請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90639
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳國慶 | zh_TW |
dc.contributor.advisor | Kuo-Ching Chen | en |
dc.contributor.author | 蘇莛福 | zh_TW |
dc.contributor.author | Tyng-Fwu Su | en |
dc.date.accessioned | 2023-10-03T16:58:37Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-01 | - |
dc.identifier.citation | [1] X. Luo, J. Wang, M. Dooner and J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Appl. Energy 137 (2015) 511-536, https://doi.org/10.1016/j.apenergy.2014.09.081.
[2] B. Diouf and R. Pode, "Potential of lithium-ion batteries in renewable energy," Renewable Energy 76 (2015) 378-380, https://doi.org/10.1016/j.renene.2014.11.058. [3] Z. Xu, J. Wang, P. D. Lund and Y. Zhang, "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy 225 (2021) 120160, https://doi.org/10.1016/j.energy.2021.120160. [4] J. Schmitt, M. Rehm, A. Karger and A. Jossen, "Capacity and degradation mode estimation for lithium-ion batteries based on partial charging curves at different current rates," J. Energy Storage 59 (2023) 106517, https://doi.org/10.1016/j.est.2022.106517. [5] S. Erol, M. E. Orazem and R. P. Muller, "Influence of overcharge and over-discharge on the impedance response of LiCoO2| C batteries," J. Power Sources 270 (2014) 92-100, https://doi.org/10.1016/j.jpowsour.2014.07.038. [6] L. Zhang, Y. Ma, X. Cheng, Y. Cui, T. Guan, Y. Gao, C. Du, G. Yin, F. Lin and D. Nordlund, "Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling," J. Power Sources 329 (2016) 255-261, https://doi.org/10.1016/j.jpowsour.2016.08.030. [7] M. A. Roscher, J. Assfalg and O. S. Bohlen, "Detection of utilizable capacity deterioration in battery systems," in IEEE Transactions on Vehicular Technology 60 (2011) 98-103, https://doi.org/10.1109/TVT.2010.2090370. [8] K. S. Ng, C.-S. Moo, Y.-P. Chen and Y.-C. Hsieh, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Appl. Energy 86 (2009) 1506-1511, https://doi.org/10.1016/j.apenergy.2008.11.021. [9] C. Campestrini, T. Heil, S. Kosch and A. Jossen, "A comparative study and review of different Kalman filters by applying an enhanced validation method," J. Energy Storage 9 (2016) 142-159, https://doi.org/10.1016/j.est.2016.10.004. [10] W. Zhang, L. Wang, L. Wang and C. Liao, "An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries," J. Power Sources 402 (2018) 422-433, https://doi.org/10.1016/j.jpowsour.2018.09.016. [11] C. Weng, J. Sun and H. Peng, "A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring," J. Power Sources 258 (2014) 228-237, https://doi.org/10.1016/j.jpowsour.2014.02.026. [12] E. Chemali, P.J. Kollmeyer, M. Preindl, A. Emadi, "State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach," J. Power Sources 400 (2018) 242-255, https://doi.org/10.1016/j.jpowsour.2018.06.104. [13] A. Bhattacharjee, A. Verma, S. Mishra and T. K. Saha, "Estimating state of charge for xEV batteries using 1D convolutional neural networks and transfer learning," in IEEE Transactions on Vehicular Technology 70 (4) (Apr. 2021) 3123-3135, https://doi.org/10.1109/TVT.2021.3064287. [14] M. Fasahat and M. Manthouri, "State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks," J. Power Sources 469 (2020) 228375, https://doi.org/10.1016/j.jpowsour.2020.228375. [15] Z. Deng, X. Hu, X. Lin, Y. Che, L. Xu and W. Guo, "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy 205 (2020) 118000, https://doi.org/10.1016/j.energy.2020.118000. [16] A. Eddahech, O. Briat and J. M. Vinassa, "Determination of lithium-ion battery state-of-health based on constant-voltage charge phase," J. Power Sources 258 (2014) 218-227, https://doi.org/10.1016/j.jpowsour.2014.02.020. [17] K. K. Sadabadi, P. Ramesh, P. Tulpule, Y. Guezennec and G. Rizzoni , "Model-based state of health estimation of a lead-acid battery using step-response and emulated in-situ vehicle data," J. Energy Storage 36 (2021) 102353, https://doi.org/10.1016/j.est.2021.102353. [18] H. Pan, Z. Lü, H. Wang and H. Wei, "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine," Energy 