Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學zh_TW
dc.contributor.advisorPei-Shiue Tsaien
dc.contributor.authorLaura Orama Méarzh_TW
dc.contributor.authorLaura Orama Méaren
dc.date.accessioned2023-10-03T16:59:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Swingland, I.R., Biodiversity, Definition of, in Encyclopedia of Biodiversity, S.A. Levin, Editor. 2013, Academic Press. p. 399-410.
2. Raup, D.M., Biological extinction in earth history. Science, 1986. 231: p. 1528-33.
3. Barnosky, A.D., et al., Has the Earth's sixth mass extinction already arrived? Nature, 2011. 471(7336): p. 51-7.
4. Cowie, R.H., P. Bouchet, and B. Fontaine, The Sixth Mass Extinction: fact, fiction or speculation? Biol Rev Camb Philos Soc, 2022. 97(2): p. 640-663.
5. Ceballos, G., et al., Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci Adv, 2015. 1(5): p. e1400253.
6. Alroy, J., Colloquium paper: dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci U S A, 2008. 105 Suppl 1(Suppl 1): p. 11536-42.
7. IUCN. IUCN Red list of endangered species. 2022 2022/12/20]; Available from: https://www.iucnredlist.org/.
8. Dirzo, R., et al., Defaunation in the Anthropocene. Science, 2014. 345(6195): p. 401-6.
9. Avise, J.C., S.P. Hubbell, and F.J. Ayala, In the Light of Evolution II: Biodiversity and Extinction. Proceedings of the Arthur M. Sackler Colloquium of the National Academy of Sciences. December 6-8, 2007. Irvine, California, USA. Proc Natl Acad Sci U S A, 2008. 105 Suppl 1(Suppl 1): p. 11453-586.
10. Sodhi, N.S., B.W. Brook, and C.J.A. Bradshaw, V.1 Causes and Consequences of Species Extinctions, in The Princeton Guide to Ecology, A.L. Simon, et al., Editors. 2009, Princeton University Press: Princeton. p. 514-520.
11. National Research Council Committee on Scientific Issues in the Endangered Species, A., in Science and the Endangered Species Act. 1995, National Academies Press (US) Copyright 1995 by the National Academy of Sciences. All rights reserved.: Washington (DC).
12. Cahill, A.E., et al., How does climate change cause extinction? Proc Biol Sci, 2013. 280(1750): p. 20121890.
13. Simberloff, D., Non-native invasive species and novel ecosystems. F1000Prime Rep, 2015. 7: p. 47.
14. Smith, J.M., The causes of extinction. Philos Trans R Soc Lond B Biol Sci, 1989. 325(1228): p. 241-252.
15. Comizzoli, P. and W.V. Holt, Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol Reprod, 2019. 101(3): p. 514-525.
16. Lacy, R., VORTEX: a computer simulation model for population viability analysis. Wildlife Research, 1993. 20(1): p. 45-65.
17. IUCN, Guidelines for appropriate uses of IUCN Red List data, IUCN, Editor. 2022, IUCN: Switzerland. p. 36.
18. Humle T, M.F., Oates JF, Plumptre A, Williamson EA. The IUCN Red List of Threatened Species 2016: Pan troglodytes. 2016 2018 [cited 2023 03 April]; Available from: https://www.iucnredlist.org/species/15933/129038584.
19. Ancrenaz, M., Gumal, M., Marshall, A.J., Meijaard, E., Wich , S.A. & Husson, S. Pongo pygmaeus (errata version published in 2018). The IUCN Red List of Threatened Species 2016 2016.
20. Plumptre, A., Robbins, M.M. & Williamson, E.A. . Gorilla beringei. The IUCN Red List of Threatened Species 2019. 2019 [cited 2023 April 03]; Available from: https://www.iucnredlist.org/species/39994/115576640.
21. Fruth, B., Hickey, J.R., André, C., Furuichi, T., Hart, J., Hart, T., Kuehl, H., Maisels, F., Nackoney, J., Reinartz, G., Sop, T., Thompson, J. & Williamson, E.A. Pan paniscus. The IUCN Red List of Threatened Species 2016. 2012 [cited 2023 April 03].
22. Maisels, F., Bergl, R.A. & Williamson, E.A. . Gorilla gorilla. The IUCN Red List of Threatened Species 2018. 2018 [cited 2023 April 03].
23. Singleton, I., Wich , S.A., Nowak, M., Usher, G. & Utami-Atmoko, S.S. . Pongo abelii. The IUCN Red List of Threatened Species 2017. 2017 [cited 2023 April 03]; Available from: https://www.iucnredlist.org/species/121097935/123797627.
24. Nowak, M.G., Rianti, P., Wich , S.A., Meijaard, E. & Fredriksson, G. Pongo tapanuliensis. The IUCN Red List of Threatened Species 2017. 2017 [cited 2023 April 03]; Available from: https://www.iucnredlist.org/species/120588639/120588662.
25. Prado-Martinez, J., et al., Great ape genetic diversity and population history. Nature, 2013. 499(7459): p. 471-5.
26. Yang, B., et al., Save the world's primates in peril. Science, 2016. 354(6311): p. 425.
27. Meijaard, E., et al., Not by science alone: why orangutan conservationists must think outside the box. Ann N Y Acad Sci, 2012. 1249: p. 29-44.
28. Koh, L.P., et al., Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci U S A, 2011. 108(12): p. 5127-32.
29. Marshall, A.J., et al., 311Orangutan population biology, life history, and conservation: Perspectives from population viability analysis models, in Orangutans: Geographic Variation in Behavioral Ecology and Conservation, S.A. Wich, et al., Editors. 2008, Oxford University Press. p. 0.
30. Comizzoli, P., J.L. Brown, and W.V. Holt, Reproductive Science as an Essential Component of Conservation Biology: New Edition. Adv Exp Med Biol, 2019. 1200: p. 1-10.
31. Maxted, N., Ex Situ, In Situ Conservation, in Encyclopedia of Biodiversity, S.A. Levin, Editor. 2001, Elsevier. p. 683-695.
32. Ajayi, S.S., Principles for the management of protected areas, in Wildlife conservation in Africa, S.S. Ajayi, Editor. 2019, Academic Press. p. 85-93.
33. Ford-Lloyd, B.V., Germplasm Conservation: biodiversity and conservation, in Encyclopedia of Applied Plant Sciences, B. Thomas, Editor. 2003, Elsevier. p. 49-56.
34. Wich, S., Meijaard, E., Marshall, A., Husson, S., Ancrenaz, M., Lacy, R., Singleton, I., Distribution and conservation status of the orang-utan (Pongo spp.) on Borneo and Sumatra: How many remain? Oryx, 2008. 42(3): p. 329-339.
35. Curran, L.M., et al., Lowland forest loss in protected areas of Indonesian Borneo. Science, 2004. 303(5660): p. 1000-3.
36. Russon, A.E., Orangutan rehabilitation adn reintroduction, in Orangutans: Geographic Variation in Behavioural Ecology & Conservation, S.S.U.A. S.A. Wich, T. Mitra Setia, C. P. van Schaik Editor. 2009, Oxford University Press: Oxford. p. 327-350.
37. Holt, W.V. and P. Comizzoli, Genome resource banking for wildlife conservation: promises and caveats. Cryo Letters, 2021. 42(6): p. 309-320.
38. Zainuddin, Z.Z., et al., Preliminary findings of age and male sexual characteristics andand potential effect to semen characteristics and cryopreservation of the critically endangered Bornean orangutan in Malaysia. Primates, 2022. 63(4): p. 377-386.
39. Iyyappan Jaisankar, A.V., Chandrakasan Sivaperuman, Biodiversity Conservation: Issues and Strategies for the Tropical Islands, in Biodiversity and Climate Change Adaptation in Tropical Islands, A.V. Chandrakasan Sivaperuman, Awnindra Kumar Singh, Iyyappan Jaisankar, Editor. 2018, Academic Press. p. 525-552.
40. Lueders, I. and W.R.T. Allen, Managed wildlife breeding-an undervalued conservation tool? Theriogenology, 2020. 150: p. 48-54.
41. Balmford, A., et al., Zoos and captive breeding. Science, 2011. 332(6034): p. 1149-50; author reply 1150-1.
42. Conde, D.A., et al., Conservation. An emerging role of zoos to conserve biodiversity. Science, 2011. 331(6023): p. 1390-1.
43. Herrick, J.R., Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol Reprod, 2019. 100(5): p. 1158-1170.
44. Thongphakdee, A., et al., Reproductive biology and biotechnologies in wild felids. Theriogenology, 2020. 150: p. 360-373.
45. Prochowska, S., et al., How Can We Introduce ART into Wild Felid Conservation in Practice? Joint Experience in Semen Collection from Captive Wild Felids in Europe. Animals (Basel), 2022. 12(7).
46. Hildebrandt, T.B., et al., The ART of bringing extinction to a freeze - History and future of species conservation, exemplified by rhinos. Theriogenology, 2021. 169: p. 76-88.
47. Comizzoli, P., et al., Advances in reproductive science for wild carnivore conservation. Reprod Domest Anim, 2009. 44 Suppl 2: p. 47-52.
48. Kaneko, T., et al., Sperm preservation by freeze-drying for the conservation of wild animals. PLoS One, 2014. 9(11): p. e113381.
49. Kaneko, T. and T. Serikawa, Successful long-term preservation of rat sperm by freeze-drying. PLoS One, 2012. 7(4): p. e35043.
50. Peris-Frau, P., et al., Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int J Mol Sci, 2020. 21(8).
51. Zandiyeh, S., et al., A novel approach for human sperm cryopreservation with AFPIII. Reprod Biol, 2020. 20(2): p. 169-174.
52. Andrea Palomar Rios, I.M.B., Causes and Impact of Cryopreservation-Associated Damage on Different Parameters of Human Spermatozoa and its Clinical Impact. EMJ Repro Health, 2019. 5(1): p. 100-109.
53. Crosier, A.E., et al., Cryopreservation of spermatozoa from wild-born Namibian cheetahs (Acinonyx jubatus) and influence of glycerol on cryosurvival. Cryobiology, 2006. 52(2): p. 169-81.
54. Smits, K., et al., Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids. Reprod Domest Anim, 2012. 47 Suppl 4: p. 239-48.
55. Comizzoli, P., Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J Androl, 2015. 17(4): p. 640-5.
56. Oldenhof, H., et al., Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod, 2013. 88(3): p. 68.
57. Hezavehei, M., et al., Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod Biomed Online, 2018. 37(3): p. 327-339.
58. Grötter, L.G., et al., Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod Domest Anim, 2019. 54(4): p. 655-665.
59. Castro, L.S., et al., Sperm cryodamage occurs after rapid freezing phase: flow cytometry approach and antioxidant enzymes activity at different stages of cryopreservation. J Anim Sci Biotechnol, 2016. 7: p. 17.
60. Wright, C., S. Milne, and H. Leeson, Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online, 2014. 28(6): p. 684-703.
61. Lemma, A., Effect of cryopreservon sperm quality and fertility, in Artificial insemination in farm animals, M. Manafi, Editor. 2011, InTech. p. 191-216.
62. Gadea, J., et al., Reduced glutathione content in human sperm is decreased after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology, 2011. 62(1): p. 40-6.
63. Walczak-Jedrzejowska, R., J.K. Wolski, and J. Slowikowska-Hilczer, The role of oxidative stress and antioxidants in male fertility. Cent European J Urol, 2013. 66(1): p. 60-7.
64. O’Flaherty, C., The Enzymatic Antioxidant System of Human Spermatozoa. Advances in Andrology, 2014. 2014: p. 626374.
65. Fraser, L., J. Strzeżek, and W. Kordan, Effect of freezing on sperm nuclear DNA. Reprod Domest Anim, 2011. 46 Suppl 2: p. 14-7.
66. Takeuchi, H., et al., Carboxylated Poly-l-Lysine as a Macromolecular Cryoprotective Agent Enables the Development of Defined and Xeno-Free Human Sperm Cryopreservation Reagents. Cells, 2021. 10(6).
67. Murphy, C., et al., Cholesterol-loaded-cyclodextrins improve the post-thaw quality of stallion sperm. Anim Reprod Sci, 2014. 145(3-4): p. 123-9.
68. Nowicka-Bauer, K. and M. Szymczak-Cendlak, Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci, 2021. 22(6).
69. Yeung, C.H., et al., Aquaporins in the human testis and spermatozoa - identification, involvement in sperm volume regulation and clinical relevance. Int J Androl, 2010. 33(4): p. 629-41.
70. Zhang, D., et al., Functions of water channels in male and female reproductive systems. Mol Aspects Med, 2012. 33(5-6): p. 676-90.
71. Chen, Q. and E.K. Duan, Aquaporins in sperm osmoadaptation: an emerging role for volume regulation. Acta Pharmacol Sin, 2011. 32(6): p. 721-4.
72. Prieto-Martínez, N., et al., Aquaglyceroporins 3 and 7 in bull spermatozoa: identification, localisation and their relationship with sperm cryotolerance. Reprod Fertil Dev, 2017. 29(6): p. 1249-1259.
73. Morató, R., et al., Aquaporin 11 is related to cryotolerance and fertilising ability of frozen-thawed bull spermatozoa. Reprod Fertil Dev, 2018. 30(8): p. 1099-1108.
74. Prieto-Martínez, N., et al., Relationship of aquaporins 3 (AQP3), 7 (AQP7), and 11 (AQP11) with boar sperm resilience to withstand freeze-thawing procedures. Andrology, 2017. 5(6): p. 1153-1164.
75. Pellavio, G. and U. Laforenza, Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie, 2021. 188: p. 45-51.
76. Blässe, A.K., et al., Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation. Theriogenology, 2012. 78(6): p. 1312-20.
77. Micheli, L., et al., Evaluation of enzymatic and non-enzymatic antioxidants in seminal plasma of men with genitourinary infections, varicocele and idiopathic infertility. Andrology, 2016. 4(3): p. 456-64.
78. Wang, Y., et al., Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol, 2018. 217(6): p. 1915-1928.
79. Matés, J.M., C. Pérez-Gómez, and I. Núñez de Castro, Antioxidant enzymes and human diseases. Clin Biochem, 1999. 32(8): p. 595-603.
80. Jeulin, C., et al., Catalase activity in human spermatozoa and seminal plasma. Gamete Res, 1989. 24(2): p. 185-96.
81. Llavanera, M., et al., Glutathione S-Transferases Play a Crucial Role in Mitochondrial Function, Plasma Membrane Stability and Oxidative Regulation of Mammalian Sperm. Antioxidants (Basel), 2020. 9(2).
82. Raijmakers, M.T., et al., Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril, 2003. 79(1): p. 169-72.
83. Rhee, S.G., Overview on Peroxiredoxin. Mol Cells, 2016. 39(1): p. 1-5.
84. O'Flaherty, C. and A.R. de Souza, Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod, 2011. 84(2): p. 238-47.
85. Amidi, F., et al., The role of antioxidants in sperm freezing: a review. Cell Tissue Bank, 2016. 17(4): p. 745-756.
86. Roca, J., et al., Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. Theriogenology, 2003. 60(1): p. 77-87.
87. Maxwell, W.M. and T. Stojanov, Liquid storage of ram semen in the absence or presence of some antioxidants. Reprod Fertil Dev, 1996. 8(6): p. 1013-20.
88. Gadea, J., et al., Cooling and freezing of boar spermatozoa: supplementation of the freezing media with reduced glutathione preserves sperm function. J Androl, 2005. 26(3): p. 396-404.
89. Hu, J.H., et al., The cryoprotective effects of ascorbic acid supplementation on bovine semen quality. Anim Reprod Sci, 2010. 121(1-2): p. 72-7.
90. Branco, C.S., et al., Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology, 2010. 60(2): p. 235-7.
91. Kalthur, G., et al., Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw-induced DNA damage. Fertil Steril, 2011. 95(3): p. 1149-51.
92. O'Flaherty, C., M. Beconi, and N. Beorlegui, Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia, 1997. 29(5): p. 269-75.
93. Cerolini, S., et al., Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim Reprod Sci, 2000. 58(1-2): p. 99-111.
94. Bilodeau, J.F., et al., Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology, 2001. 56(2): p. 275-86.
95. Szcześniak-Fabiańczyk, B., et al., Effect of antioxidants added to boar semen extender on the semen survival time and sperm chromatin structure. Reprod Biol, 2003. 3(1): p. 81-7.
96. Rarani, F.Z., F. Golshan-Iranpour, and G.R. Dashti, Correlation between sperm motility and sperm chromatin/DNA damage before and after cryopreservation and the effect of folic acid and nicotinic acid on post-thaw sperm quality in normozoospermic men. Cell Tissue Bank, 2019. 20(3): p. 367-378.
97. Zhang, J., D. Robinson, and P. Salmon, A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production. Biotechnol Bioeng, 2006. 95(6): p. 1188-97.
98. Dorostkar, K., S.M. Alavi-Shoushtari, and A. Mokarizadeh, Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis). Vet Res Forum, 2012. 3(4): p. 263-8.
99. Salmon, V.M., P. Leclerc, and J.L. Bailey, Cholesterol-Loaded Cyclodextrin Increases the Cholesterol Content of Goat Sperm to Improve Cold and Osmotic Resistance and Maintain Sperm Function after Cryopreservation. Biol Reprod, 2016. 94(4): p. 85.
100. Patel, M., et al., Seminal Plasma Heparin Binding Proteins Improve Semen Quality by Reducing Oxidative Stress during Cryopreservation of Cattle Bull Semen. Asian-Australas J Anim Sci, 2016. 29(9): p. 1247-55.
101. Chang, Y.-C., Improvement of cryopreservation protocol on chimpanzee sperm, in Graduate Institute of Veterinary Medicine. 2021, National Taiwan University: Taipei. p. 82.
102. Yu, J.F., et al., The effects of type I collagenase on the degelification of chimpanzee (Pan troglodytes) semen plug and sperm quality. BMC Vet Res, 2018. 14(1): p. 58.
103. O'Flaherty, C. and E. Scarlata, OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The protection of mammalian spermatozoa against oxidative stress. Reproduction, 2022. 164(6): p. F67-f78.
104. Kowalowka, M., et al., Extracellular superoxide dismutase of boar seminal plasma. Reprod Domest Anim, 2008. 43(4): p. 490-6.
105. Pournasir, M., et al., Glutathione peroxidase 3 (extracellular isoform) levels and functional polymorphisms in fertile and infertile men. Middle East Fertility Society Journal, 2021. 26(1): p. 13.
106. Lee, H., et al., Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. Antioxidants (Basel), 2020. 9(12).
107. Kwon, W.S., et al., Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep, 2015. 5: p. 13821.
108. Zini, A., E. de Lamirande, and C. Gagnon, Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl, 1993. 16(3): p. 183-8.
109. Gong, S., et al., Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile men. J Androl, 2012. 33(6): p. 1342-51.
110. Ozkosem, B., et al., Absence of Peroxiredoxin 6 Amplifies the Effect of Oxidant Stress on Mobility and SCSA/CMA3 Defined Chromatin Quality and Impairs Fertilizing Ability of Mouse Spermatozoa1. Biology of Reproduction, 2016. 94(3).
111. Moretti, E., et al., Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Syst Biol Reprod Med, 2012. 58(3): p. 129-35.
112. Yeung, C.-H., et al., Aquaporin Isoforms Involved in Physiological Volume Regulation of Murine Spermatozoa1. Biology of Reproduction, 2009. 80(2): p. 350-357.
113. Prieto-Martínez, N., et al., Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality. Reprod Fertil Dev, 2016. 28(6): p. 663-72.
114. Direito, I., et al., Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci, 2016. 73(8): p. 1623-40.
115. Moore, M., et al., Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5. Exp Eye Res, 2000. 70(5): p. 557-62.
116. Mirabella, N., et al., Differential abundances of AQP3 and AQP5 in reproductive tissues from dogs with and without cryptorchidism. Anim Reprod Sci, 2021. 228: p. 106735.
117. Yeung, C.H. and T.G. Cooper, Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction, 2010. 139(1): p. 209-16.
118. Barfield, J.P., In Vitro Production of Bison Embryos. Methods Mol Biol, 2019. 2006: p. 165-177.
119. Kenny, D.E., et al., Negative-pressure pulmonary edema complicated by acute respiratory distress syndrome in an orangutan (Pongo pygmaeus abelii). J Zoo Wildl Med, 2003. 34(4): p. 394-9.
120. Chen, F.C. and W.H. Li, Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet, 2001. 68(2): p. 444-56.
121. Riva, N.S., et al., Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assist Reprod, 2018. 22(4): p. 331-337.
122. Arav, A., et al., Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology, 1996. 33(6): p. 589-99.
123. Zeron, Y., et al., Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology, 1999. 38(1): p. 35-42.
124. Said, T.M., A. Gaglani, and A. Agarwal, Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online, 2010. 21(4): p. 456-62.
125. Bergeron, A. and P. Manjunath, New insights towards understanding the mechanisms of sperm protection by egg yolk and milk. Mol Reprod Dev, 2006. 73(10): p. 1338-44.
126. Larson, J.M., et al., An intrauterine insemination-ready cryopreservation method compared with sperm recovery after conventional freezing and post-thaw processing. Fertil Steril, 1997. 68(1): p. 143-8.
127. UYSAL, O., T. KORKMAZ, and H. TOSUN, Effect of bovine serum albumine on freezing of canine semen. Indian veterinary journal, 2005. 82(1): p. 97-98.
128. Taverna, M., et al., Specific antioxidant properties of human serum albumin. Ann Intensive Care, 2013. 3(1): p. 4.
129. Druart, X., et al., Proteomic characterization and cross species comparison of mammalian seminal plasma. J Proteomics, 2013. 91: p. 13-22.
130. Arnason, U., et al., Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J Mol Evol, 1996. 43(6): p. 650-61.
131. Escudeiro, A., et al., Conservation, Divergence, and Functions of Centromeric Satellite DNA Families in the Bovidae. Genome Biology and Evolution, 2019. 11(4): p. 1152-1165.
132. Jiang, Y., et al., The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 2014. 344(6188): p. 1168-1173.
133. Suntsova, M.V. and A.A. Buzdin, Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics, 2020. 21(Suppl 7): p. 535.
134. O.M. Ighodaro , O.A.A., First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 2018. 54(4): p. 287-293.
135. Llavanera, M., et al., Exploring Seminal Plasma GSTM3 as a Quality and In Vivo Fertility Biomarker in Pigs-Relationship with Sperm Morphology. Antioxidants (Basel), 2020. 9(8).
136. Garriga, F., et al., Glutathione S-transferase Mu 3 is associated to in vivo fertility, but not sperm quality, in bovine. Animal, 2022. 16(9): p. 100609.
137. Llavanera, M., et al., GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J Anim Sci Biotechnol, 2019. 10: p. 61.
138. Xin, L., et al., Peroxiredoxin 6 translocates to the plasma membrane of human sperm under oxidative stress during cryopreservation. Cryobiology, 2021. 100: p. 158-163.
139. Iuchi, Y., et al., Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J, 2009. 419(1): p. 149-58.
140. Rao, M.J., et al., Antioxidant Metabolites in Primitive, Wild, and Cultivated Citrus and Their Role in Stress Tolerance. Molecules, 2021. 26(19).
141. Zhang, W., et al., Beneficial Effect of Proline Supplementation on Goat Spermatozoa Quality during Cryopreservation. Animals (Basel), 2022. 12(19).
142. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
143. Brown, S.G., et al., Human sperm ion channel (dys)function: implications for fertilization. Human Reproduction Update, 2019. 25(6): p. 758-776.
144. Yeung, C.H., Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J Androl, 2010. 12(4): p. 490-9.
145. Moss, F.J., et al., Aquaporin-7: A Dynamic Aquaglyceroporin With Greater Water and Glycerol Permeability Than Its Bacterial Homolog GlpF. Front Physiol, 2020. 11: p. 728.
146. Agca, Y., et al., Chimpanzee (Pan troglodytes) Spermatozoa Osmotic Tolerance and Cryoprotectant Permeability Characteristics. J. andrology, 2013. 26(4): p. 470-477.
147. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
148. Rodrigues, C., et al., Human Aquaporin-5 Facilitates Hydrogen Peroxide Permeation Affecting Adaption to Oxidative Stress and Cancer Cell Migration. Cancers (Basel), 2019. 11(7).
149. Agarwal, A., R.A. Saleh, and M.A. Bedaiwy, Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril, 2003. 79(4): p. 829-43.
150. Morishita, Y., et al., Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol, 2005. 25(17): p. 7770-9.
151. Correa, J.R., G. Heersche, and P.M. Zavos, Sperm membrane functional integrity and response of frozen-thawed bovine spermatozoa during the hypoosmotic swelling test incubation at varying temperatures. Theriogenology, 1997. 47(3): p. 715-21.
152. Correa, J.R. and P.M. Zavos, Frozen-thawed bovine spermatozoa diluted by slow or rapid dilution method: measurements on occurrence of osmotic shock and sperm viability. Theriogenology, 1995. 44(7): p. 963-71.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90641-
dc.description.abstract歷史上第六次物種大滅絕已經在進行中,當前物種滅絕速度是正常速度的1000倍。由於黑猩猩(Pan troglodytes)和紅毛猩猩(Pongo spp.)正歷經此物種滅絕的現象,牠們的基因多樣性也正面臨相同的風險。因此,聚焦於保護和維持遺傳多樣性的保育工作是迫切需要的。然而,由於這些物種具有嚴格的社會階級制度,加上重新安置個體時的複雜性,如何在動物園內保持一個基因多樣性的圈養族群一直是一個具有高度挑戰性的難題。精子冷凍保存是一種能夠克服上述障礙的有用工具。它不僅提供了一種有效的方法來保存和運輸珍貴的遺傳物質,也有助於後續輔助生殖技術的發展和執行。然而,在冷凍保存過程中,精子細胞遭受許多損傷,特別是由氧化壓力和滲透壓所引起的各種損傷。因此,本研究的主要目的是提升紅毛猩猩精液冷凍、解凍後之品質。我們實驗室先前的研究已經建立一套能夠降低黑猩猩精液冷凍損傷的冷凍保存方案。由於黑猩猩和紅毛猩猩為同屬人科的近似物種,因此,我們假設應用於黑猩猩的冷凍保存方案將能改善紅毛猩猩整體精液冷凍、解凍後之品質。然而,將黑猩猩的冷凍保存方案應用於紅毛猩猩時,結果並不理想(總活動力26.8%)。因此,我們試著透過蛋白質體學和功能性分析來了解兩物種間潛在的差異。我們首次完整分析了黑猩猩和紅毛猩猩精子和精漿的蛋白質組成與其功能。藉由氧化壓力防禦機制的功能性分析顯示,黑猩猩精漿中的總抗氧化能力和超氧化物歧化酶活性(superoxide dismutase)明顯高於紅毛猩猩的精漿。雖然紅毛猩猩的麩胱甘肽硫轉移酶(glutathione S-transferase)活性明顯高於黑猩猩的精漿,然而而麩胱甘肽過氧化物酶(glutathione peroxidase)活性並無顯著差異。這些結果證實,黑猩猩精漿中在抵禦氧化壓力方面具有較紅毛猩猩更強的能力。
在滲透壓防禦機制的功能性分析結果顯示,紅毛猩猩的成熟精子細胞中存在與體容量調節無關的水通道蛋白(AQP5和AQP11),而黑猩猩精子細胞則表現出與體容量調節相關的AQP7。此外,藉由不同滲透壓濃度試驗,檢測精子細胞運動能力時,我們發現紅毛猩猩在低張條件下的運動能力顯著低於黑猩猩。因此我們推論紅毛猩猩不具有對抗低滲透壓所導致之損傷的有效防禦機制。總結來說,紅毛猩猩的精子與精漿較不具有抗氧化和抗滲透壓力的能力,因此,我們建議使用抗氧化劑並改善解凍過程將可提高紅毛猩猩精液冷凍、解凍後的品質
zh_TW
dc.description.abstractThe 6th mass extinction is already happening as the current rate of species extinction is 1000 times the normal rate. Chimpanzee (Pan troglodytes) and Orangutan (Pongo spp.) are examples of this tragic phenomenon, risking the genetic diversity of the species. Therefore, conservation efforts focusing on protecting and maintaining this genetic diversity are eminently needed. However, due to the hierarchical dominant behavior of the animals and the complexity of their relocation, keeping a genetically diverse captive zoo population has proven challenging. Sperm cryopreservation is a useful tool able to overcome these obstacles. It provides an effective way to not only preserve and transport valuable genetic resources but also allow the subsequent development and execution of assisted reproductive procedures. However, during the cryopreservation process, the sperm cells suffer many damages, especially resulting from oxidative (OxS) and osmotic (OsS) stresses. Therefore, the main aim of the present research is to improve the post-thaw (P-T) quality of orangutan ejaculates. Previous research in our laboratory has developed a cryopreservation protocol capable of preventing cryo-damages in chimpanzee. As chimpanzee and orangutan are two close members of the Hominidae family, we hypothesized that applying the cryopreservation protocol used in chimpanzee would improve the overall orangutan P-T quality. Unfortunately, when applying the chimpanzee cryopreservation protocol to orangutan, the outcome was not ideal (26.8% total motility). Therefore, comprehensive proteomic and functional analyses were used to understand the potential causes behind this unsuccessful outcome. We analyzed, for the first time, the complete proteome of spermatozoa and seminal plasma in both chimpanzee and orangutan. A multitude of differences in the defenses against OxS and OsS were revealed. Furthermore, in the functional analysis of the defenses against OxS, total antioxidant capacity and superoxide dismutase were significantly higher in chimpanzee seminal plasma (SP), glutathione S-transferase activity was significantly higher in orangutan SP, and no differences were detected in glutathione peroxidase activity. Altogether those results indicate that chimpanzee present higher OxS defenses than orangutan, especially in its SP. In the functional analysis of the OsS defenses, orangutan presented aquaporins (AQP) unrelated to volume regulation in mature sperm cells (AQP5 and AQP11), whereas chimpanzee presented AQP7, which is known to be related to volume regulation. Furthermore, when motility was measured under different osmolarities, orangutan presented significantly lower motility under hypoosmotic conditions. Overall, these results lead us to believe that orangutan does not present efficient defenses against hypoosmotic shock. In conclusion, orangutan’s lesser OxS and OsS defenses propels us to recommend the use of antioxidants and modification of thawing process to improve the P-T quality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:59:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:59:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ......................................................................................................................... iii
Abstract ........................................................................................................................... v
I. Introduction ............................................................................................................. 1
1. Concept of species extinction ............................................................................... 1
