Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90623
標題: 聯合卡爾曼濾波器與深度學習於鋰離子電池多狀態估計
Multi-state estimation of lithium-ion batteries based on Kalman filter and deep learning
作者: 蘇庭緯
Ting-Wei Su
指導教授: 陳國慶
Kuo-Ching Chen
關鍵字: 鋰離子電池,狀態估計,等效電路模型,卡爾曼濾波器,深度神經網路,
Lithium-ion battery,state estimation,equivalent circuit model,Kalman filter,deep neural network,
出版年 : 2023
學位: 碩士
摘要: 電池管理系統會對鋰離子電池進行狀態監測,以防止電池發生過充電、過放電或是熱失控,確保電動車運行的效率和安全性。在本研究中,我們提出了一種計算架構以估計電池的充電狀態(State of Charge, SoC)、健康狀態(State of Health, SoH)和表面溫度。該框架結合三種不同演算法,包含向量型遞迴最小平方法(Vector-type Recursive Least Squares, VRLS)、自適應擴展卡爾曼濾波器(Adaptive Extended Kalman Filter, AEKF)以及深度神經網路(Deep Neural Network, DNN)。此架構應用在駕駛循環測試中依序分為三個計算步驟。首先,VRLS利用動態變化的電池電壓和電流識別等效電路模型(equivalent circuit model, ECM)的參數。接著,AEKF負責運用ECM的狀態方程式來估計電池的SoC和SoH。最後,DNN則以電壓、電流、SoC以及ECM的參數作為輸入,估計電池的表面溫度。該架構的特點是僅需要電池電壓和電流的量測資訊,而不需要額外感測器,能更泛用於實際情況。實驗結果表明,在此框架下,SoC和SoH的平均估計誤差小於0.03,測試數據中電池表面溫度的平均估計誤差可以小於0.5°C。
Battery management systems monitor the state of lithium-ion batteries to prevent overcharge, over-discharge, and thermal runaway, ensuring the efficiency and safety of electric vehicles. In this study, we propose a calculation framework for estimating the battery state of charge (SoC), state of health (SoH), and surface temperature. The framework combines three different algorithms: vector-type recursive least squares (VRLS), adaptive extended Kalman filter (AEKF), and deep neural network (DNN). The proposed framework is applied in drive cycle tests and consists of three calculation steps. First, VRLS identifies the parameters of the equivalent circuit model (ECM) using the dynamic variations of battery voltage and current. Then, AEKF utilizes the state equations of the ECM to estimate the battery SoC and SoH. Finally, DNN takes voltage, current, SoC, and ECM parameters as inputs to estimate the battery surface temperature. The key feature of this framework is that it only requires measurements of battery voltage and current, eliminating the need for additional sensors and enhancing its applicability in practical scenarios. Experimental results demonstrate that the average estimation errors of SoC and SoH are below 0.03, and the average estimation error of the battery surface temperature in the testing data can be less than 0.5°C.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90623
DOI: 10.6342/NTU202302494
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-07-31
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.88 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved