Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱俊翔zh_TW
dc.contributor.advisorJiunn-Shyang Chiouen
dc.contributor.author許芫嫚zh_TW
dc.contributor.authorYuan-Man Hsuen
dc.date.accessioned2023-10-03T17:00:08Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation1.陳靖霖 (2021),「傾斜液化地盤中樁基礎側向流動力之探討」,國立臺灣大學碩士論文。
2.Abdoun, T., Dobry, R., O’Rourke, T.D., and Goh, S.H. (2003). “Pile response to lateral spreads: Centrifuge modeling.” Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 869-878.
3.American Petroleum Institute (API) (2000). “Recommended practice for planning, designing, and constructing fixed offshore platforms—working stress design.” Report RP-2A WSD, API Publishing Services, Washington, DC.
4.Architectural Institute of Japan (AIJ) (2001). Recommendations for Design of Building Foundations, Architectural Institute of Japan, Tokyo, Japan. (in Japanese)
5. Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., and Chang, D. (2005). “Behavior of pile foundations in laterally spreading ground during centrifuge tests.” Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1378-1391.
6. Cubrinovski, M. and Ishihara, K. (2004). “Simplified method for analysis of piles undergoing lateral spreading in liquefied soils.” Soil and Foundation, 44(5), 119-133.
7. Chiou, J.S., Huang, T.J., Chen, C.L., and Chen, C.H. (2021). “Shaking table testing of two single piles of different stiffnesses subjected to liquefaction-induced lateral spreading.” Engineering Geology, 281, 105956.
8. Chiou, J.S., Chen, C.L., Ng, J.L., and Hsu, Y.M. (2023). “Development of a pratical lateral spreading pressure model for piles in inclined liquefied ground.” 準備中。
9. Ebeido, A. (2019). “Lateral-spreading effects on pile foundations: Large-scale testing and analysis.” Ph.D. Dissertation, University of California, San Diego.
10. Ebeido, A., Elgamal, A.M., Tokimatus, K., and Abe, A. (2019). “Pile and pile-group response to liquefaction induced lateral spreading in four large scale shake-table experiments.” Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019080.
11. Hamada, M., Towhata, I., Yasuda, S., and Isoyama, R. (1987). “Study on permanent ground displacement induced by seismic liquefaction.” Computers and Geotechnics, 4, 197-220.
12. Hamada, M. (2000). “Performance of foundations against liquefaction-induced permanent ground displacement.” Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 1754.
13. Hamada, M. and Takahashi, Y. (2004). “An experimental study on the fluid properties of liquefied sand during its flow.” Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 641.
14. He, L., Elgamal, A., Abdoun, T., Abe, A., Dobry, R., Hamada, M., Meness, J., Sato, M., Shantz, T., and Tokimatsu, K. (2009). “Liquefaction-induced lateral load on pile in a medium Dr sand layer.” Journal of Earthquake Engineering, 13(7), 916-938.
15. Janalizadeh, A. and Zahmatkesh, A. (2015). “Lateral response of pile foundations in liquefiable soils.” Journal of Rock Mechanics and Geotechnical Engineering, 7, 532-539.
16. Japan Road Association (JRA) (2002). Specification for Highway Bridges, Japan Road Association, Tokyo, Japan. (in Japanese)
17. Ko, Y.Y. and Lin, Y.Y. (2020). “A comparison of simplified modelling approaches for performance assessment of piles subjected to lateral spreading of liquefied ground.” Geofluid, 8812564.
18. Liyanapatha, D.S. and Poulous, H.G. (2005). “Seismic lateral response of piles in liquefying soil” Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1466-1479.
19. López Liménez, G.A., Dias, D., and Jenck, O. (2019). “Effect of the soil-pile-structure interaction in seismic analysis: case of liquefiable soils.” Acta Geotechnica, 14, 1509-1525.
20. Liu, C., Wang, C., Fang, Q., and Ling, X. (2022). “Soil-pile-quay wall interaction in liquefaction-induced lateral spreading ground.” Ocean Engineering, 264, 112592.
21. Tokimatsu, K. and Asaka, Y. (1998). “Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake.” Soils and Foundations, 38, 163-177.
22. Uchida, A., and Tokimatsu, K. (2005). “Comparison of current Japanese design specifications for pile foundations in liquefiable and laterally spreading ground.” Simulation and Performance of Pile Foundations in Liquefied and Laterally Spreading Ground.
