Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90625
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張麗冠 | zh_TW |
dc.contributor.advisor | Li-Kwan Chang | en |
dc.contributor.author | 張舒茵 | zh_TW |
dc.contributor.author | Shu-Yin Chang | en |
dc.date.accessioned | 2023-10-03T16:54:54Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-04 | - |
dc.identifier.citation | Abaitua, F., Hollinshead, M., Bolstad, M., Crump, C.M., and O'Hare, P. (2012). A nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. J Virol 86, 8998-9014.
Ahn, J.H., Jang, W.J., and Hayward, G.S. (1999). The human cytomegalovirus IE2 and UL112-113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). J Virol 73, 10458-10471. Albecka, A., Owen, D.J., Ivanova, L., Brun, J., Liman, R., Davies, L., Ahmed, M.F., Colaco, S., Hollinshead, M., Graham, S.C., et al. (2017). Dual function of the pUL7-pUL51 tegument protein complex in herpes simplex virus 1 infection. J Virol 91. Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Séguin, C., et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211. Barker, D.D., and Berk, A.J. (1987). Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. J Virol 156, 107-121. Berk, A.J. (1986). Functions of adenovirus E1A. Cancer Surv 5, 367-387. Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300. Bigalke, J.M., and Heldwein, E.E. (2015). Structural basis of membrane budding by the nuclear egress complex of herpesviruses. Embo j 34, 2921-2936. Bigalke, J.M., Heuser, T., Nicastro, D., and Heldwein, E.E. (2014). Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat Commun 5, 4131. Bjerke, S.L., and Roller, R.J. (2006). Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. J Virol 347, 261-276. Bjornevik, K., Cortese, M., Healy, B.C., Kuhle, J., Mina, M.J., Leng, Y., Elledge, S.J., Niebuhr, D.W., Scher, A.I., Munger, K.L., et al. (2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296-301. Borst, E.M., Bauerfeind, R., Binz, A., Stephan, T.M., Neuber, S., Wagner, K., Steinbrück, L., Sodeik, B., Lenac Roviš, T., Jonjić, S., et al. (2016). The essential human cytomegalovirus proteins pUL77 and pUL93 are structural components necessary for viral genome encapsidation. J Virol 90, 5860-5875. Borza, C.M., and Hutt-Fletcher, L.M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat Med 8, 594-599. Brandy Salmon, C.C., Andrew J. Davison, Wendy J. Harris, Joel D. Baines (1998). The herpes simplex viurs type 1 UL17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol. Bruinsma, R.F., Gelbart, W.M., Reguera, D., Rudnick, J., and Zandi, R. (2003). Viral self-assembly as a thermodynamic process. Phys Rev Lett 90, 248101. Cai, M., Liao, Z., Chen, T., Wang, P., Zou, X., Wang, Y., Xu, Z., Jiang, S., Huang, J., Chen, D., et al. (2017). Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 8, 70006-70034. Caragliano, E., Bonazza, S., Frascaroli, G., Tang, J., Soh, T.K., Grünewald, K., Bosse, J.B., and Brune, W. (2022). Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Rep 38, 110469. Carmichael, J.C., and Wills, J.W. (2019). Differential requirements for gE, gI, and UL16 among herpes simplex virus 1 syncytial variants suggest unique modes of dysregulating the mechanism of cell-to-cell spread. J Virol 93. Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., and Liu, S.T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539. Chang, L.K., Lee, Y.H., Cheng, T.S., Hong, Y.R., Lu, P.J., Wang, J.J., Wang, W.H., Kuo, C.W., Li, S.S., and Liu, S.T. (2004). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803-38812. Chang, L.K., and Liu, S.T. (2000). Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918-3925. Chang, Y.E., Sant, C.V., Krug, P.W., Sears, A.E., and Roizman, B. (1997). The null mutant of the UL31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 71, 8307-8315. Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G. (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol 79, 9635-9650. Clement, C., Tiwari, V., Scanlan, P.M., Valyi-Nagy, T., Yue, B.Y., and Shukla, D. (2006). A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174, 1009-1021. Cockrell, S.K., Huffman, J.B., Toropova, K., Conway, J.F., and Homa, F.L. (2011). Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids. J Virol 85, 4875-4887. Coller, K.E., Lee, J.I., Ueda, A., and Smith, G.A. (2007). The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81, 11790-11797. Copeland, A.M., Newcomb, W.W., and Brown, J.C. (2009). Herpes simplex virus replication: Roles of viral proteins and nucleoporins in capsid-nucleus attachment. J Virol 83, 1660-1668. Dai, Y.C., Liao, Y.T., Juan, Y.T., Cheng, Y.Y., Su, M.T., Su, Y.Z., Liu, H.C., Tsai, C.H., Lee, C.P., and Chen, M.R. (2020). The novel nuclear targeting and BFRF1-interacting domains of BFLF2 are essential for efficient Epstein-Barr Virus virion release. J Virol 94. Daikoku, T., Kudoh, A., Fujita, M., Sugaya, Y., Isomura, H., Shirata, N., and Tsurumi, T. (2005). Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J Virol 79, 3409-3418. Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N., and Kieff, E. (1980). Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci U S A 77, 2999-3003. de-Thé, G., Day, N.E., Geser, A., Lavoué, M.F., Ho, J.H., Simons, M.J., Sohier, R., Tukei, P., Vonka, V., and Zavadova, H. (1975). Sero-epidemiology of the Epstein-Barr virus: preliminary analysis of an international study - a review. IARC Sci Publ (1971), 3-16. Dembowski, J.A., and DeLuca, N.A. (2018). Temporal viral genome-protein interactions define distinct stages of productive herpesviral infection. mBio 9. DeRussy, B.M., and Tandon, R. (2015). Human Cytomegalovirus pUL93 is required for viral genome cleavage and packaging. J Virol 89, 12221-12225. Desai, P.J. (2000). A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74, 11608-11618. Draganova, E.B., Thorsen, M.K., and Heldwein, E.E. (2021a). Nuclear egress. Curr Issues Mol Biol 41, 125-170. Draganova, E.B., Valentin, J., and Heldwein, E.E. (2021b). The ins and outs of herpesviral capsids: divergent structures and assembly mechanisms across the three subfamilies. Viruses 13. Draganova, E.B., Zhang, J., Zhou, Z.H., and Heldwein, E.E. (2020). Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. Elife 9. Dulbecco, R., and Freeman, G. (1959). Plaque production by the polyoma virus. J Virol 8, 396-397. Dyson, O.F., Pagano, J.S., and Whitehurst, C.B. (2017). The translesion Polymerase Pol η is required for efficient Epstein-Barr virus infectivity and is regulated by the viral deubiquitinating enzyme BPLF1. J Virol 91. El-Guindy, A., Lopez-Giraldez, F., Delecluse, H.-J., McKenzie, J., and Miller, G. (2014). A locus encompassing the Epstein-Barr virus bglf4 kinase regulates expression of genes encoding viral structural proteins. PLoS Pathog 10, e1004307. Epstein, A. (2012). Burkitt lymphoma and the discovery of Epstein-Barr virus. Br J Haematol 156, 777-779. Epstein, M.A., Achong, B.G., and Barr, Y.M. (1964). Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1, 702-703. Escalante, G.M., Mutsvunguma, L.Z., Muniraju, M., Rodriguez, E., and Ogembo, J.G. (2022). Four decades of prophylactic EBV vaccine research: A systematic review and historical perspective. Front Immunol 13, 867918. Evilevitch, A., and Sae-Ueng, U. (2022). Mechanical capsid maturation facilitates the resolution of conflicting requirements for herpesvirus assembly. J Virol 96, e01831-01821. Fan, W.H., Roberts, A.P., McElwee, M., Bhella, D., Rixon, F.J., and Lauder, R. (2015). The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid-tegument interface of herpes simplex virus 1. J Virol 89, 1502-1511. Farina, A., Feederle, R., Raffa, S., Gonnella, R., Santarelli, R., Frati, L., Angeloni, A., Torrisi, M.R., Faggioni, A., and Delecluse, H.-J. (2005). BFRF1 of Epstein-Barr virus is essential for efficient primary viral envelopment and egress. J Virol 79, 3703-3712. Farina, A., Santarelli, R., Gonnella, R., Bei, R., Muraro, R., Cardinali, G., Uccini, S., Ragona, G., Frati, L., Faggioni, A., et al. (2000). The BFRF1 gene of Epstein-Barr virus encodes a novel protein. J Virol 74, 3235-3244. Feederle, R., Mehl-Lautscham, A.M., Bannert, H., and Delecluse, H.J. (2009). The Epstein-Barr virus protein kinase BGLF4 and the exonuclease BGLF5 have opposite effects on the regulation of viral protein production. J Virol 83, 10877-10891. Fixman, E.D., Hayward, G.S., and Hayward, S.D. (1992). trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-5039. Fixman, E.D., Hayward, G.S., and Hayward, S.D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006. Frappier, L. (2012). EBNA1 and host factors in Epstein-Barr virus latent DNA replication. Curr Opin Virol 2, 733-739. Freeman, K.G., Huffman, J.B., Homa, F.L., and Evilevitch, A. (2021). UL25 capsid binding facilitates mechanical maturation of the herpesvirus capsid and allows retention of pressurized DNA. J Virol 95, e0075521. Fuchs, W., Klupp, B.G., Granzow, H., Osterrieder, N., and Mettenleiter, T.C. (2002). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76, 364-378. Gao, J., Finnen, R.L., Sherry, M.R., Le Sage, V., and Banfield, B.W. (2020). Differentiating the roles of UL16, UL21, and Us3 in the nuclear egress of herpes simplex virus capsids. J Virol 94. Gao, J., Hay, T.J.M., and Banfield, B.W. (2017). The product of the herpes simplex virus 2 UL16 gene is critical for the egress of capsids from the nuclei of infected cells. J Virol 91. Gastaldello, S., Hildebrand, S., Faridani, O., Callegari, S., Palmkvist, M., Di Guglielmo, C., and Masucci, M.G. (2010). A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat Cell Biol 12, 351-361. Gershburg, E., Raffa, S., Torrisi, M.R., and Pagano, J.S. (2007). Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407-5412. Gibson, W., and Roizman, B. (1972). Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol 10, 1044-1052. Gong, D., Dai, X., Jih, J., Liu, Y.T., Bi, G.Q., Sun, R., and Zhou, Z.H. (2019). DNA-packing portal and capsid-associated tegument complexes in the tumor herpesvirus KSHV. Cell 178, 1329-1343 e1312. Gonnella, R., Farina, A., Santarelli, R., Raffa, S., Feederle, R., Bei, R., Granato, M., Modesti, A., Frati, L., Delecluse, H.J., et al. (2005). Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79, 3713-3727. Gooding, L.R., Aquino, L., Duerksen-Hughes, P.J., Day, D., Horton, T.M., Yei, S.P., and Wold, W.S. (1991). The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells. J Virol 65, 3083-3094. Gradoville, L., Kwa, D., El-Guindy, A., and Miller, G. (2002). Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 76, 5612-5626. Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59-74. Granato, M., Feederle, R., Farina, A., Gonnella, R., Santarelli, R., Hub, B., Faggioni, A., and Delecluse, H.J. (2008). Deletion of Epstein-Barr virus BFLF2 leads to impaired viral DNA packaging and primary egress as well as to the production of defective viral particles. J Virol 82, 4042-4051. Gruffat, H., Manet, E., Rigolet, A., and Sergeant, A. (1990). The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res 18, 6835-6843. Gupta, S., Ylä-Anttila, P., Sandalova, T., Sun, R., Achour, A., and Masucci, M.G. (2019). 14-3-3 scaffold proteins mediate the inactivation of trim25 and inhibition of the type I interferon response by herpesvirus deconjugases. PLoS Pathog 15, e1008146. Hammerschmidt, W., and Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-433. Hanson, D.A., and Ziegler, S.F. (2004). Fusion of green fluorescent protein to the C-terminus of granulysin alters its intracellular localization in comparison to the native molecule. J Negat Results Biomed 3, 2. Hashimoto, S., Ishii, A., and Yonehara, S. (1991). The E1b oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int Immunol 3, 343-351. Heming, J.D., Conway, J.F., and Homa, F.L. (2017). Herpesvirus capsid assembly and DNA packaging. Adv Anat Embryol Cell Biol 223, 119-142. Henson, B.W., Perkins, E.M., Cothran, J.E., and Desai, P. (2009). Self-assembly of Epstein-Barr virus capsids. J Virol 83, 3877-3890. Häge, S., Büscher, N., Pakulska, V., Hahn, F., Adrait, A., Krauter, S., Borst, E.M., Schlötzer-Schrehardt, U., Couté, Y., Plachter, B., et al. (2021). The complex regulatory role of cytomegalovirus nuclear egress protein pUL50 in the production of infectious virus. Cells 10. Hu, J., Li, Y., Li, H., Shi, F., Xie, L., Zhao, L., Tang, M., Luo, X., Jia, W., Fan, J., et al. (2020). Targeting Epstein-Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics 10, 11921-11937. Huang, H.-H., Wang, W.-H., Feng, T.-H., and Chang, L.-K. (2020). Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem Biophys Res Commun 523, 773-779. Huang, Z., Zhang, C., Chen, S., Ye, F., and Xing, X.H. (2013). Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Fact 12, 25. Huet, A., Huffman, J.B., Conway, J.F., and Homa, F.L. (2020). Role of the herpes simplex virus CVSC proteins at the capsid portal vertex. J Virol 94. Hung, C.H., Chiu, Y.F., Wang, W.H., Chen, L.W., Chang, P.J., Huang, T.Y., Lin, Y.J., Tsai, W.J., and Yang, C.C. (2019). Interaction between BGLF2 and BBLF1 is required for the efficient production of infectious Epstein-Barr virus particles. Front Microbiol 10, 3021. Ivanova, L., Buch, A., Döhner, K., Pohlmann, A., Binz, A., Prank, U., Sandbaumhüter, M., Bauerfeind, R., and Sodeik, B. (2016). Conserved tryptophan motifs in the large tegument protein pUL36 are required for efficient secondary envelopment of Herpes Simplex virus capsids. J Virol 90, 5368-5383. Joanna Krasowska, M.O., Agnieszka Bzowska, Patricia L. Clark, Beata Wielgus-Kutrowska (2010). The comparison of aggregation and folding of enhanced green fluorescent protein (EGFP) by spectroscopic studies. J Spectrosc (Hindawi) 24. Johannsen, E., Luftig, M., Chase, M.R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D., and Kieff, E. (2004). Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A 101, 16286-16291. Johnson, D.C., and Baines, J.D. (2011). Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol 9, 382-394. Jovasevic, V., Liang, L., and Roizman, B. (2008). Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 82, 3311-3319. Kado, C.I., and Liu, S.T. (1981). Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145, 1365-1373. Klein, G., Giovanella, B.C., Lindahl, T., Fialkow, P.J., Singh, S., and Stehlin, J.S. (1974). Direct evidence for the presence of Epstein-Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx. Proc Natl Acad Sci U S A 71, 4737-4741. Kobiler, O., and Weitzman, M.D. (2019). Herpes simplex virus replication compartments: From naked release to recombining together. PLoS Pathog 15, e1007714. Konishi, N., Narita, Y., Hijioka, F., Masud, H., Sato, Y., Kimura, H., and Murata, T. (2018). BGLF2 increases infectivity of Epstein-Barr virus by activating AP-1 upon de novo infection. mSphere 3. Kuhn, J., Leege, T., Klupp, B.G., Granzow, H., Fuchs, W., and Mettenleiter, T.C. (2008). Partial functional complementation of a pseudorabies virus UL25 deletion mutant by herpes simplex virus type 1 pUL25 indicates overlapping functions of alphaherpesvirus pUL25 proteins. J Virol 82, 5725-5734. Kumar, R., Whitehurst, C.B., and Pagano, J.S. (2014). The Rad6/18 ubiquitin complex interacts with the Epstein-Barr virus deubiquitinating enzyme, BPLF1, and contributes to virus infectivity. J Virol 88, 6411-6422. Kwon, K.M., Oh, S.E., Kim, Y.E., Han, T.H., and Ahn, J.H. (2017). Cooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit. PLoS Pathog 13, e1006423. Lake, C.M., and Hutt-Fletcher, L.M. (2004). The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. J Virol 320, 99-106. Leach, N., Bjerke, S.L., Christensen, D.K., Bouchard, J.M., Mou, F., Park, R., Baines, J., Haraguchi, T., and Roller, R.J. (2007). Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J Virol 81, 10792-10803. Lee, C.P., Huang, Y.H., Lin, S.F., Chang, Y., Chang, Y.H., Takada, K., and Chen, M.R. (2008). Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82, 11913-11926. Lee, E.K., Kim, S.Y., Noh, K.W., Joo, E.H., Zhao, B., Kieff, E., and Kang, M.S. (2014). Small molecule inhibition of Epstein-Barr virus nuclear antigen-1 DNA binding activity interferes with replication and persistence of the viral genome. Antiviral Res 104, 73-83. Lemon, S.M., Hutt, L.M., Shaw, J.E., Li, J.L., and Pagano, J.S. (1977). Replication of EBV in epithelial cells during infectious mononucleosis. Nature 268, 268-270. Li, J., Nagy, N., Liu, J., Gupta, S., Frisan, T., Hennig, T., Cameron, D.P., Baranello, L., and Masucci, M.G. (2021). The Epstein-Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathog 17, e1009954. Li, Z., Zhang, X., Dong, L., Pang, J., Xu, M., Zhong, Q., Zeng, M.S., and Yu, X. (2020). CryoEM structure of the tegumented capsid of Epstein-Barr virus. Cell Res 30, 873-884. Lieberman, P.M., Hardwick, J.M., Sample, J., Hayward, G.S., and Hayward, S.D. (1990). The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol 64, 1143-1155. Lin, L.T., Lu, Y.S., Huang, H.H., Chen, H., Hsu, S.W., and Chang, L.K. (2022). Regulation of Epstein-Barr virus minor capsid protein BORF1 by TRIM5α. Int J Mol Sci 23. Liu, W., Cui, Y., Wang, C., Li, Z., Gong, D., Dai, X., Bi, G.Q., Sun, R., and Zhou, Z.H. (2020). Structures of capsid and capsid-associated tegument complex inside the Epstein-Barr virus. Nat Microbiol 5, 1285-1298. Louis, N., Evelegh, C., and Graham, F.L. (1997). Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. J Virol 233, 423-429. Lui, W.Y., Bharti, A., Wong, N.M., Jangra, S., Botelho, M.G., Yuen, K.S., and Jin, D.Y. (2023). Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog 19, e1011186. Luka, J., Kallin, B., and Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. J Virol 94, 228-231. Lye, M.F., Wilkie, A.R., Filman, D.J., Hogle, J.M., and Coen, D.M. (2017). Getting to and through the inner nuclear membrane during herpesvirus nuclear egress. Curr Opin Cell Biol 46, 9-16. Marschall, M., Muller, Y.A., Diewald, B., Sticht, H., and Milbradt, J. (2017). The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids. Rev Med Virol 27. Meckes Jr, D.G., and Wills, J.W. (2007). Dynamic interactions of the ULI6 tegument protein with the capsid of herpes simplex virus. J Virol 81, 13028-13036. Mettenleiter, T.C. (2002). Herpesvirus assembly and egress. J Virol 76, 1537-1547. Minowada, J., Nonoyama, M., Moore, G.E., Rauch, A.M., and Pagano, J.S. (1974). The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line. Cancer Res 34, 1898-1903. Montecinos-Franjola, F., Bauer, B.L., Mears, J.A., and Ramachandran, R. (2020). GFP fluorescence tagging alters dynamin-related protein 1 oligomerization dynamics and creates disassembly-refractory puncta to mediate mitochondrial fission. Sci Rep 10, 14777. Mou, F., Forest, T., and Baines, J.D. (2007). US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol 81, 6459-6470. Mou, F., Wills, E., and Baines, J.D. (2009). Phosphorylation of the UL31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J Virol 83, 5181-5191. Mou, F., Wills, E.G., Park, R., and Baines, J.D. (2008). Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus UL34-encoded protein to the inner nuclear membrane. J Virol 82, 8094-8104. Murata, T. (2018). Encyclopedia of EBV-encoded lytic genes: An update. in human herpesviruses, Y. Kawaguchi, Y. Mori, and H. Kimura, eds. (Singapore: Springer Singapore), pp. 395-412. Murata, T. (2023). Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 15, 200260. Nemerow, G.R., Mold, C., Schwend, V.K., Tollefson, V., and Cooper, N.R. (1987). Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol 61, 1416-1420. Owen, D.J., Crump, C.M., and Graham, S.C. (2015). Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses 7, 5084-5114. Perez, D., and White, E. (1998). E1B 19K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J Cell Biol 141, 1255-1266. Reynolds, A.E., Liang, L., and Baines, J.D. (2004). Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34. J Virol 78, 5564-5575. Reynolds, A.E., Ryckman, B.J., Baines, J.D., Zhou, Y., Liang, L., and Roller, R.J. (2001). UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75, 8803-8817. Richard J. Roller, T.H., Alison Haugo-Crooks (2021). Cell culture evolution of a herpes simplex virus varicella-zoster virus UL34 ORF24 chimeric virus reveals novel function for HSV genes in capsid nuclear egress. J Virol 95. Roberts, A.P., Abaitua, F., O'Hare, P., McNab, D., Rixon, F.J., and Pasdeloup, D. (2009). Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83, 105-116. Rochat, R.H., Hecksel, C.W., and Chiu, W. (2014). Cryo-EM techniques to resolve the structure of HSV-1 capsid-associated components. Methods Mol Biol 1144, 265-281. Roller, R.J., Bjerke, S.L., Haugo, A.C., and Hanson, S. (2010). Analysis of a charge cluster mutation of herpes simplex virus type 1 UL34 and its extragenic suppressor suggests a novel interaction between pUL34 and pUL31 that is necessary for membrane curvature around capsids. J Virol 84, 3921-3934. Roller, R.J., and Johnson, D.C. (2021). Herpesvirus nuclear egress across the outer nuclear membrane. Viruses 13. Roller, R.J., Zhou, Y., Schnetzer, R., Ferguson, J., and DeSalvo, D. (2000). Herpes simplex virus type 1 UL34 gene product is required for viral envelopment. J Virol 74, 117-129. Saemundsen, A.K., Kallin, B., and Klein, G. (1980). Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein-Barr virus. J Virol 107, 557-561. Saha, A., and Robertson, E.S. (2013). Impact of EBV essential nuclear protein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol 8, 323-352. Sairenji, T., and Hinuma, Y. (1975). Ultraviolet inactivation of Epstein-Barr virus: effect on synthesis of virus-associated antigens. Int J Cancer 16, 1-6. Saito, S., Murata, T., Kanda, T., Isomura, H., Narita, Y., Sugimoto, A., Kawashima, D., and Tsurumi, T. (2013). Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-κB signaling during productive replication. J Virol 87, 4060-4070. Sathish, N., Wang, X., and Yuan, Y. (2012). Tegument proteins of Kaposi’s sarcoma-associated herpesvirus and related gamma-herpesviruses. Front Microbiol 3. Scherer, W.F., Syverton, J.T., and Gey, G.O. (1953). Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97, 695-710. Schlieker, C., Korbel, G.A., Kattenhorn, L.M., and Ploegh, H.L. (2005). A deubiquitinating activity is conserved in the large tegument protein of the Herpesviridae. J Virol 79, 15582-15585. Sekine, E., Schmidt, N., Gaboriau, D., and O'Hare, P. (2017). Spatiotemporal dynamics of HSV genome nuclear entry and compaction state transitions using bioorthogonal chemistry and super-resolution microscopy. PLoS Pathog 13, e1006721. Shaw, G., Morse, S., Ararat, M., and Graham, F.L. (2002). Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16, 869-871. Simpson-Holley, M., Baines, J., Roller, R., and Knipe, D.M. (2004). Herpes simplex virus 1 UL31 and UL34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 78, 5591-5600. Skare, J., and Strominger, J.L. (1980). Cloning and mapping of BamHi endonuclease fragments of DNA from the transforming B95-8 strain of Epstein-Barr virus. Proc Natl Acad Sci U S A 77, 3860-3864. Smith, G.A. (2021). Navigating the cytoplasm: Delivery of the alphaherpesvirus genome to the nucleus. Curr Issues Mol Biol 41, 171-220. Sugimoto, A. (2022). Replication compartments-the great survival strategy for Epstein-Barr virus lytic replication. Microorganisms 10. Sugimoto, A., Yamashita, Y., Kanda, T., Murata, T., and Tsurumi, T. (2019). Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments. PLoS One 14, e0222519. Swulius, M.T., and Jensen, G.J. (2012). The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag. J Bacteriol 194, 6382-6386. Takada, K. (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32. Takagi, S., Takada, K., and Sairenji, T. (1991). Formation of intranuclear replication compartments of Epstein-Barr virus with redistribution of BZLF1 and BMRF1 gene products. J Virol 185, 309-315. Tandon, R., Mocarski, E.S., and Conway, J.F. (2015). The A, B, Cs of herpesvirus capsids. Viruses 7, 899-914. Tanner, J., Weis, J., Fearon, D., Whang, Y., and Kieff, E. (1987). Epstein-barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203-213. Taus, N.S., Salmon, B., and Baines, J.D. (1998). The herpes simplex virus 1 UL 17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged. J Virol 252, 115-125. Taylor, T.J., McNamee, E.E., Day, C., and Knipe, D.M. (2003). Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology 309, 232-247. Thorsen, M.K., Draganova, E.B., and Heldwein, E.E. (2022). The nuclear egress complex of Epstein-Barr virus buds membranes through an oligomerization-driven mechanism. PLoS Pathog 18, e1010623. Thurlow, J.K., Murphy, M., Stow, N.D., and Preston, V.G. (2006). Herpes simplex virus type 1 DNA-packaging protein UL17 is required for efficient binding of UL25 to capsids. J Virol 80, 2118-2126. Toropova, K., Huffman, J.B., Homa, F.L., and Conway, J.F. (2011). The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 85, 7513-7522. Trus, B.L., Newcomb, W.W., Cheng, N., Cardone, G., Marekov, L., Homa, F.L., Brown, J.C., and Steven, A.C. (2007). Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell 26, 479-489. Tsiakalou, V., Tsangaridou, E., Polioudaki, H., Nifli, A.P., Koulentaki, M., Akoumianaki, T., Kouroumalis, E., Castanas, E., and Theodoropoulos, P.A. (2006). Optimized detection of circulating anti-nuclear envelope autoantibodies by immunofluorescence. BMC Immunol 7, 20. Tsurumi, T. (2001). EBV replication enzymes. In Epstein-Barr Virus and Human Cancer, K. Takada, ed. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 65-87. Tsurumi, T., Fujita, M., and Kudoh, A. (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15, 3-15. Turner, D.L., Templin, R.M., Barugahare, A.A., Russ, B.E., Turner, S.J., Ramm, G., and Mathias, R.A. (2022). UL34 deletion restricts human cytomegalovirus capsid formation and maturation. Int J Mol Sci 23. van Gent, M., Braem, S.G., de Jong, A., Delagic, N., Peeters, J.G., Boer, I.G., Moynagh, P.N., Kremmer, E., Wiertz, E.J., Ovaa, H., et al. (2014). Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog 10, e1003960. Villanueva-Valencia, J.R., Tsimtsirakis, E., and Evilevitch, A. (2021). Role of HSV-1 capsid vertex-specific component (CVSC) and viral terminal DNA in capsid docking at the nuclear pore. Viruses 13. Walzer, S.A., Egerer-Sieber, C., Sticht, H., Sevvana, M., Hohl, K., Milbradt, J., Muller, Y.A., and Marschall, M. (2015). Crystal structure of the human cytomegalovirus pUL50-pUL53 core nuclear egress complex provides insight into a unique assembly scaffold for virus-host protein interactions. J Biol Chem 290, 27452-27458. Wang, J., Yuan, S., Zhu, D., Tang, H., Wang, N., Chen, W., Gao, Q., Li, Y., Wang, J., Liu, H., et al. (2018). Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat Commun 9, 3668. Wang, J.T., Doong, S.L., Teng, S.C., Lee, C.P., Tsai, C.H., and Chen, M.R. (2009). Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol 83, 1856-1869. Wang, P., Deng, Y., Guo, Y., Xu, Z., Li, Y., Ou, X., Xie, L., Lu, M., Zhong, J., Li, B., et al. (2020). Epstein-Barr virus early protein BFRF1 suppresses IFN-beta activity by inhibiting the activation of IRF3. Front Immunol 11, 513383. Wang, W.H., Chang, L.K., and Liu, S.T. (2011). Molecular interactions of Epstein-Barr virus capsid proteins. J Virol 85, 1615-1624. Watanabe, T., Sakaida, K., Yoshida, M., Masud, H.M.A.A., Sato, Y., Goshima, F., Kimura, H., and Murata, T. (2017). The C-terminus of Epstein-Barr virus BRRF2 is required for its proper localization and efficient virus production. Front Microbiol 8. White, E., Blose, S.H., and Stillman, B.W. (1984). Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA. Mol Cell Biol 4, 2865-2875. White, E., Sabbatini, P., Debbas, M., Wold, W.S., Kusher, D.I., and Gooding, L.R. (1992). The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol 12, 2570-2580. Whitehurst, C.B., Li, G., Montgomery, S.A., Montgomery, N.D., Su, L., and Pagano, J.S. (2015). Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. mBio 6, e01574-01515. Whitehurst, C.B., Ning, S., Bentz, G.L., Dufour, F., Gershburg, E., Shackelford, J., Langelier, Y., and Pagano, J.S. (2009). The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83, 4345-4353. Wilcock, D., and Lane, D.P. (1991). Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature 349, 429-431. Wilkie, A.R., Sharma, M., Coughlin, M., Pesola, J.M., Ericsson, M., Lawler, J.L., Fernandez, R., and Coen, D.M. (2022). Human cytomegalovirus nuclear egress complex subunit, UL53, associates with capsids and myosin Va, but is not important for capsid localization towards the nuclear periphery. Viruses 14. Wu, T.C., Mann, R.B., Charache, P., Hayward, S.D., Staal, S., Lambe, B.C., and Ambinder, R.F. (1990). Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin's disease. Int J Cancer 46, 801-804. Yang, K., and Baines, J.D. (2011). Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A 108, 14276-14281. Yang, K., Wills, E., Lim, H.Y., Zhou, Z.H., and Baines, J.D. (2014). Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J Virol 88, 3815-3825. Ye, R., Su, C., Xu, H., and Zheng, C. (2017). Herpes simplex virus 1 ubiquitin-specific protease UL36 abrogates NF-κB activation in DNA sensing signal pathway. J Virol 91. Ylä-Anttila, P., Gupta, S., and Masucci, M.G. (2021). The Epstein-Barr virus deubiquitinase BPLF1 targets SQSTM1/p62 to inhibit selective autophagy. Autophagy 17, 3461-3474. Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265, 17174-17179. Yu, X.K., O'Connor, C.M., Atanasov, I., Damania, B., Kedes, D.H., and Zhou, Z.H. (2003). Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J Virol 77, 13182-13193. Yuya Hara, T.W., Masahiro Yoshida, H. M. AI Masud, Hiromichi Kato, Tomohiro Kondo, Reiji Suzuki, Shutaro Kurose, Md. Kamal Uddin, Masataka Arata, Shouhei Miyagi, Yusuke Yanagi, Yoshitaka Sato, Hiroshi Kimura, Takayuki Murata (2022). Comprehensive analyses of intraviral Epstein-Barr virus protein -protein interactions hint central role of BLRF2 in the tegument network. J Virol. Zandi, R., and Reguera, D. (2005). Mechanical properties of viral capsids. Phys Rev E 72, 021917. Zhu, H.Y., Yamada, H., Jiang, Y.M., Yamada, M., and Nishiyama, Y. (1999). Intracellular localization of the UL31 protein of herpes simplex virus type 2. Arch Virol 144, 1923-1935. Zimmermann, J., and Hammerschmidt, W. (1995). Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J Virol 69, 3147-3155. 陳澔 (2022). Epstein-Barr virus proteins interacting with BGLF1. National Taiwan University Master Thesis. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90625 | - |
dc.description.abstract | Epstein-Barr virus為第四型人類皰疹病毒,同時也是第一個被發現與人類癌症相關的病毒,並且全球九成的人口被 EB 病毒感染。EB 病毒的生活史可以分成潛伏期 (latency) 以及溶裂期 (lytic cycle) ,在潛伏期只會有少量的病毒基因表現,以維持病毒基因體保留在宿主細胞中,而在經過適當的刺激後,會使 EB 病毒進入溶裂期,產生成熟的病毒顆粒從宿主細胞釋放。目前已知病毒顆粒的 Capsid-associated tegument complex (CATC) 對於病毒殼體的穩定性及病毒顆粒出核 (nuclear egress) 具有重要功能。而 EB 病毒的 CATC 是由 BGLF1、BPLF1 及 BVRF1 所組成,本研究室先前的研究發現 BGLF1 除了能與殼體蛋白結合之外,並且能與在出核過程中扮演重要角色的 BFLF2 結合,因此推測 BGLF1 可能會參與出核的過程,不過詳細的機制尚不清楚。為了進一步釐清 BGLF1 在出核過程中跟相關蛋白質之間的結合,本研究透過 GST pull-down assay 證明 BGLF1 與 BFLF2 和 BFRF1 之間是直接結合,並且透過免疫螢光染色發現在 nuclear egress complex (NEC) 存在的情況下,會共定位在核膜。接著為了確認在出核過程中,procapsid 是否必須藉由 BGLF1 與 NEC 之間的結合,才能將其順利移動到核膜,同樣藉由 GST pull-down assay 釐清殼體蛋白與組成 NEC 的蛋白質之間的結合情形,結果發現組成病毒殼體的蛋白質包含 VCA、BFRF3、BDLF1 及 BORF1,在體外條件下皆能直接與 BFLF2 和 BFRF1 結合。另外本研究透過免疫螢光染色觀察帶有標籤的 BGLF1、BFLF2、BFRF3 以及 Rta 在 HeLa 細胞的分佈,確認在細胞內 BGLF1 與 BFLF2、BFRF3 會在細胞質共定位,而與 Rta 在細胞核以及細胞質共定位。希望透過本研究能幫助釐清 BGLF1 與其他病毒蛋白的結合關係,進一步推測 BGLF1 在 EB 病毒出核時所扮演的角色。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a type 4 human herpesvirus and the first virus discovered to be associated with human cancers. It infects approximately 90% of the global population. The life cycle of EBV can be divided into latency and lytic phase. During latency, only few viral genes are expressed to maintain viral genome replication. Upon appropriate stimulation, EBV enters the lytic phase, leading to the production and release of mature viral particles from host cells. Capsid-associated tegument complex (CATC) have been found to play important roles in stabilizing the viral capsid and facilitating nuclear egress of viral particles. The CATC proteins of EBV include BGLF1, BPLF1, and BVRF1. Previous study in our laboratory has shown that BGLF1 not only interacts with capsid proteins but also associates with BFLF2, which plays a crucial role in the nuclear egress. This suggests that BGLF1 is involved in the nuclear egress process, although the detailed mechanism remains unclear. To further elucidate the interactions between BGLF1 and relevant proteins during nuclear egress, this study implemented GST pull-down assays to demonstrate direct interactions between BGLF1 and BFLF2 as well as BFRF1. Immunofluorescence analysis revealed that BGLF1 colocalizes with nuclear egress complex (NEC) at the nuclear membrane. Then, in order to confirm whether BGLF1 is indispensable for recruitment of procapsid to the nuclear membrane during nuclear egress, GST pull-down assays indicated the interactions between capsid proteins and NEC components. The results showed that viral capsid proteins including VCA, BFRF3, BDLF1, and BORF1 directly interact with BFLF2 and BFRF1 under in vitro conditions. Additionally, this study examined the distribution of tagged BGLF1, BFLF2, BFRF3, and Rta in HeLa cells through immunofluorescence analysis and found that BGLF1 colocalized with BFLF2 as well as BFRF3 in the cytoplasm, while colocalized with Rta in both the nucleus and cytoplasm. Collective of this study clarifies the interactions between BGLF1 and other viral proteins, further elucidating the role of BGLF1 in EBV nuclear egress. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:54:54Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:54:54Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 前言 1 1.1 Epstein-Barr virus (EB 病毒) 1 1.1.1 EB 病毒的簡介 1 1.1.2 EB 病毒的遺傳物質與基因命名 1 1.1.3 EB 病毒的生命史 2 1.2 單純皰疹病毒 (Herpesvirus simplex virus, HSV) 的殼體產生與成熟 4 1.2.1 HSV 殼體的結構與組裝 4 1.2.2 HSV 的間層蛋白質 (tegument protein) 5 1.2.3 HSV 的 capsid vertex-specific component (CVSC) 6 1.2.4 EB 病毒殼體的結構與組裝 7 1.2.5 EB病毒的間層蛋白質 (tegument protein) 8 1.2.6 EB 病毒的 capsid associated tegument complex (CATC) 8 1.2.7 皰疹病毒的殼體出核 (nuclear egress) 10 1.2.8 EB 病毒的殼體出核 12 1.3 BGLF1 13 1.4 研究動機 13 第二章 材料與方法 15 2.1 細胞株與細胞培養 15 2.1.1 HEK293T 15 2.1.2 HeLa cell 15 2.2 菌株與細菌培養 16 2.3 質體與質體建構 16 2.4 質體DNA萃取 (Plasmid extraction) 18 2.5 轉染 (Transfection) 19 2.6 勝任細胞 (Competent cells) 的製備 19 2.7 轉型作用 (Transformation) 19 2.8 快篩 (Quick Screen) 20 2.9 共免疫沉澱 (Co-immunoprecipitation assay) 20 2.10 穀胱甘肽 S- 轉移酶沉降分析 (GST pull-down) 21 2.11 西方墨點法 (Western bolt, immunoblotting, IB) 22 2.12 免疫螢光染色 (Immunofluorescence, IF) 23 第三章 結果 25 3.1 BGLF1 與病毒蛋白質在細胞的分佈 25 3.1.1 BGLF1 在 HeLa 細胞的分佈模式 25 3.1.2 BGLF1 與 BFLF2 在 HeLa 共定位於細胞質 25 3.1.3 BGLF1 與 BFRF3 在 HeLa 細胞共定位於細胞質 26 3.1.4 BGLF1 與 Rta在 HeLa 細胞的分佈 26 3.2 BGLF1 會與 BFLF2 和 BFRF1 直接結合 27 3.2.1 BGLF1 會與 NEC 共定位在核膜附近 28 3.3 殼體蛋白質 與 BFLF2、BFRF1 之間的結合 28 3.3.1 BFRF3 與 BFLF2 或BFRF1 的結合 28 3.3.2 BDLF1 與 BFLF2 或 BFRF1 的結合 29 3.3.3 BORF1 與 BFLF2 或 BFRF1 的結合 30 3.3.4 VCA 與 BFLF2 的結合 30 3.3.5 Rta 與 BFLF2、BFRF1 的結合 31 第四章 討論 33 4.1 BGLF1 在殼體出核中扮演的角色 33 4.2 BGLF1 與 NEC 共定位 35 4.3 BGLF1 與 BFLF2 以及 BFRF3 在 HeLa 細胞的共定位 35 4.4 Rta 可能改變 BGLF1 在細胞中的分佈 36 4.5 CATC 在 EB 病毒的功能 37 4.6 HCMV 與 EB 病毒的相似性 37 4.7 EB 病毒殼體出核相關病毒蛋白質結合模型圖 38 4.8 結論 39 第五章 圖表 40 參考文獻 63 附錄 74 | - |
dc.language.iso | zh_TW | - |
dc.title | EB病毒之BGLF1與出核相關蛋白質的結合 | zh_TW |
dc.title | Interaction of Epstein-Barr virus BGLF1 with proteins involved in nuclear egress | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉世東;陳美如;李重霈;吳育騏 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Tung Liu;Mei-Ru Chen;Chung-Pei Lee;Yu-Chi Wu | en |
dc.subject.keyword | EB病毒,BGLF1,出核(nuclear egress),BFLF2,BFRF1,殼體組裝(capsid assembly), | zh_TW |
dc.subject.keyword | Epstein-Barr virus,BGLF1,nuclear egress,BFLF2,BFRF1,capsid assembly, | en |
dc.relation.page | 78 | - |
dc.identifier.doi | 10.6342/NTU202302766 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
Appears in Collections: | 生命科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Restricted Access | 3.46 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.