請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭梅君 | zh_TW |
| dc.contributor.advisor | Mei-Chun Cheng | en |
| dc.contributor.author | 林緯 | zh_TW |
| dc.contributor.author | Wei Lin | en |
| dc.date.accessioned | 2023-10-03T16:59:53Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Chen GH, Liu MJ, Xiong Y, Sheen J, Wu SH. (2018) TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proc Natl Acad Sci USA. 115:12823-12828.
Cheng MC, Kathare PK, Paik I, Huq E. (2021) Phytochrome signaling networks. Annu Rev Plant Biol. 72:217-244. de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S. (2008) A molecular framework for light and gibberellin control of cell elongation. Nature. 451:480-484. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. (2016) TOR signaling and nutrient sensing. Annu Rev Plant Biol. 67:261-85. Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. (2014) The ever-evolving role of mTOR in translation. Semin Cell Dev Biol. 36:102-12. Gebauer, F., and Hentze, M. W. (2004) Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5:827–835. Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202. Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M. (2011) The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr Biol 21:520-5. Hoecker, U. (2017) The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr. Opin. Plant Biol. 37:63–69 Holcik M and Sonenberg N. (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 6:318-27. Jia, Y., Kong, X., Hu, K., Cao, M., Liu, J., Ma, C., Guo, S., Yuan, X., Zhao, S., Robert, H.S., Li, C., Tian, H. and Ding, Z. (2020) PIFs coordinate shade avoidance by inhibiting auxin repressor ARF18 and metabolic regulator QQS. New Phytol, 228:609-621. Kathare PK, Xu X, Nguyen A, Huq E. (2020) A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis. Plant J. 104:113-123. Keara A. Franklin, Sang Ho Lee, Dhaval Patel, S. Vinod Kumar, Angela K. Spartz, Chen Gu, Songqing Ye, Peng Yu, Gordon Breen, Jerry D. Cohen, Philip A. Wigge, and William M. Gray (2011) PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. PNAS 108:20231-20235. Kim JY, Park YJ, Lee JH, Kim ZH, Park CM. (2021) EIN3-mediated ethylene signaling attenuates auxin response during hypocotyl thermomorphogenesis. Plant Cell Physiol. 62:708-720. Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA. (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol. 19:408-13. Lee S, Wang W, Huq E. (2021) Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat Commun. 12:3656. Leivar P, Quail PH (2011) PIFs: Pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28. Li J, Li G, Wang H, Wang Deng X. (2011) Phytochrome signaling mechanisms. Arabidopsis Book. 9:0148. Liu B and Qian SB. (2014) Translational reprogramming in cellular stress response. Wiley Interdiscip Rev RNA. 5:301-15. Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN. (2007). Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361. Paik I, Chen F, Ngoc Pham V, Zhu L, Kim JI, Huq E. (2019). A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nat Commun 10:4216. Paik, I., Kathare, P. K., Kim, J.-I. & Huq, E. (2017) Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant 10:1035–1046. Pham, V. N., Kathare, P. K. & Huq, E. (2018) Phytochromes and phytochrome response. Wiley Interdiscip Rev. RNA 5:301–315. Son, S., and Park, S. R. (2023) Plant translational reprogramming for stress resilience. Front Plant Sci. 14:1151587. Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA. (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60:589-601. Vanneste S, Friml J. (2009) Auxin: A trigger for change in plant development. Cell 136: 1005–1016. Wang W, Paik I, Kim J, Hou X, Sung S, Huq E. (2021) Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis. New Phytol. 230:2311-2326. Xiong F, Zhang R, Meng Z, Deng K, Que Y, Zhuo F, Feng L, Guo S, Datla R, Ren M. (2017) Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. New Phytol. 213:233-249. Xiong Y, and Sheen J. (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem. 287:2836-42. Xu X, Paik I, Zhu L, Bu Q, Huang X, Deng XW, Huq E. (2014) PHYTOCHROME INTERACTING FACTOR1 enhances the E3 ligase activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to synergistically repress photomorphogenesis in Arabidopsis. Plant Cell. 26:1992-2006. Xu X, Paik I, Zhu L, Huq E. (2015) Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci. 20:641-650. Yi, C. and Deng, X. W. (2005). COP1 - from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 15:618–625 Zhu JK. (2001) Plant salt tolerance. Trends Plant Sci. 6:66–71. Zhu JK. (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 53:247-73. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90644 | - |
| dc.description.abstract | 在阿拉伯芥中,phytochrome B (phyB)主要感應光和溫度的訊號並透過其活化態Pfr 和非活 化 態 Pr 之間的相互轉換來調節植物中的各種形態發生。
PHYTOCHROME INTERACTING FACTORs (PIFs)是一群可以和 phyB 交互作用的bHLH 轉錄因子,其主要在 phyB 訊號路徑中扮演負向調控者的角色。先前已有研究指出,光照會促進轉譯作用,因而誘導光型態發生。此外,光照所促進的轉譯作用是透過光接受體、E3 黏合酶–COP1、植物激素–生長素、target of rapamycin (TOR)和 ribosomal proteinS6 (RPS6) 組成的光訊息傳遞路徑所共同調控的。然而,phyB或 PIFs 是否參與在轉譯作用的調控仍然未知。在本研究中,我們發現 PIFs 和 phyB也會影響轉譯作用的效率,並參與在光照所調控的 TOR-RPS6 路徑中。相對於野生型白化苗,pifQ 突變株在黑暗下的轉譯作用較強,而 phyB-9 突變株則較弱。此外,PIFs 在黑暗下會抑制 S6K 和 RPS6 的磷酸化,而 phyB 則會促進它們的磷酸化。對於 pifQ 突變株中有較旺盛的光型態發生及轉譯作用現象,生長素的參與可能是必須的。我們發現 PIFs 可以促進對鹽逆境的耐受性,而 phyB 卻會負調控對鹽逆境的耐受性。透過轉錄和轉譯層次的表現分析,我們發現 PIFs 也許是透過抑制總體的轉譯作用和增強特定與逆境調節有關的 mRNA 的轉譯作用,使得植株有更好的逆境耐受性。總結來說, PIFs 和 phyB 可以共同調控轉譯作用來影響光反應和逆境反應。 | zh_TW |
| dc.description.abstract | In Arabidopsis, the photoreceptor phytochrome B (phyB) senses light and temperature cues, which leads to the modulation of essential morphogenic processes in plants by switching between its active Pfr and inactive Pr forms. PHYTOCHROME INTERACTING FACTORs (PIFs) are bHLH transcription factors which interact with phyB and play negative roles in phytochrome signaling pathways. Previous reports showed that light triggers global translation enhancement during photomorphogenesis.
Moreover, this light-enhanced translation is coordinated through a light sensing and signaling pathway consisting of photoreceptors, the E3 ligase – CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), the phytohormone – auxin, target of rapamycin (TOR), and ribosomal proteinS6 (RPS6). However, whether phyB or PIFs are involved in the translational regulation is still unknown. In this study, we have demonstrated that PIFs and phyB also affect translation efficiency and participate in TOR-RPS6 pathway. Compared to wild-type etiolated seedlings, polysome loading was increased in pifQ mutant and reduced in phyB-9 mutant under dark condition. Moreover, PIFs repress S6K and RPS6 phosphorylation, whereas phyB promotes their phosphorylation. Auxin is necessary for the enhanced photomorphogenesis and probably translation enhancement in pifQ mutants. We also discovered that PIFs promote salt stress tolerance, whereas phyB plays a negative role in salt stress tolerance. Using transcriptional and translational expression analyses, we have shown that PIFs regulate not only general translational repression but also translational enhancement of specific mRNAs under stress condition. Taken together, we hope to reveal the molecular mechanism which PIFs and phyB regulate translation in response to light and stress. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:59:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:59:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS i
LIST OF FIGURES AND TABLES iv 中文摘要 v ABSTRACT vi Chapter 1 Introduction 1 1.1 Photomorphogenesis in plants 2 1.2 Phytochrome signaling pathway 3 1.3 PHYTOCHROME-INTERACTING FACTORS (PIFS) in light signaling 4 1.4 Translational regulation by light 6 1.5 Translational control under stress 7 1.6 Experimental strategy and goals 10 Chapter 2 Materials and Methods 12 2.1 Plant materials 12 2.1.1 Arabidopsis wild type (WT) 12 2.1.2 pifQ mutants and phyB-GFP overexpression transgenic lines 12 2.1.3 phyB-9 mutant 12 2.2 Plant growth conditions 12 2.3 Methods 12 2.3.1 Polysome profiling 12 2.3.2 Analyses of de novo protein synthesis 13 2.3.3 Relative gene expression 14 2.3.3.1 Polysomal RNA isolation 14 2.3.3.2 Total RNA extraction 14 2.3.3.3 mRNAPL expression level analyses 16 2.3.4 Protein extraction and western blot analysis 17 2.3.5 Cotyledon opening angle test 17 2.3.6 Salt stress tolerance test 18 2.3.6.1 Primary root elongation test 18 2.3.6.2 Survival rate 18 2.3.7 Polysome profiling under stress condition 18 Chapter 3 Results 19 3.1 PIFs repress translation under dark condition 19 3.2 phyB regulates translation in response to light 19 3.3 PIFs and phyB participate in TOR-RPS6 pathway 20 3.4 PIFs repress translation through auxin pathway 21 3.5 PIFs and phyB are involved in salt stress tolerance 22 3.6 PIFs regulate global translational repression under stress condition 22 3.7 In addition to transcriptional level, PIFs regulate light responsive genes at the translational level 23 3.8 PIFs and phyB regulate both light- and stress-responsive genes at the translational level 24 Chapter 4 Discussion 26 4.1 PIFs interact with COP1-SPA complex and might co-repress translation through TOR-RPS6 pathway in the dark 26 4.2 Red light triggers global translation through phyB signaling 27 4.3 PIFs as key regulators of auxin signaling 27 4.4 Gene expression at transcriptional and translational level 29 4.5 Translational regulation under stress 30 4.6 Conclusion 31 REFERENCES 33 FIGRURES AND TABLES 37 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 轉譯作用 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 光型態發生 | zh_TW |
| dc.subject | 鹽逆境 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | salt stress | en |
| dc.subject | Arabidopsis | en |
| dc.subject | phyB | en |
| dc.subject | PIF | en |
| dc.subject | translation | en |
| dc.subject | photomorphogenesis | en |
| dc.subject | phosphorylation | en |
| dc.title | PIFs 和 phyB 在光照和逆境反應中可調控轉譯作用之研究 | zh_TW |
| dc.title | Functional study of PIFs and phyB modulating translation dynamics in response to light and stress | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊健志;洪傳揚;謝旭亮 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chih Yang;Chwan-Yang Hong;Hsu-Liang Hsieh | en |
| dc.subject.keyword | 轉譯作用,阿拉伯芥,光型態發生,鹽逆境,磷酸化, | zh_TW |
| dc.subject.keyword | Arabidopsis,phyB,PIF,translation,photomorphogenesis,phosphorylation,salt stress, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202302971 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2028-08-06 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
