APEC, 2001, pp. 273-279 vol.1. [25] J. Li and F. C. Lee, “Modeling of V2 current-mode control,” in Proc. IEEE APEC, 2009, pp. 298-304. [26] Yi-Ting Shih, “Modeling of An Input Voltage Feedforward Peak-Current-Mode-Controlled Buck-Boost Converter with Improved Line Transient Response,” July 01, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90648 | - |
| dc.description.abstract | 主動矩陣有機發光二極體(AMOLED)已成為手機顯示器的主流。AMOLED顯示器需要三個電源來運作,其中之一是通過升壓轉換器提供的。然而TDMA通訊協議會造成顯示器的輸入電壓的下降,這會導致顯示器發生閃頻的現象。因此,AMOLED的功率轉換器需要嚴格的線性瞬態響應。立錡科技提出了兩種Emulated-Current-Mode(ECM)控制架構的線性瞬態響應補償技術,分別是電感電流峰值補償技術和輸入前饋補償技術。通過添加這兩種技術,可以最小化PWM比較器輸入端的電壓變化,從而大大減少線性瞬態期間的輸出電壓變化。然而,新的控制方案缺乏用於預測和分析多回路控制系統的小信號模型。在現有的固定頻率控制架構中,Ridley的模型在切換頻率之前具有足夠的精度,並且可以通過更簡潔易懂的模型來構建,因此本文選擇使用Ridley的模型作為模型的基礎。提出的小信號模型不僅可以用於設計電壓反饋補償,還可以通過模型來改善線性瞬態響應。通過立錡科技提供的晶片進行驗證,測量結果顯示該模型的預測結果和改善後的瞬態響應有約30%的降低。 | zh_TW |
| dc.description.abstract | Active matrix organic light-emitting diodes (AMOLED) have become the mainstream in cellphone displays. AMOLED displays require three power sources, one of which is provided through a boost power converter. If the power supply voltage of the display deviates due to the change in the input voltage, display screen flickering issue occurs. Therefore, stringent line transient response is required for AMOLED’s power converters. Richtek technologies proposed two line transient response compensation technologies for the Emulated-Current-Mode (ECM) control architecture, namely the inductor current peak compensation technology and the input feedforward compensation technology. By adding these two technologies, the voltage change at the input of the PWM comparator is minimized, thereby greatly reducing the output voltage change during line transients. However, the new control scheme lacks models to predict and analyze the small-signal characteristics of this multi-loop control system and to improve the transient response. In the existing fixed-frequency control architecture, Ridley's model currently has sufficient accuracy before switching frequencies and can be constructed through a more concise and easy-to-understand model, so this paper chooses to use Ridley's model as the basis for the new model. The proposed small-signal model can not only be used to design voltage feedback compensation but also can improve the transient response of the line through the model. The improvement result is verified by the chip provided by Richtek technologies. The measurement shows that the predicted results of this model and the improved transient response of undershoot and overshoot about 30%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:00:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:00:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審訂書 I
Acknowledgements II 中文摘要 … IV Abstract … V List of Figures X List of Tables XII Chapter 1 Introduction 1 1.1 Background: AMOLED Applications of Power Supply 1 1.2 Flickering Issue in Display 2 1.3 Introduce Emulated-Current-Mode Control and Compare with Peak-Current-Mode Control 3 1.4 Introduction of Existing Models for Current-Mode Control 4 1.5 Research Motivation and Thesis Outline 5 Chapter 2 Emulated-Current-Mode-Control Scheme with Line Transient Compensation Technology on Boost Converter 8 2.1 Generalized Emulated-Current-Mode Control Configuration 8 2.2 Review Line Transient Compensation 11 2.3 Architecture of Emulated-Current-Mode with Line Transient Compensation 11 Chapter 3 Model for Emulated-Current-Mode-Control with Line Transient Compensation Scheme on Boost Converter 14 3.1 Ridley’s Model for Current-Mode Control 15 3.1.1 Modeling of Power Stage 15 3.1.2 Modulation Gain 20 3.1.3 Sampling Effects 21 3.1.4 Feedforward Gains 24 3.2 Complete Model of ECM and ECM w/ Line Transient Compensation for Gvc and Gvs 26 3.2.1 Model of ECM Control 27 3.2.2 Model of ECM with Line Transient Compensation 28 3.3 Improving the Block of Ridley’s Model 30 3.3.1 Modulation Gain of ECM and ECM with Line Transient Compensation 30 3.3.2 Feedforward Gain of ECM and ECM with Line Transient Compensation 31 3.4 Modeling Other Blocks 38 3.5 Transfer Function of ECM and ECM w/ Line Transient Compensation for Gvc and Gvs 42 3.5.1 Transfer Function of ECM Control 42 3.5.2 Transfer Function of ECM with Line Transient Compensation 45 3.6 Loop Gain and Line Transient Response 48 3.7 Summary 49 Chapter 4 Improving the Output Ripple of ECM with Line Transient Compensation by Adjusting Parameters 50 4.1 Step Response of TDMA 50 4.2 Input-to-Output Transfer Function of Emulated Current with Line Transient Compensation 52 4.3 Analyzing the relationship between Line Transient Response in the time domain and frequency domain 52 4.4 Iterative method for Improvement 56 4.5 Summary 57 Chapter 5 Verification of Model and Measure Result 58 5.1 Model Verification by Simulation 58 5.2 Measurement Environment 68 5.3 Experimental Results 71 Chapter 6 Conclusions and Future Works 78 6.1 Conclusions 78 6.2 Future Works 79 Reference 80 | - |
| dc.language.iso | en | - |
| dc.subject | 改善線路暫態響應 | zh_TW |
| dc.subject | 輸入端前饋補償技術 | zh_TW |
| dc.subject | 小訊號模型 | zh_TW |
| dc.subject | 直流-直流轉換器 | zh_TW |
| dc.subject | 電感電流峰值補償技術 | zh_TW |
| dc.subject | 升壓電源轉換器 | zh_TW |
| dc.subject | control delay in PWM | en |
| dc.subject | DC-DC Converter | en |
| dc.subject | Improved line transient response | en |
| dc.subject | input feedforward technique | en |
| dc.subject | dynamic ramp technique | en |
| dc.subject | buck-boost converter | en |
| dc.subject | small-signal model | en |
| dc.title | 具線路響應暫態補償之模擬電流模式控制升壓轉換器之建模與設計 | zh_TW |
| dc.title | Modeling and Design of An Emulated-Current-Mode-Controlled Boost Converter with Line Transient Compensation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳耀銘;陳榮昇 | zh_TW |
| dc.contributor.oralexamcommittee | Yaow-Ming Chen;Rong-Sheng Chen | en |
| dc.subject.keyword | 直流-直流轉換器,改善線路暫態響應,輸入端前饋補償技術,電感電流峰值補償技術,升壓電源轉換器,小訊號模型, | zh_TW |
| dc.subject.keyword | DC-DC Converter,Improved line transient response,input feedforward technique,dynamic ramp technique,buck-boost converter,small-signal model,control delay in PWM, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202301830 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-02 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