160 (2018) 466-477, https://doi.org/10.1016/j.energy.2018.06.220. [19] S. Zhang, B. Zhai, X. Guo, K. Wang, N. Peng and X. Zhang, "Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks," J. Energy Storage 26 (2019) 100951, https://doi.org/10.1016/j.est.2019.100951. [20] P. Tagade, K. S. Hariharan, S. Ramachandran, A. Khandelwal, A. Naha, S. M. Kolake and S. Han, "Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis," J. Power Sources 445 (2020) 227281, https://doi.org/10.1016/j.jpowsour.2019.227281. [21] B. Jiang, J. Zhu, X. Wang, X. Wei, W. Shang and H. Dai, "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Appl. Energy 322 (2022) 119502, https://doi.org/10.1016/j.apenergy.2022.119502. [22] Y.-F. Luo and K.-Y. Lu, "An online state of health estimation technique for lithium-ion battery using artificial neural network and linear interpolation," J. Energy Storage 52 (2022) 105062, https://doi.org/10.1016/j.est.2022.105062. [23] M. Faraji-Niri, M. Rashid, J. Sansom, M. Sheikh, D. Widanage and J. Marco, "Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques," J. Energy Storage 58 (2023) 106295, https://doi.org/10.1016/j.est.2022.106295. [24] I. Babaeiyazdi, R. Z. Afshin and S. Shokrzadeh, "State of charge prediction of EV li-ion batteries using EIS: a machine learning approach," J. Energy 223 (2021) 120116, https://doi.org/10.1016/j.energy.2021.120116. [25] Y. Li, M. Maleki, S. Banitaan and M. Chen, "Data-driven state of charge estimation of li-ion batteries using supervised mamchine learning methods," in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (2021) 873-878, https://doi.org/10.1109/ICMLA52953.2021.00144. [26] M. Messing, T. Shoa, R. Ahmed and S. Habibi, "Battery SoC estimation from EIS using neural nets," in 2020 IEEE Transportation Electrification Conference & Expo (ITEC) (2020) 588-593, https://doi.org/10.1109/ITEC48692.2020.9161523. [27] W. Zhang, T. Li, W. Wu, N. Ouyang and G. Huang, "Data-driven state of health estimation in retired battery based on low and medium-frequency electrochemical impedance spectroscopy," Measurement 322 (2023) 112597, https://doi.org/10.1016/j.measurement.2023.112597. [28] Y. Fu, J. Xu, M. Shi and X. Mei, "A fast impedance calculation-based battery state-of-health estimation method," in IEEE Transactions on Industrial Electronics .69 (2022) 7019-7028, https://doi.org/10.1109/TIE.2021.3097668. [29] X. Su, B. Sun, J. Wang, W. Zhang, S. Ma, X. He and H. Ruan, "Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression," Appl. Energy 322 (2022) 119516, https://doi.org/10.1016/j.apenergy.2022.119516. [30] K. Luo, H. Zheng and Z. Shi, "A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network," J. Power Source 576 (2023) 233139, https://doi.org/10.1016/j.jpowsour.2023.233139. [31] Y. Zhang, C. Y. Wang and X. Tang, "Cycling degradation of an automotive LiFePO4 lithium-ion battery," J. Power Source 196 (2011) 1513-1520, https://doi.org/10.1016/j.jpowsour.2010.08.070v. [32] W. Waag, S. Käbitz, D.U. Sauer, "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Appl. Energy 102 (2013) 885-897, https://doi.org/10.1016/j.apenergy.2012.09.030. [33] M. Gaberscek, R. Dominko and J. Jamnik, "The meaning of impedance measurements of LiFePO4 cathodes: a linearity study," J. Power Source 174 (2007) 944-948, https://doi.org/10.1016/j.jpowsour.2007.06.205. [34] A. Barai, G. H. Chouchelamane, Y. Guo, A. McGordon and P. Jennings, "A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy," J. Power Sources 280 (2015) 74-80, https://doi.org/10.1016/j.jpowsour.2015.01.097. [35] F. M. Kindermann, A. Noel, S. V. Erhard and A. Jossen, "Long-term equalization effects in li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements," Electrochim. Acta 185 (2015) 107-116, https://doi.org/10.1016/j.electacta.2015.10.108. [36] M. Messing, T. Shoa and S. Habibi, "Lithium-ion battery relaxation effects," in 2019 IEEE Transportation Electrification Conference and Expo (ITEC) (2019) 1-6, https://doi.org/10.1109/ITEC.2019.8790449. [37] M. Messing, T. Shoa and S. Habibi, "Electrochemical impedance spectroscopy with practical rest-times for battery management applications," IEEE Access 9 (2021) 66989-66998, https://doi.org/10.1109/ACCESS.2021.3077211. [38] M. Messing, T. Shoa and S. Habibi, "Estimating battery state of health using electrochemical impedance spectroscopy and the relaxation effect," J. Energy Storage 43 (2021) 103210, https://doi.org/10.1016/j.est.2021.103210. [39] T. F. Landinger, G. Schwarzberger and A. Jossen, "High frequency impedance characteristics of cylindrical lithium-ion cells: Physical-based modeling of cell state and cell design dependencies," J. Power Sources 488 (2021) 229463, https://doi.org/10.1016/j.jpowsour.2021.229463. [40] N. Meddings, M. Heinrich, F. Overney, J. S. Lee, V. Ruiz, E. Napolitano, S. Seitz, G. Hinds, R. Raccichini, M. Gaberšček and J. Park, "Application of electrochemical impedance spectroscopy to commercial li-ion cells: a review," J. Power Sources 480 (2020) 228742, https://doi.org/10.1016/j.jpowsour.2020.228742. [41] P. J. Osswald, S. Erhard, A. Noel, P. Keil, F. Kindermann, H. Hoster and A. Jossen, "Current density distribution in cylindrical li-Ion cells during impedance measurements," J. Power Source 314 (2016) 93-101, https://doi.org/10.1016/j.jpowsour.2016.02.070. [42] A. Barai, K. Uddin, W. D. Widanage, A. McGordon and P. Jennings, "A study of the influence of measurement timescale on internal resistance characterisation methodologies for lithium-ion cells," Sci Rep 8 (2018) 1–13, https://doi.org/10.1038/s41598-017-18424-5. [43] T. Li, D. Wang and H. Wang, "New method for acquisition of impedance spectra from charge/discharge curves of lithium-ion batteries," J. Power Source 535 (2022) 231483, https://doi.org/10.1016/j.powsour.2022.231483. [44] S. F. Schuster, M. J. Brand, C. Campestrini, M. Gleissenberger and A. Jossen, "Correlation between capacity and impedance of lithium-ion cells during calendar and cycle life," J. Power Sources 305 (2016) 191-199, https://doi.org/10.1016/j.jpowsour.2015.11.096. [45] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, H. Wang, W. Wang and M. Wang, "A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature," Energies 11 (2018) 2408, https://doi.org/10.3390/en11092408. [46] P. Pillai, S. Sundaresan, P. Kumar, K. R. Pattipati and B. Balasingam, "Open-circuit voltage models for battery management systems: a review," Energies 15 (2022) 6803, https://doi.org/10.3390/en15186803. [47] Q. Q. Yu, R. Xiong, L. Y. Wang and C. Lin, "A comparative study on open circuit voltage models for lithium-ion batteries," Chin. J. Mech. Eng. 31, 65 (2018), https://doi.org/10.1186/s10033-018-0268-8. [48] D. Theuerkauf and L. Swan, "Characteristics of open circuit voltage relaxation in lithium-ion batteries for the purpose of state of charge and state of health analysis," Batteries 8 (2022) 77, https://doi.org/10.3390/batteries8080077. [49] S. Xin, H. Shan, S. B. Vilsen, J. Meng, R. Teodorescu and D. I. Stroe, "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Appl. Energy 300 (2021) 117346, https://doi.org/10.1016/j.apenergy.2021.117346. [50] X. Hu, Y. Zheng, X. Lin and Y. Xie, "Optimal multistage charging of NCA/graphite lithium-ion batteries based on electrothermal-aging dynamics," in IEEE Transactions on Transportation Electrification 6 (2020) 19710100, https://doi.org/10.1109/TTE.2020.2977092. [51] K. S. Mawonou, A. Eddahech, D. Dumur, D. Beauvois and E. Godoy, "State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking," J. Power Sources 484 (2021) 229154, https://doi.org/10.1016/j.jpowsour.2020.229154. [52] C. Li, F. Xiao and Y. Fan, "An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit," Energies 12 (2019) 1592, https://doi.org/10.3390/en12091592. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90639 | - |