23. Zhang, X., Ji, Z., Gao, H., Wang, Z., and Li, W. (2022). “Pseudo-static simplified analysis method of the pile-liquefiable soil interaction considering rate-dependent characteristics.” Shock and Vibration, 5915356.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90645-
dc.description.abstract當地震引發傾斜液化地盤側潰,位於該地盤中的樁基礎容易受側潰力作用而造成損害。本研究利用陳靖霖 (2021) 發展之分析模式以SAP 2000模擬側潰作用下的樁基礎反應,其中有關液化層的側推力,其大小受到液化土壤黏滯係數影響,另根據Chiou et al. (2023) 所提出之修正方法,以正規化後土壤模型尺寸決定黏滯係數。本研究以前人試驗結果驗證此分析模式的適用性。另以日本現行設計規範與其他學者提出之分析方法模擬前人試驗結果,評估其模擬表現。
本研究以此擬靜力分析模式針對液化地盤上附非液化地盤之側潰地盤中的樁基礎進行一系列參數分析,探討參數包含上部非液化層厚度、樁頭束制、樁徑與土壤側潰位移,研究各參數對樁基礎反應之影響。前人多認為上部非液化層的存在會使樁基礎反應增加,並且隨厚度增加,樁位移、彎矩隨之增加。本研究提出臨界液化地盤厚度,薄液化地盤下的樁基礎反應受上部非液化層控制,樁反應隨上部非液化層厚度增加而增加,厚液化地盤下的樁基礎反應受液化層控制,樁反應隨上部非液化層厚度增加而減少,其原因為液化層側推力會影響上部非液化層下坡側土壤反力,進而影響上部非液化層合力大小,樁基礎反應因而改變。臨界液化地盤厚度之決定係根據上部非液化層所受側潰土壤位移。若側潰位移隨液化層厚度增加而增加、樁頭束制或樁徑增加,均會使臨界液化地盤厚度增加,實務上樁基礎受到上部非液化層厚度影響多為薄液化地盤情況下的反應趨勢。
zh_TW
dc.description.abstractWhen an earthquake triggers lateral spreading and slope failure in liquefied ground, the pile foundation located within that ground is susceptible to damage from the lateral spreading forces. This study utilizes the analytical model developed by Chen (2021) and simulates the response of pile foundations under lateral spreading using SAP 2000. The lateral spreading force related to the liquefied layer is influenced by the viscous coefficient of the liquefied soil, which is determined based on the normalized soil model dimensions as proposed by Chiou et al. (2023). The applicability of this analytical model is validated using previous experimental results. Additionally, the study employs the current Japanese design codes and other analytical methods proposed by scholars to simulate the results of previous experiments, assessing their simulation performance.
A parametric analysis of pile in lateral spreading ground is conducted, investigating the impact of parameters, including the thickness of non-liquefied layer, pile cap restraint, pile diameter, and lateral spreading displacement. Critical thickness of liquefaction layer is determined by the lateral spreading displacement. For thin liquefied ground, the pile response is controlled by the non-liquefied layer, with pile response increasing as the non-liquefied layer thickness increases. In contrast, for thick liquefied ground, the pile response is governed by the liquefied layer, with pile response decreasing as the non-liquefied layer thickness increases. Lateral spreading force from the liquefied layer affects the downslope soil reaction, influencing the overall force equilibrium and altering the pile's response. The influence of the non-liquefied layer thickness is primarily observed in the context of thin liquefied ground in practical scenarios.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:00:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:00:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究方法 1
1.3 研究內容 2
第二章 文獻回顧 3
2.1 土壤液化引致側潰現象對樁基礎之影響 3
2.2 樁基礎在傾斜液化地盤中受側潰作用之研究 4
2.2.1 試驗研究 4
2.2.2 數值模擬 6
2.3 樁基礎在第一類側潰地盤下受側潰作用之參數研究 12
2.3.1 液化土層相對密度 12
2.3.2 樁頭束制效應 14
2.4 樁基礎在第二類側潰地盤下受側潰作用之參數分析 15
2.4.1 上覆非液化層厚度 15
2.4.2 不同勁度之樁基礎 16
2.4.3 樁頭束制 17
2.5 小結 17
第三章 擬靜力分析模式建立與驗證 46
3.1 擬靜力分析模式 46
3.1.1 非液化層p–y曲線 46
3.1.2 液化層側向流動力 50
3.1.3 土壤側潰位移 52
3.2 分析模式驗證 53
3.3 其他分析模式 59
3.3.1 日本道路橋示方書 (JRA, 2002) 59
3.3.2 建築物基礎構造設計指針 (AIJ, 2001) 60
3.3.3 Cubrinovski and Ishihara (2004) 分析模式 61
3.3.4 各分析模式之模擬表現 62
3.4 小結 63
第四章 單樁受側向流動力反應之參數分析 90
4.1 分析模型介紹 90
4.2 上部非液化層厚度之影響 91
4.2.1 不同厚度之液化地盤分析 91
4.2.2 臨界液化地盤厚度 93
4.3 樁頭束制 96
4.4 樁基礎直徑 97
4.5 土壤側潰位移 97
4.6 小結 98
第五章 結論與建議 116
5.1 結論 116
5.2 建議 117
參考文獻 118
附錄 122
-
dc.language.isozh_TW-
dc.subject側向流動力zh_TW
dc.subject側潰zh_TW
dc.subject單樁基礎zh_TW
dc.subjectLateral flow pressureen
dc.subjectSingle pile foundationen
dc.subjectLateral spreadingen
dc.title傾斜液化地盤中單樁受側向流動力作用下反應之參數研究zh_TW
dc.titleParametric Study on Response of Single Piles in Inclined Liquefied Ground Subjected to Lateral Spreading Pressureen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡祈欽;陳家漢zh_TW
dc.contributor.oralexamcommitteeChi-Chin Tsai;Chia-Ham Chenen
dc.subject.keyword單樁基礎,側潰,側向流動力,zh_TW
dc.subject.keywordSingle pile foundation,Lateral spreading,Lateral flow pressure,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202303228-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2028-08-14-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved