Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90642
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 于昌平 | zh_TW |
dc.contributor.advisor | Chang-Ping Yu | en |
dc.contributor.author | 廖婉婷 | zh_TW |
dc.contributor.author | Wan-Ting Liao | en |
dc.date.accessioned | 2023-10-03T16:59:23Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-02 | - |
dc.identifier.citation | Ahmed, W., Bivins, A., Metcalfe, S., Smith, W. J., Verbyla, M. E., Symonds, E. M., & Simpson, S. L. (2022). Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance. Water Research, 213, 118132.
Bae, H., Paul, T., Kim, D., & Jung, J.-Y. (2016). Specific ANAMMOX activity (SAA) in a sequencing batch reactor: optimization test with statistical comparison. Environmental Earth Sciences, 75, 1-9. Baytshtok, V., Kim, S., Yu, R., Park, H., & Chandran, K. (2008). Molecular and biokinetic characterization of methylotrophic denitrification using nitrate and nitrite as terminal electron acceptors. Water Science and Technology, 58(2), 359-365. Bernhard, A. (2010). The nitrogen cycle: processes. Players, and Human, 3, 10-25. Burris, R. H., & Roberts, G. P. (1993). Biological nitrogen fixation. Annual Review of Nutrition, 13(1), 317-335. Cao, Y., Yu, M., Dong, G., Chen, B., & Zhang, B. (2020). Digital PCR as an emerging tool for monitoring of microbial biodegradation. Molecules, 25(3), 706. Chamchoi, N., & Nitisoravut, S. (2007). Anammox enrichment from different conventional sludges. Chemosphere, 66(11), 2225-2232. Chen, F., Li, G., Li, X., Wang, H., Wu, H., Li, J., Li, C., Li, W., Zhang, L., & Xi, B. (2021). The cotreatment of old landfill leachate and domestic sewage in rural areas by deep subsurface wastewater infiltration system (SWIS): performance and bacterial community. Environmental Pollution, 274, 115800. Chen, W., Chiang, Y., Huang, Y., Chen, S., Sung, S., & Lin, J.-G. (2017). Tertiary nitrogen removal using simultaneous partial nitrification, anammox and denitrification (SNAD) process in packed bed reactor. International Biodeterioration & Biodegradation, 120, 36-42. Costa, A. M., Alfaia, R. G. d. S. M., & Campos, J. C. (2019). Landfill leachate treatment in Brazil–An overview. Journal of Environmental Management, 232, 110-116. Cui, B., Yang, Q., Liu, X., Wu, W., Liu, Z., & Gu, P. (2020). Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment. Environment International, 138, 105612. Dale, O. R., Tobias, C. R., & Song, B. (2009). Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental Microbiology, 11(5), 1194-1207. Dang, H., Li, J., Chen, R., Wang, L., Guo, L., Zhang, Z., & Klotz, M. G. (2010). Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Applied and Environmental Microbiology, 76(14), 4691-4702. Dapena-Mora, A., Fernandez, I., Campos, J., Mosquera-Corral, A., Mendez, R., & Jetten, M. (2007). Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40(4), 859-865. Daverey, A., Chei, P. C., Dutta, K., & Lin, J.-G. (2015). Statistical analysis to evaluate the effects of temperature and pH on anammox activity. International Biodeterioration & Biodegradation, 102, 89-93. Dosta, J., Fernández, I., Vázquez-Padín, J., Mosquera-Corral, A., Campos, J., Mata-Alvarez, J., & Méndez, R. (2008). Short-and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials, 154(1-3), 688-693. Egli, K., Fanger, U., Alvarez, P. J., Siegrist, H., van der Meer, J. R., & Zehnder, A. J. (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175, 198-207. Fan, J., Zhang, B., Zhang, J., Ngo, H. H., Guo, W., Liu, F., Guo, Y., & Wu, H. (2013). Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresource Technology, 141, 117-122. Feng, Y., Zhao, Y., Guo, Y., & Liu, S. (2018). Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia. Water Research, 128, 402-411. Fernández, I., Dosta, J., Fajardo, C., Campos, J., Mosquera-Corral, A., & Méndez, R. (2012). Short-and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management, 95, S170-S174. Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., & Galloway, J. N. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130164. Fuerst, J. A. (1995). The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology, 141(7), 1493-1506. Fujii, T., Sugino, H., Rouse, J. D., & Furukawa, K. (2002). Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier. Journal of Bioscience and Bioengineering, 94(5), 412-418. Fux, C., Boehler, M., Huber, P., Brunner, I., & Siegrist, H. (2002). Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology, 99(3), 295-306. Gabarró, J., Hernández-del Amo, E., Gich, F., Ruscalleda, M., Balaguer, M., & Colprim, J. (2013). Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate. Water Research, 47(19), 7066-7077. Gayle, B., Boardman, G., Sherrard, J., & Benoit, R. (1989). Biological denitrification of water. Journal of Environmental Engineering, 115(5), 930-943. Guimarães, L. B., Mezzari, M. P., Daudt, G. C., & da Costa, R. H. (2017). Microbial pathways of nitrogen removal in aerobic granular sludge treating domestic wastewater. Journal of Chemical Technology & Biotechnology, 92(7), 1756-1765. Güven, D., Dapena, A., Kartal, B., Schmid, M. C., Maas, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., Op den Camp, H. J., & Jetten, M. S. (2005). Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 71(2), 1066-1071. Hastings, R. C., Ceccherini, M. T., Miclaus, N., Saunders, J. R., Bazzicalupo, M., & McCarthy, A. J. (1997). Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiology Ecology, 23(1), 45-54. Hayatsu, M., Tago, K., & Saito, M. (2008). Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition, 54(1), 33-45. He, S., Chen, Y., Qin, M., Mao, Z., Yuan, L., Niu, Q., & Tan, X. (2018). Effects of temperature on anammox performance and community structure. Bioresource Technology, 260, 186-195. Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J., & Saunders, J. R. (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Microbiology, 139(6), 1147-1153. Hu, B.-l., Zheng, P., Tang, C.-j., Chen, J.-w., van der Biezen, E., Zhang, L., Ni, B.-j., Jetten, M. S., Yan, J., & Yu, H.-Q. (2010). Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 44(17), 5014-5020. Huang, L.-N., Chen, Y.-Q., Zhou, H., Luo, S., Lan, C.-Y., & Qu, L.-H. (2003). Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiology Ecology, 46(2), 171-177. Isaka, K., Kimura, Y., Osaka, T., & Tsuneda, S. (2012). High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria. Water Research, 46(16), 4941-4948. Isaka, K., Suwa, Y., Kimura, Y., Yamagishi, T., Sumino, T., & Tsuneda, S. (2008). Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol. Applied Microbiology and Biotechnology, 81, 379-385. Ishimoto, C., Waki, M., & Soda, S. (2021). Adaptation of anammox granules in swine wastewater treatment to low temperatures at a full-scale simultaneous partial nitrification, anammox, and denitrification plant. Chemosphere, 282, 131027. Jaeschke, A., Op den Camp, H. J., Harhangi, H., Klimiuk, A., Hopmans, E. C., Jetten, M. S., Schouten, S., & Sinninghe Damsté, J. S. (2009). 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiology Ecology, 67(3), 343-350. Jetten, M. S., Niftrik, L. v., Strous, M., Kartal, B., Keltjens, J. T., & Op den Camp, H. J. (2009). Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 44(2-3), 65-84. Jiang, H., Peng, Y., Li, X., Zhang, F., Wang, Z., & Ren, S. (2020). Advanced nitrogen removal from mature landfill leachate via partial nitrification-Anammox biofilm reactor (PNABR) driven by high dissolved oxygen (DO): Protection mechanism of aerobic biofilm. Bioresource Technology, 306, 123119. Jiang, H., Wang, Z., Ren, S., Qiu, J., Li, X., & Peng, Y. (2021). Culturing sludge fermentation liquid-driven partial denitrification in two-stage Anammox process to realize advanced nitrogen removal from mature landfill leachate. Journal of Hazardous Materials, 415, 125568. Jin, R.-C., Yang, G.-F., Yu, J.-J., & Zheng, P. (2012). The inhibition of the Anammox process: a review. Chemical Engineering Journal, 197, 67-79. Jokela, J., Kettunen, R., Sormunen, K., & Rintala, J. (2002). Biological nitrogen removal from municipal landfill leachate: low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Research, 36(16), 4079-4087. Kartal, B., de Almeida, N. M., Maalcke, W. J., Op den Camp, H. J., Jetten, M. S., & Keltjens, J. T. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 37(3), 428-461. Kartal, B., & Keltjens, J. T. (2016). Anammox biochemistry: a tale of heme c proteins. Trends in Biochemical Sciences, 41(12), 998-1011. Kartal, B., Koleva, M., Arsov, R., van der Star, W., Jetten, M. S., & Strous, M. (2006). Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology, 126(4), 546-553. Kartal, B., van Niftrik, L., Keltjens, J. T., den Camp, H. J. O., & Jetten, M. S. (2012). Anammox—growth physiology, cell biology, and metabolism. Advances in Microbial Physiology, 60, 211-262. Kim, T. G., Jeong, S.-Y., & Cho, K.-S. (2014). Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Applied Microbiology and Biotechnology, 98, 6105-6113. Kim, Y. M., Cho, H. U., Lee, D. S., Park, D., & Park, J. M. (2011). Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Water Research, 45(17), 5785-5795. Kimura, Y., Isaka, K., & Kazama, F. (2011). Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity. Bioresource Technology, 102(6), 4390-4394. Kouba, V., Bachmannová, C., Podzimek, T., Lipovova, P., & Van Loosdrecht, M. (2022). Physiology of anammox adaptation to low temperatures and promising biomarkers: a review. Bioresource Technology, 126847. Kuenen, J. G. (2020). Anammox and beyond. Environmental microbiology, 22(2), 525-536. Kumar, M., & Lin, J.-G. (2010). Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—strategies and issues. Journal of Hazardous Materials, 178(1-3), 1-9. Li, M., Hong, Y.-G., Cao, H.-L., & Gu, J.-D. (2011). Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology, 20, 1780-1790. Li, M., Wang, Y., Zhang, Y., Li, J., & Chen, X. (2012). Variance analysis between TaqMan probe and SYBR Green real-time quantitative PCR for determining the copy number of transgene in transformed plants. Journal of Anhui Agricultural University, 39(4), 568-570. Lin, Z., Huang, W., Zhou, J., He, X., Wang, J., Wang, X., & Zhou, J. (2020). The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater. Bioresource Technology, 314, 123760. Liu, X., Wu, J., Hong, Y., Li, Y., Hu, Y., Wang, L., Wang, Y., & Long, A. (2021). Wide distribution of anaerobic ammonium‐oxidizing bacteria in the water column of the South China Sea: Implications for their survival strategies. Diversity and Distributions, 27(10), 1893-1903. Ma, B., Wang, S., Cao, S., Miao, Y., Jia, F., Du, R., & Peng, Y. (2016). Biological nitrogen removal from sewage via anammox: recent advances. Bioresource Technology, 200, 981-990. Martins, T. H., Souza, T. S., & Varesche, M. B. A. (2018). The Influence of stirring speed, temperature and initial nitrogen concentration on specific anammox activity. Brazilian Archives of Biology and Technology, 60. McMahon, H. T., & Gallop, J. L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature, 438(7068), 590-596. Meng, H., Zhang, X., Zhou, Z., Luo, L., Lan, W., Lin, J.-G., Li, X.-Y., & Gu, J.-D. (2021). Simultaneous occurrence and analysis of both anammox and n-damo bacteria in five full-scale wastewater treatment plants. International Biodeterioration & Biodegradation, 156, 105112. Miao, L., Wang, K., Wang, S., Zhu, R., Li, B., Peng, Y., & Weng, D. (2014). Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresource Technology, 159, 258-265. Miao, L., Yang, G., Tao, T., & Peng, Y. (2019). Recent advances in nitrogen removal from landfill leachate using biological treatments–A review. Journal of Environmental Management, 235, 178-185. Miao, L., Zhang, Q., Wang, S., Li, B., Wang, Z., Zhang, S., Zhang, M., & Peng, Y. (2018). Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate. Bioresource Technology, 249, 108-116. Miao, Y., Peng, Y., Zhang, L., Li, B., Li, X., Wu, L., & Wang, S. (2018). Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: Effect of influent C/N ratios. Chemical Engineering Journal, 334, 664-672. Mulder, A., Van de Graaf, A. A., Robertson, L., & Kuenen, J. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177-183. Okabe, S., Ye, S., Lan, X., Nukada, K., Zhang, H., Kobayashi, K., & Oshiki, M. (2023). Oxygen tolerance and detoxification mechanisms of highly enriched planktonic anaerobic ammonium-oxidizing (anammox) bacteria. ISME Communications, 3(1), 45. Pan, J., Fei, H., Song, S., Yuan, F., & Yu, L. (2015). Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system. Bioresource Technology, 191, 327-331. Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H., Lücker, S., Nowka, B., Richter, A., Spieck, E., & Lebedeva, E. (2014). NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite‐oxidizing N itrospira. Environmental Microbiology, 16(10), 3055-3071. Postollec, F., Falentin, H., Pavan, S., Combrisson, J., & Sohier, D. (2011). Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiology, 28(5), 848-861. Quan, P.-L., Sauzade, M., & Brouzes, E. (2018). dPCR: a technology review. Sensors, 18(4), 1271. Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., & Park, Y. H. (2008). Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium‐oxidizing (anammox) reactor. Environmental Microbiology, 10(11), 3130-3139. Renou, S., Givaudan, J., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468-493. Schmid, M. C., Risgaard‐Petersen, N., Van De Vossenberg, J., Kuypers, M. M., Lavik, G., Petersen, J., Hulth, S., Thamdrup, B., Canfield, D., & Dalsgaard, T. (2007). Anaerobic ammonium‐oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, 9(6), 1476-1484. Shalini, S. S., & Joseph, K. (2012). Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process. Waste Management, 32(12), 2385-2400. Shi, Z., Zhang, Y., Zhou, J., Chen, M., & Wang, X. (2013). Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresource Technology, 148, 144-148. Shu, D., He, Y., Yue, H., & Wang, Q. (2016). Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems. Chemical Engineering Journal, 290, 21-30. Song, L., Wang, Y., Tang, W., & Lei, Y. (2015). Archaeal community diversity in municipal waste landfill sites. Applied Microbiology and Biotechnology, 99, 6125-6137. Song, L., Wang, Y., Zhao, H., & Long, D. T. (2015). Composition of bacterial and archaeal communities during landfill refuse decomposition processes. Microbiological Research, 181, 105-111. Stackebrandt, E., Wehmeyer, U., & Liesack, W. (1986). 16S ribosomal RNA-and cell wall analysis of Gemmata obscuriglobus, a new member of the order Planctomycetales. FEMS Microbiology Letters, 37(3), 289-292. Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M. W., Horn, M., Daims, H., Bartol-Mavel, D., & Wincker, P. (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440(7085), 790-794. Strous, M., Van Gerven, E., Zheng, P., Kuenen, J. G., & Jetten, M. S. (1997). Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research, 31(8), 1955-1962. Sun, F., Sun, B., Li, Q., Deng, X., Hu, J., & Wu, W. (2014). Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor. Chemosphere, 101, 77-85. Sun, F., Zhang, W., Jiang, G., Liu, Y., Wu, S., Wu, D., Su, X., Chen, J., Lin, H., & Zhou, Y. (2020). Effective biological nitrogen process and nitrous oxide emission characteristics for the treatment of landfill leachate with low carbon-to-nitrogen ratio. Journal of Cleaner Production, 268, 122289. Sun, S., Song, Y., Yang, X. J., Hu, H., Wu, S., Qi, W.-k., & Li, Y.-Y. (2018). Strategies for improving nitrogen removal under high sludge loading rate in an anammox membrane bioreactor operated at 25 C. Chemical Engineering Science, 183, 106-114. Tang, C.-J., Zheng, P., Chen, T.-T., Zhang, J.-Q., Mahmood, Q., Ding, S., Chen, X.-G., Chen, J.-W., & Wu, D.-T. (2011). Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process. Water Research, 45(1), 201-210. Teske, A., Alm, E., Regan, J., Toze, S., Rittmann, B., & Stahl, D. (1994). Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. Journal of Bacteriology, 176(21), 6623-6630. Timmermans, P., & Van Haute, A. (1983). Denitrification with methanol: fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Research, 17(10), 1249-1255. Tokutomi, T., Yamauchi, H., Nishimura, S., Yoda, M., & Abma, W. (2011). Application of the nitritation and anammox process into inorganic nitrogenous wastewater from semiconductor factory. Journal of Environmental Engineering, 137(2), 146-154. Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Management, 30(11), 2113-2121. Van De Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S., & Kuenen, J. G. (1997). Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology, 143(7), 2415-2421. van Niftrik, L., Geerts, W. J., van Donselaar, E. G., Humbel, B. M., Webb, R. I., Fuerst, J. A., Verkleij, A. J., Jetten, M. S., & Strous, M. (2008). Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. Journal of Bacteriology, 190(2), 708-717. van Niftrik, L. A., Fuerst, J. A., Damsté, J. S. S., Kuenen, J. G., Jetten, M. S., & Strous, M. (2004). The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters, 233(1), 7-13. Viveros, M. L., Azimi, S., Pichon, E., Roose-Amsaleg, C., Bize, A., Durandet, F., & Rocher, V. (2022). Wild type and variants of SARS-COV-2 in Parisian sewage: presence in raw water and through processes in wastewater treatment plants. Environmental Science and Pollution Research, 29(44), 67442-67449. Wan, K., Yu, Y., Hu, J., Liu, X., Deng, X., Yu, J., Chi, R., & Xiao, C. (2022). Recovery of anammox process performance after substrate inhibition: Reactor performance, sludge morphology, and microbial community. Bioresource Technology, 357, 127351. Wang, C.-C., Lee, P.-H., Kumar, M., Huang, Y.-T., Sung, S., & Lin, J.-G. (2010). Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials, 175(1-3), 622-628. Wang, C., Zhao, Y., Xie, B., Peng, Q., Hassan, M., & Wang, X. (2014). Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor. Bioresource Technology, 159, 266-271. Wang, D., Wang, S., Du, X., He, Q., Liu, Y., Wang, Z., Feng, K., Li, Y., & Deng, Y. (2022). ddPCR surpasses classical qPCR technology in quantitating bacteria and fungi in the environment. Molecular Ecology Resources, 22(7), 2587-2598. Wang, L., Hong, Y., Gu, J.-D., Wu, J., Yan, J., & Lin, J.-G. (2021). Influence of critical factors on nitrogen removal contribution by anammox and denitrification in an anammox-inoculated wastewater treatment system. Journal of Water Process Engineering, 40, 101868. Wang, X., Xie, B., Zhang, C., Shen, Y., & Lu, J. (2017). Quantitative impact of influent characteristics on nitrogen removal via anammox and denitrification in a landfill bioreactor case. Bioresource Technology, 224, 130-139. Wang, Y.-n., Xu, R., Wang, H., Shi, H., Kai, Y., Sun, Y., Li, W., Bian, R., & Zhan, M. (2021). Insights into the stabilization of landfill by assessing the diversity and dynamic succession of bacterial community and its associated bio-metabolic process. Science of the Total Environment, 768, 145466. Wei, H., Wang, X., Hassan, M., Huang, H., & Xie, B. (2019). Strategy of rapid start-up and the mechanism of de-nitrogen in landfill bioreactor. Journal of Environmental Management, 240, 126-135. Wen, R., Jin, Y., & Zhang, W. (2020). Application of the anammox in China—A review. International Journal of Environmental Research and Public Health, 17(3), 1090. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. (2006). Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 4, 51-61. Xie, B., Lv, Z., Hu, C., Yang, X., & Li, X. (2013). Nitrogen removal through different pathways in an aged refuse bioreactor treating mature landfill leachate. Applied Microbiology and Biotechnology, 97, 9225-9234. Xu, S., Lu, W., Liu, Y., Ming, Z., Liu, Y., Meng, R., & Wang, H. (2017). Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq). Waste Management, 63, 41-48. Yamamoto, T., Takaki, K., Koyama, T., & Furukawa, K. (2008). Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox. Bioresource Technology, 99(14), 6419-6425. Yang, X.-R., Li, H., Su, J.-Q., & Zhou, G.-W. (2021). Anammox bacteria are potentially involved in anaerobic ammonium oxidation coupled to iron (III) reduction in the wastewater treatment system. Frontiers in Microbiology, 12, 717249. Yang, Y., Li, M., Hu, Z., Shim, H., Lin, J.-G., Li, X.-Y., & Gu, J.-D. (2020). Deep insights into the green nitrogen removal by anammox in four full-scale WWTPs treating landfill leachate based on 16S rRNA gene and transcripts by 16S rRNA high-throughput sequencing. Journal of Cleaner Production, 276, 124176. Yang, Y., Pan, J., Zhou, Z., Wu, J., Liu, Y., Lin, J.-G., Hong, Y., Li, X., Li, M., & Gu, J.-D. (2020). Complex microbial nitrogen-cycling networks in three distinct anammox-inoculated wastewater treatment systems. Water Research, 168, 115142. Yang, Y., Zhang, L., Cheng, J., Zhang, S., Li, X., & Peng, Y. (2018). Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream. Bioresource Technology, 251, 327-333. Yoshinaga, I., Amano, T., Yamagishi, T., Okada, K., Ueda, S., Sako, Y., & Suwa, Y. (2011). Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan. Microbes and Environments, 26(3), 189-197. Yuan, Q., Wang, K., He, B., Liu, R., Qian, L., Wan, S., Zhou, Y., Cai, H., & Gong, H. (2021). Spontaneous mainstream anammox in a full‐scale wastewater treatment plant with hybrid sludge retention time in a temperate zone of China. Water Environment Research, 93(6), 854-864. Zhang, F., Peng, Y., Liu, Y., & Zhao, L. (2021). Improving stability of mainstream Anammox in an innovative two-stage process for advanced nitrogen removal from mature landfill leachate. Bioresource Technology, 340, 125617. Zhang, F., Peng, Y., Miao, L., Wang, Z., Wang, S., & Li, B. (2017). A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate. Chemical Engineering Journal, 313, 619-628. Zhao, J., Lu, X.-Q., Luo, J.-H., Liu, J.-Y., Xu, Y.-F., Zhao, A.-H., Liu, F., Tai, J., Qian, G.-R., & Peng, B. (2013). Characterization of fresh leachate from a refuse transfer station under different seasons. International Biodeterioration & Biodegradation, 85, 631-637. Zhu, G., Wang, S., Wang, Y., Wang, C., Risgaard-Petersen, N., Jetten, M. S., & Yin, C. (2011). Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME Journal, 5(12), 1905-1912. Zhu, G., Xia, C., Shanyun, W., Zhou, L., Liu, L., & Zhao, S. (2015). Occurrence, activity and contribution of anammox in some freshwater extreme environments. Environmental Microbiology Reports, 7(6), 961-969. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90642 | - |
dc.description.abstract | 厭氧氨氧化反應是一種低成本、無需碳源和氧氣供應的脫氮技術,在垃圾滲濾液處理中已有應用。本研究所探討之 TWT、BL 以及 XF 三個廠區在過去皆有成果培養出或是植種了厭氧氨氧化菌。然而,經過多年的水質操作變化,本研究藉由數位化核酸定量儀 (Digital Polymerase Chain Reaction, dPCR) 以及次世代定序 (Next Generation Sequencing, NGS),定量氮相關基因並探討微生物組成的關係,以瞭解過去和現在水質以及微生物組成之間的差異。
根據水質參數分析、功能性基因定量以及菌種分析結果得知三個廠區反應槽性質差異大,TWT、BL 以及 XF 分別以硝化脫硝、部分硝化以及脫硝作用為各廠區反應槽主要之氮循環途徑。在過去三個廠區中皆有檢測到 Ca. Brocadia、Ca. Kuenenia 和 Ca. Anammoxoglobus 三種厭氧氨氧化菌屬,但目前 TWT 廠區僅剩下 Ca. Brocadia 以及 Ca. Anammoxoglobus 兩種菌屬;BL廠區在相對占比上則佔有一定比例的 Ca. Kuenenia 屬;而 XF 廠區則無檢測至厭氧氨氧化菌之存在,與過去相比,各廠區的厭氧氨氧化基因多樣性以及豐富度皆下降。 在水質條件上,以碳氮比和額外添加碳源對於廠區厭氧氨氧化菌的存在最具影響性。在碳氮比條件上,由於 BL 廠區具有較佳的碳氮比1.4,符合厭氧氨氧化菌生長所需;而現階段由於 BL 廠區的額外添加碳源-甲醇濃度的提高,以及 XF 跟 TWT 廠區的水肥處理量提升,增加了廠內 COD 之含量,一方面改變廠區優勢基因的組成,另一方面更不利於厭氧氨氧化菌的生存,導致厭氧氨氧化基因豐富度降低。 | zh_TW |
dc.description.abstract | Anaerobic ammonia oxidation (Anammox) is a cost-effective nitrogen removal technology that does not require carbon sources or oxygen supply. It has been utilized in the treatment of landfill leachate. This study focuses on three treatment plants: TWT, BL and XF, which had achieved successful cultivation or inoculation of anaerobic ammonia-oxidizing bacteria. However, due to long-term changes in water quality, this research employs digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS) techniques to quantify nitrogen-related genes and investigate the relationship with microbial composition. The aim is to understand the differences in water quality and microbial composition between the past and current.
Analysis of water quality parameters, quantification of functional genes, and microbial analysis revealed significant differences among the three plants: TWT, BL, and XF. TWT primarily operates with nitrification-denitrification, BL exhibits partial nitrification, and XF relies on denitrification as the main nitrogen cycling pathway. In the past, all three plants harbored three types of Anammox bacteria, namely Ca. Brocadia, Ca. Kuenenia, and Ca. Anammoxoglobus. However, presently, only Ca. Brocadia and Ca. Anammoxoglobus are found in the TWT plant, with BL showing a certain proportion of Ca. Kuenenia. Also, no Anammox bacteria were detected in the XF plant. The diversity and abundance of Anammox genes have decreased in three plants compared to the past. According to water quality conditions, carbon-to-nitrogen ratio and the addition of supplemental carbon sources, greatly influence the presence of Anammox bacteria in the plants. BL plant demonstrates a favorable carbon-to-nitrogen ratio of 1.4, which is conducive to the growth of Anammox bacteria. However, the increase in concentration of additional carbon source-methanol in the BL plant and the elevated septic tank effluent concentration in XF and TWT plants, leading to higher COD levels, have altered the composition of dominant genes in each plant and created an unfavorable environment for Anammox bacteria, resulting in decreased abundance of Anammox genes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:59:23Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:59:23Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II 摘要 III 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 4 第二章 文獻回顧 5 2.1 垃圾滲出水廢水處理廠之廢水特性及危害 5 2.2 氮循環 6 2.2.1硝化反應 7 2.2.2脫硝反應 8 2.2.3固氮反應 9 2.3 厭氧氨氧化作用 11 2.3.1 厭氧氨氧化作用及應用 11 2.3.2 厭氧氨氧化微生物之生長特性 12 2.3.3 厭氧氨氧化微生物代謝機制 14 2.3.4 厭氧氨氧化微生物的細胞構造 16 2.3.5 影響厭氧氨氧化生長之因素 17 2.4 分子生物技術 21 2.4.1 即時定量聚合酶連鎖反應 (Real-time Quantitative Polymerase Chain Reaction, qPCR) 21 2.4.2 數位化核酸定量儀 (Digital Polymerase Chain Reaction, dPCR) 22 第三章 材料與方法 24 3.1 實驗藥品與設備 24 3.1.1 實驗用藥品 24 3.1.2 實驗室儀器與設備 26 3.2 實驗架構 28 3.3 污水處理流程 29 3.3.1 採樣流程 29 3.3.2 採樣完實驗室前處理 29 3.4 水質分析方法 30 3.4.1 混合液懸浮固體 (Mixed liquor suspended solids, MLSS) 及揮發性懸浮固體(Mixed Liquor Volatile Suspended Solids, MLVSS) 分析 30 3.4.2 氨氮分析-納氏比色法 31 3.4.3 化學需氧量 (Chemical oxygen demand, COD) 分析 32 3.4.4 硝酸根及亞硝酸根分析 32 3.4.5 溶解性有機碳 (Dissolved organic carbon, DOC) 及總氮 (Total nitrogen, TN) 分析 33 3.4.6 凱氏氮分析 35 3.5 分子生物技術 36 3.5.1 去氧核醣核酸 (Deoxyribonucleic Acid, DNA) 萃取 36 3.5.2 即時定量聚合酶連鎖反應 (Real-time Quantitative Polymerase Chain Reaction, qPCR) 39 3.5.3 數位化核酸定量儀 (Droplet digital polymerase chain reaction, dPCR) 41 3.5.4 基因選殖 (Gene cloning) 43 3.6 比厭氧氨氧化活性測試 44 3.7 次世代定序分析 (Next Generation Sequencing, NGS) 45 第四章 結果與討論 46 4.1 厭氧氨氧化菌基因選殖結果 46 4.2 廠區污水處理性能及背景 48 4.2.1 廠區處理背景 48 4.2.2 廠區採樣及基本水質分析(溫度/pH值/溶氧/導電度/ORP) 51 4.2.3 總懸浮固體以及揮發性懸浮固體 54 4.2.4 化學需氧量 55 4.2.5 氨氮以及離子層析(硝酸根、亞硝酸根) 57 4.2.6 凱氏氮以及總氮分析 59 4.3 污水處理廠相關基因定量 61 4.3.1 基因濃度絕對定量 63 4.3.2 基因濃度相對定量 69 4.4 厭氧氨氧化活性測試 (Specific Anammox Activity, SAA) 74 4.5 菌相分析 77 第五章 結論與建議 86 5.1 結論 86 5.2 建議 88 參考文獻 89 附錄 100 | - |
dc.language.iso | zh_TW | - |
dc.title | 三個垃圾滲出水處理廠的微生物氮循環交互作用 | zh_TW |
dc.title | Interactions of microbial nitrogen cycling in three landfill leachate treatment plants | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 童心欣;廖健森 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Hsin Tung;Chien-Sen Liao | en |
dc.subject.keyword | 垃圾滲出水處理廠,氮循環,基因定量,菌種分析,厭氧氨氧化菌, | zh_TW |
dc.subject.keyword | Landfill leachate treatment plant,Nitrogen cycle,Gene quantification,Microbial analysis,Anaerobic ammonia-oxidizing bacteria, | en |
dc.relation.page | 102 | - |
dc.identifier.doi | 10.6342/NTU202302736 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
Appears in Collections: | 環境工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Until 2025-08-14 | 5.17 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.