dc.description.abstract | 準確監測鋰離子電池 (lithium ion batteries, LIBs) 的健康度 (state of health, SOH) 和電池電量 (state of charge, SOC) 是至關重要,特別是在電動汽車依賴這些電池作為主要能源的情況下。電化學阻抗譜 (electrochemical impedance spectroscopy, EIS) 已成為非侵入式探索電池阻抗的強大技術,該阻抗與其兩種電池狀態直接相關。然而,由於需要全頻率測量以及電池需要長弛豫時間以達完全放鬆狀態的要求,古典 EIS 測試十分耗時。為了解決這些弱點,本研究提出了一種新方法:非準靜態 EIS 測量。該方法涉及在充電或放電過程結束時,在短暫弛豫時間後立即對 LIBs 進行 EIS 測試。通過採用這種方法,我們觀察到高頻和隨後的部分中頻阻抗對弛豫時間的影響性很低。同時,此區段的阻抗隨著電池狀態的不同而變化。利用該頻率區段內的阻抗以及端電壓,我們可以預測電池的 SOH 和 SOC。為了實現這一目標,我們採用高斯過程回歸模型 (Gaussian process regression, GPR),以阻抗和端電壓作為輸入。值得注意的是,我們的結果表明該方法可以將輸入維度減少到 14 以下,並且獲得必要測量所需的時間可以顯著縮短到不到 7 s。此外,我們對電池 SOH 和 SOC 的預測具有很高的準確性,均方根誤差分別低於 2.66% 和 1.57%。這些發現凸顯了我們提出的方法在高效可靠地監測 LIBs 方面的潛力,從而能夠增強電動汽車應用中的性能評估和優化。通過採用非準靜態 EIS,我們可以克服與古典 EIS 測試相關的時間限制,從而有助於更快速、更準確地監測電池 SOH 和 SOC。這一進步有望推動電動汽車領域的發展並優化其能源管理系統。 | zh_TW |
dc.description.abstract | Accurate monitoring of the SOH and SOC in LIBs is of utmost importance, particularly in the context of electric vehicles relying on these batteries as their primary energy source. EIS has emerged as a powerful technique for exploring the impedances of the battery, which are directly linked to its two states. However, classical EIS testing is time-consuming due to the need for broadband frequency measurements and the requirement of a full relaxation time for the battery. To address these weaknesses, this study proposes a novel approach: non-quasi-static EIS. This method involves conducting the EIS test on LIBs immediately after a short relaxation time following the charging or discharging process. By employing this approach, we have observed that the high- and subsequent partial medium-frequency impedances exhibit minimal dependence on the relaxation period. At the same time, their values vary with the battery states. Exploiting the impedance values within this frequency range, along with the terminal voltage, we can estimate the SOH and SOC of the battery. To achieve this, we employ a GPR model, with the impedance values and terminal voltage as inputs. Remarkably, our results indicate that the input dimension can be reduced to below 14, and the time required to obtain the necessary measurements can be significantly shortened to less than 7 seconds. Furthermore, our estimations of the SOH and SOC exhibit high accuracy, with root mean square errors below 2.66% and 1.57%, respectively. These findings highlight the potential of our proposed method for efficient and reliable monitoring of LIBs, enabling enhanced performance assessment and optimization in electric vehicle applications. By adopting this approach, we can overcome the time constraints associated with classical EIS testing, thereby facilitating more rapid and accurate evaluations of battery health and charge levels. This advancement holds promise for advancing the field of electric vehicles and optimizing their energy management systems. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:58:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:58:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 序章 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 論文架構 2 第二章 文獻回顧 3 2.1 電池狀態預測方法 3 2.2 基於 EIS 的數據驅動方法的電池狀態預測 8 2.3 EIS 與弛豫時間之相關的研究 12 第三章 電化學阻抗譜 17 3.1 古典EIS 17 3.2 非準靜態 EIS 21 第四章 實驗架設與步驟 24 4.1 實驗儀器與電池資訊 24 4.2 實驗流程 24 4.2.1 活化測試 25 4.2.2 循環老化測試 25 4.2.3 電池容量測試 26 4.2.4 非準靜態EIS 測試 26 第五章 快速預測電池狀態之方法 28 5.1 特徵提取 28 5.2 預測模型 31 5.3 模型評估 31 第六章 結果與討論 32 6.1 實驗結果與討論 32 6.1.1 阻抗特徵 32 6.1.2 端電壓特徵 36 6.2 預測結果與討論 37 第七章 結論與未來展望 43 7.1 結論 43 7.2 未來展望 44 第八章 參考文獻 45 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用非準靜態電化學阻抗譜和端電壓快速監測鋰離子電池狀態 | zh_TW |
dc.title | Rapid monitor of states of lithium-ion batteries through non-quasi-static electrochemical impedance spectroscopy and terminal voltage | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 周鼎贏;梁世豪;林祺皓 | zh_TW |
dc.contributor.oralexamcommittee | Ding-Ting Zhou;Shi-Hao Liang;Chi-Hao Lin | en |
dc.subject.keyword | 電池電量,電池健康度,鋰離子電池,非準靜態,電化學阻抗譜, | zh_TW |
dc.subject.keyword | State of charge,State of health,Lithium-ion battery,Non-quasi-static,Electrochemical impedance spectroscopy, | en |
dc.relation.page | 53 | - |
dc.identifier.doi | 10.6342/NTU202302323 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-03 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2024-11-20 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。