2. Conservation strategies for endangered species ................................................... 4
3. Sperm cryopreservation and cryodamages ........................................................... 7
a. Cryodamages .................................................................................................... 7
b. Regulation of sperm osmosis .......................................................................... 11
c. Oxidative stress defense mechanisms............................................................. 12
4. Conservation of Great apes................................................................................. 16
5. Aims of study ..................................................................................................... 16
II. Materials and Methods .................................................................................... 19
1. Study flow .......................................................................................................... 19
2. Animal population .............................................................................................. 20
3. Semen collection and animal training ................................................................ 20
4. Chemicals and reagents ...................................................................................... 23
5. Semen cryopreservation ..................................................................................... 23
6. Post-thaw analysis .............................................................................................. 23
7. Proteomic analysis .............................................................................................. 24
8. Oxidative stress defense mechanisms evaluation ............................................... 26
a. Total antioxidant assay ................................................................................... 26
b. Antioxidant enzyme assays ............................................................................ 27
9. Osmotic stress defense mechanisms evaluation ................................................. 29
a. Osmotic tolerance curve ................................................................................. 29
b. Immunofluorescent staining for Aquaporins .................................................. 31
10. Statistical analysis .......................................................................................... 32
III. Results ................................................................................................................ 34
1. Cryopreservation of orangutan ejaculates .......................................................... 34
2. Proteomic analysis .............................................................................................. 35
a. General proteomic profile differences between chimpanzee and orangutan ejaculates ................................................................................................................. 36
b. Proteomic profile of oxidative stress defense mechanisms ............................ 43
c. Proteomic profile of osmotic stress defense mechanisms .............................. 48
3. Oxidative stress defense mechanisms................................................................. 51
a. Total antioxidant assay ................................................................................... 51
b. Antioxidant enzymes assays ........................................................................... 52
4. Osmotic stress defense mechanisms ................................................................... 55
a. Osmotic tolerance curve ................................................................................. 55
b. Immunofluorescence staining for aquaporins................................................. 57
IV. Discussion .......................................................................................................... 60
V. Conclusion ......................................................................................................... 69
List of abbreviations ..................................................................................................... 70
References...................................................................................................................... 74
-
dc.language.isoen-
dc.title紅毛猩猩與黑猩猩精子冷凍保存及精液蛋白質組比較zh_TW
dc.titleComparisons of sperm cryopreservation and semen proteome between orangutan (Pongo spp.) and chimpanzee (Pan troglodytes)en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李勝祥;張惠雯;林盈宏zh_TW
dc.contributor.oralexamcommitteeSheng-Hsiang Li;Hui-Wen Chang;Ying-Hung Linen
dc.subject.keyword黑猩猩,紅毛猩猩,精子,冷凍保存,蛋白質體學,氧化壓力,滲透壓力,zh_TW
dc.subject.keywordChimpanzee,Orangutan,Sperm,Cryopreservation,Proteomics,Oxidative Stress,Osmotic Stress,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202302708-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved