請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90643完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光 | zh_TW |
| dc.contributor.advisor | Chi-Kuang Sun | en |
| dc.contributor.author | 趙伯儒 | zh_TW |
| dc.contributor.author | Bo-Ru Zhao | en |
| dc.date.accessioned | 2023-10-03T16:59:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] Webb, R.H., Theoretical basis of confocal microscopy. Confocal Microscopy,1999. 307: p. 3-20.
[2] Stephens, D.J. and V.J. Allan, Light microscopy techniques for live cell imaging.science, 2003. 300(5616): p. 82-86. [3] Sharpe, J., et al., Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science, 2002. 296(5567): p. 541-545. [4] Huang, D., et al., Optical coherence tomography. science, 1991. 254(5035): p.1178-1181. [5] Rajadhyaksha, M., et al., In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. Journal of investigative dermatology, 1995.104(6): p. 946-952. [6] Ntziachristos, V., Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods, 2010. 7(8): p. 603-614. [7] B. R. Masters and P. T. C. So, Handbook of biomedical nonlinear optical microscopy. Oxford: Oxford University Press, 2008 [8] Y. Guo, P. Ho, A. Tirksliunas, F. Liu, and R. Alfano, "Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses," Applied optics 35(34), 6810 (1996). [9] C. F. Chang, H. C. Chen, M. J. Chen, W. R. Liu, W. F. Hsieh, C. H. Hsu, C. Y. Chen, F. H. Chang, C. H. Yu, and C. K. Sun, "Direct backward third-harmonic generation in nanostructures," Opt Express 18(7), 7397 (2010). [10] S. W. Chu, S. P. Tai, M. C. Chan, C. K. Sun, I. C. Hsiao, C. H. Lin, Y. C. Chen, and B. L. Lin, "Thickness dependence of optical second harmonic generation in collagen fibrils," Opt Express 15(19), 12005 (2007). [11] Pei-Jhe Wu, et al., “A Noninvasive Skin Biopsy of Free Nerve Endings via Realtime Third-Harmonic Microscopy,” bioRxiv 2022.12.14.520369 [12] R. R. Anderson and J. A. Parish,” The optics of human skin,” J. Invest. Dermatol. 77, 13 (1981). [13] Shi-Wei Chu, I-Hsiu Chen, Tzu-Ming Liu, Ping Chin Chen, Chi-Kuang Sun, and Bai-Ling Lin,” Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Optics Letters Vol. 26, Issue 23, pp. 1909-1911 (2001) [14] I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources," Optical and Quantum Electronics 34(12), 1251 (2002). [15] C. S. Hsieh, S. U. Chen, Y. W. Lee, Y. S. Yang, and C. K. Sun, "Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos," Opt Express 16(15), 11574 (2008). [16] M. Muller, J. Squier, K. R. Wilson, G. J. Brakenhof, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266 (1998). [17] Willy Supatto, Delphine Débarre, Bruno Moulia, Eric Brouzés, Jean-Louis Martin, Emmanuel F, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” PNAS January 25, 2005 102 (4) 1047-1052 [18] Shi-Wei Chu, I-Hsiu Chen, Tzu-Ming Liu, Ping Chin Chen, Chi-Kuang Sun, and Bai-Ling Lin,” Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Optics Letters Vol. 26, Issue 23, pp. 1909-1911 (2001) [19] M. E. Fermann and I. Hartl, "Ultrafast Fiber Laser Technology," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 1, pp. 191-206, Jan. 2009 [20] Hsiang-Yu Chung, Wei Liu, Qian Cao, Liwei Song, Franz X. Kärtner, and Guoqing Chang, "Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection," Opt. Express 26, 3684-3695 (2018) [21] Liu W, Chia SH, Chung HY, Greinert R, Kärtner FX, Chang G. Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy. Opt Express. 2017 Mar 20;25(6):6822-6831. [22] Lu-Ting Chou, Yu-Cheng Liu, Dong-Lin Zhong, Wei-Zhong Lin, Hao-Hsuan Hung, C hao-Jin Chan, Zi-Ping Chen, and Shih-Hsuan Chia, “Low noise, self-phase-modulation-enabled femtosecond fiber sources tunable in 740-1236 nm for wide two-photon fluorescence microscopy applications,” Biomedical Optics Express Vol. 12, Issue 5, pp. 2888-2901 (2021) [23] Charnogursky G, Lee H, Lopez N. “Diabetic neuropathy,” Handb Clin Neurol. 2014;120:773-85. [24] Roger E Pecoraro, Gayle E Reiber, Ernest M Burgess,” Pathways to Diabetic Limb Amputation: Basis for Prevention, “Diabetes Care 1 May 1990; 13 (5): 513–521. [25] Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. ,” Diabetic Neuropathy: A Position Statement by the American Diabetes Association, “Diabetes Care. 2017 Jan;40(1):136-154. [26] Abhishek K, Khunger N. ,”Complications of skin biopsy,” J Cutan Aesthet Surg. 2015 Oct-Dec;8(4):239-41. [27] R. H. Stolen, and C. Lin, "Self-Phase-Modulation in Silica Optical Fibers," Physical Rev A 17(4), 1448-1453 (1978). [28] A. H. Malik et al., "Comparison of interaction of GVD and SPM between normal and anomalous dispersion regimes of single mode fiber," 2008 Second International Conference on Electrical Engineering 1-6 (2008). [29] Govind Agrawal, In Optics and Photonics, “Nonlinear Fiber Optics (Fifth Edition)”, Academic Press, 2013, Pages 129-191, [30] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006). [31] G. P. Agrawal, "Nonlinear Fiber Optics," in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000) [32] J. Dudley, and J. Taylor, "Nonlinear fibre optics overview," Supercontinuum Generation in Optical Fibers, 33-51 (2010). [33] Bansal, Hari Om, Rajamayyoor Sharma, and P. R. Shreeraman. "PID controller tuning techniques: a review." J. Control Eng. Technol 2.4 (2012): 168-176. [34] N. Photonics, "Application Notes: Damage Threshold of Fiber Facets," (NKT Photonics). [35] Ekaterina A. Zlobina, Sergey I. Kablukov, and Sergey A. Babin, "Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb:doped fiber laser," J. Opt. Soc. Am. B 29, 1959-1967 (2012) [36] Fekete, J., Rácz, P. & Dombi, P.,” Compression of long-cavity Ti:sapphire oscillator pulses with large-mode-area photonic crystal fibers.,” Appl. Phys. B 111, 415–418 (2013). [37] J.-C. Diels, and W. Rudolph, “Ultrashort Laser Pulse Phenomena,” (Elsevier, 2006). [38] Xuhao Ye, H.-C.G., Hui-Yuan Chen, Ru-Pin Alicia Chi, Jin-Ying Lu, Yi-Hua Liao, Tzung-Dau Wang, and Chi-Kuang Sun, “Label-free glycated-hemoglobin distribution mapping at a single-red-blood-cell level by virtual absorption microscopy,” N.T. University, Editor. 2022. [39] Borah, B.J., et al., “Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability,” Iscience, 2021. 24(9): p. 103041. [40] Borah, B.J. and C.-K. Sun, “Construction of a high-NFOM multiphoton microscope with large-angle resonant raster scanning,” STAR protocols, 2022. 3(2): p. 101330. [41] Zaber Technologies, " LAC10A-T4A Datasheet,” [42] N. Photonics, "LMA-PM-5 Datasheet,” | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90643 | - |
| dc.description.abstract | 常見用於倍頻顯微鏡的雷射激發源為摻鉻鎂橄欖石雷射、光參量放大器或是光參量振盪器,是因為這些激發源可提供具有高脈衝能量以及中心波長靠近1200至1300奈米的光學視窗,但是若要將整台包含激發源的倍頻顯微鏡系統整合成一可移動式微型化的倍頻顯微鏡,由於這些激發源需要大型光學桌來使光學系統穩定,抑或是需要沉重的液氮冷卻系統,使得這些激發源皆不適合。
因此,我在本篇論文中透過自相位調製及其他非線性效應,提出一用於可移動式微型化倍頻顯微鏡的全光纖飛秒雷射激發源,並以反饋迴路程式控制光強度穩定度,降低光纖耦合不穩定及震動或移動時造成的影響。利用中心波長位於 1,070 奈米摻鐿光纖雷射以及具有弱負色散的大模場光子晶體光纖,產生一個峰值波長為1200奈米的紅移光譜,並經由超快啁啾反射鏡組將倍頻顯微鏡物鏡後的脈衝寬度壓縮至48.62 飛秒。我利用此激發源量測人體表皮皮膚樣品,有效率地激發表皮中的基底細胞產生三倍頻訊號,以證明此雷射激發源可用於倍頻顯微鏡。此全光纖飛秒雷射激發源具有穩定、微型化、價格低廉的優勢,可在生物分子探測、或臨床應用等領域,作為倍頻顯微術的激發工具。 | zh_TW |
| dc.description.abstract | The common excitation sources used in harmonic generation microscopy include Cr:forsterite lasers, ultrafast optical parametric amplifiers (OPA), or ultrafast optical parametric oscillators (OPO). These sources are chosen because they provide high pulse energy and have a central wavelength near 1200-1300 nanometers, which is within the optical window for biological imaging. However, integrating the entire harmonic generation microscope system, including the excitation source, into a portable compact microscope is challenging. The conventional excitation sources require large optical tables for stability or heavy liquid nitrogen cooling systems, making them unsuitable for portable applications.
Therefore, in this thesis, I propose an all-fiber-based femtosecond laser excitation source for portable compact harmonic generation microscopy. By utilizing self-phase modulation and other nonlinear effects, the system achieved stable intensity control through a feedback loop, reducing the impact of fiber coupling instabilities and vibrations during movement. The system utilized a 1070-nanometer ytterbium-doped fiber laser and a large-mode-area photonic crystal fiber with weak negative dispersion to generate a red-shifted spectrum with a peak wavelength of 1200 nanometers. The pulse width after the objective lens of the microscope was compressed to 48.62 femtoseconds by using a pair of doubled chirped mirror compressors. I demonstrated the effectiveness of this excitation source by measuring human epidermal skin samples, efficiently exciting the basal cells to generate third harmonic signals, thus confirming its suitability for harmonic generation microscopy. This all-fiber-based femtosecond laser excitation source offers advantages such as stability, compact, and affordability, making it a promising tool for harmonic generation microscopy in various applications, including biological molecular detection and clinical imaging. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:59:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:59:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Motivation 1 Chapter 2 Background knowledge 9 2.1 Small fiber neuropathy 9 2.2 Fiber induced spectral broadening 9 2.2.1 Self-phase modulation in normal or anomalous dispersion regime 10 2.2.2 Soliton fission 10 2.2.3 Numerical method 11 2.3 proportional–integral–derivative (PID) controller 13 Chapter 3 All-fiber-based 1200nm femtosecond laser system 15 3.1 Optical system configuration 15 3.2 Spectral broadening 20 3.2.1 Fiber handling 26 3.2.2 Result 27 3.3 Dispersion pre-compensation 31 3.3.1 Double chirped mirror 32 Chapter 4 Comparing the all-fiber-based 1200nm femtosecond excitation source and Cr:forsterite Broadband Excitation Source by harmonic generation microscope 36 4.1 Experimental setup 37 4.2 Resolution 45 4.2.1 Result 45 4.3 The comparison of two light source by harmonic generation imaging 47 Chapter 5 The stability of all-fiber-based 1200nm femtosecond excitation 53 5.1 feedback loop system setup 53 5.2 Controlling the fiber stage 54 5.3 Controlling the mirrors 58 5.4 Result of 7-days stability 61 Chapter 6 Summary and future works 70 Reference list 72 | - |
| dc.language.iso | en | - |
| dc.subject | 臨床影像 | zh_TW |
| dc.subject | 自相位調製 | zh_TW |
| dc.subject | 三倍頻 | zh_TW |
| dc.subject | 分子影像 | zh_TW |
| dc.subject | 反饋迴路程式 | zh_TW |
| dc.subject | Molecular imaging | en |
| dc.subject | Third harmonic generation | en |
| dc.subject | Self-phase modulation | en |
| dc.subject | Feedback loop program | en |
| dc.subject | Clinical imaging | en |
| dc.title | 用於臨床成像的1200奈米全光纖飛秒雷射光源 | zh_TW |
| dc.title | All-Fiber-Based 1200nm Femtosecond Light Source for Clinical Imaging | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賈世璿;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Hsuan Chia;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 自相位調製,三倍頻,分子影像,臨床影像,反饋迴路程式, | zh_TW |
| dc.subject.keyword | Self-phase modulation,Third harmonic generation,Molecular imaging,Clinical imaging,Feedback loop program, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202302760 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2028-08-02 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
