Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90610
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿翔zh_TW
dc.contributor.advisorYu-Hsiang Hsuen
dc.contributor.author王心柔zh_TW
dc.contributor.authorHsin-Jou Wangen
dc.date.accessioned2023-10-03T16:51:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] F. S. a. M. R. Hannah Ritchie. "Causes of death." https://ourworldindata.org/causes-of-death (accessed.
[2] Y. Liu, L. Lin, and L. Qiao, "Recent developments in organ-on-a-chip technology for cardiovascular disease research," Analytical and Bioanalytical Chemistry, pp. 1-15, 2023.
[3] S. Kim, W. Kim, S. Lim, and J. S. Jeon, "Vasculature-on-a-chip for in vitro disease models," Bioengineering, vol. 4, no. 1, p. 8, 2017.
[4] A. B. Ennett and D. J. Mooney, "Tissue engineering strategies for in vivo neovascularisation," Expert opinion on biological therapy, vol. 2, no. 8, pp. 805-818, 2002.
[5] W. Li, H.-F. Wang, Z.-Y. Li, T. Wang, and C.-X. Zhao, "Numerical investigation of drug transport from blood vessels to tumour tissue using a Tumour-Vasculature-on-a-Chip," Chemical Engineering Science, vol. 208, p. 115155, 2019.
[6] 陳宜婷, "具人體血管網絡之為組織篩要平台開發," Master, 應用力學研究所, National Taiwan University, 2021.
[7] S. W. Han, C. A. Vergani Junior, and P. E. O. Reis, "Is gene therapy for limb ischemia a reality?," Jornal Vascular Brasileiro, vol. 19, 2020.
[8] A. Limbourg, T. Korff, L. C. Napp, W. Schaper, H. Drexler, and F. P. Limbourg, "Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia," Nature protocols, vol. 4, no. 12, pp. 1737-1748, 2009.
[9] C. Pan, Q. Gao, B.-S. Kim, Y. Han, and G. Gao, "The Biofabrication of Diseased Artery In Vitro Models," Micromachines, vol. 13, no. 2, p. 326, 2022.
[10] R. K. Jain, "Molecular regulation of vessel maturation," Nature medicine, vol. 9, no. 6, pp. 685-693, 2003.
[11] A. M. Malek, S. L. Alper, and S. Izumo, "Hemodynamic shear stress and its role in atherosclerosis," Jama, vol. 282, no. 21, pp. 2035-2042, 1999.
[12] I. P. Herman, Physics of the human body. Springer, 2016.
[13] C. Poon, "Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices," Journal of the Mechanical Behavior of Biomedical Materials, vol. 126, p. 105024, 2022.
[14] A. M. Pollet and J. M. Den Toonder, "Recapitulating the vasculature using organ-on-chip technology," Bioengineering, vol. 7, no. 1, p. 17, 2020.
[15] S. Zhang, Z. Wan, and R. D. Kamm, "Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature," Lab on a Chip, vol. 21, no. 3, pp. 473-488, 2021.
[16] S. Fleischer, D. N. Tavakol, and G. Vunjak‐Novakovic, "From arteries to capillaries: approaches to engineering human vasculature," Advanced functional materials, vol. 30, no. 37, p. 1910811, 2020.
[17] K. M. Chrobak, D. R. Potter, and J. Tien, "Formation of perfused, functional microvascular tubes in vitro," Microvascular research, vol. 71, no. 3, pp. 185-196, 2006.
[18] Y. Zheng et al., "In vitro microvessels for the study of angiogenesis and thrombosis," Proceedings of the national academy of sciences, vol. 109, no. 24, pp. 9342-9347, 2012.
[19] J. S. Miller et al., "Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues," Nature materials, vol. 11, no. 9, pp. 768-774, 2012.
[20] Y.-H. Hsu, M. L. Moya, C. C. Hughes, S. C. George, and A. P. Lee, "A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays," Lab on a chip, vol. 13, no. 15, pp. 2990-2998, 2013.
[21] Y.-H. Hsu, M. L. Moya, P. Abiri, C. C. Hughes, S. C. George, and A. P. Lee, "Full range physiological mass transport control in 3D tissue cultures," Lab on a chip, vol. 13, no. 1, pp. 81-89, 2013.
[22] S. Kim, H. Lee, M. Chung, and N. L. Jeon, "Engineering of functional, perfusable 3D microvascular networks on a chip," Lab on a Chip, vol. 13, no. 8, pp. 1489-1500, 2013.
[23] S. Kim, M. Chung, J. Ahn, S. Lee, and N. L. Jeon, "Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model," Lab on a Chip, vol. 16, no. 21, pp. 4189-4199, 2016.
[24] G. Gao et al., "Construction of a novel in vitro atherosclerotic model from geometry‐tunable artery equivalents engineered via in‐bath coaxial cell printing," Advanced Functional Materials, vol. 31, no. 10, p. 2008878, 2021.
[25] Y. S. Zhang et al., "Bioprinted thrombosis-on-a-chip," Lab on a Chip, vol. 16, no. 21, pp. 4097-4105, 2016.
[26] Y. I. Wang and M. L. Shuler, "UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems," Lab on a Chip, vol. 18, no. 17, pp. 2563-2574, 2018.
[27] M. Cho and J.-K. Park, "Fabrication of a perfusable 3D in vitro artery-mimicking multichannel system for artery disease models," ACS Biomaterials Science & Engineering, vol. 6, no. 9, pp. 5326-5336, 2020.
[28] S. Kobel, A. Valero, J. Latt, P. Renaud, and M. Lutolf, "Optimization of microfluidic single cell trapping for long-term on-chip culture," Lab on a Chip, vol. 10, no. 7, pp. 857-863, 2010.
[29] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, "Design of pressure-driven microfluidic networks using electric circuit analogy," Lab on a Chip, vol. 12, no. 3, pp. 515-545, 2012.
[30] H. Bruus, "Acoustofluidics 1: Governing equations in microfluidics," Lab on a Chip, vol. 11, no. 22, pp. 3742-3751, 2011.
[31] "SU-8 2000 Permanent Epoxy Negative Photoresist PROCESSING GUIDELINES FOR: SU-8 2100 and SU-8 2150." https://kayakuam.com/wp-content/uploads/2019/09/SU-82000DataSheet2100and2150Ver5.pdf (accessed.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90610-
dc.description.abstract本研究透過血管晶片來研究剪應力對人類血管的影響,因剪應力為誘發動脈血管新生機制的重要機制,是在動脈阻塞後,誘導鄰近副動脈血管直徑增大,以代替原動脈輸血功能之生理機制,防止組織因動脈血管阻塞而壞死,此機制也是未來發展動脈血栓治療的重要因子。本研究透過施加週期性壓力使血管內產生剪應力誘發動脈血管新生機制,並比較以人類臍動脈及臍靜脈內皮細胞在剪應力環境下的血管重塑行為。
本研究所開發的血管晶片為單腔室之三維微組織平台,可於腔室中依序誘導Vasculogenesis及Angiogenesis步驟,形成具血管網絡之微組織,成功將人類臍動脈及靜脈內皮細胞培養出平均直徑為 23 μm 及 21 μm 之血管結構,再透過施加週期性壓力於可灌注之動脈血管組織,使血管內產生剪應力,成功誘發動脈血管新生機制 (Arteriogenesis),促使血管直徑在 48hr 後增加 133%,血管直徑可達 69 μm,並在 72hr 後觀察到血管重塑的現象。本研究亦透過有限元素分析動脈血管內的剪 應力,發現誘發動脈血管新生機制之剪應力範圍落在 1 至 7 Pa、剪切率為 1000 至 10000 1/s的範圍,有符合人體小動脈之生理剪應力範圍。統計所有產生動脈血管新生機制的血管組織,平均直徑增加了 52%,表明此方法可用以培養出更大直徑的血管組織,將可建立出更近似人體的血管模型,以做為心血管疾病模型的基礎,助於疾病治療方法的開發。而靜脈血管組織在受到週期性低壓力時,觀察到直徑一有增加趨勢,較大直徑血管平均直徑可達 31 μm,然而,靜脈血管在受到週期性高壓力環境時,發現有血管數量減少且直徑縮小的現象。
總結,本研究以微生理的角度出發,以實驗驗證動脈及靜脈血管中的內皮細胞 對血液流動所造成的剪應力有不同的反應,是一項重要的生理環境刺激,將可作為血管晶片中培養出較大血管結構的一種微流體操控技術。
zh_TW
dc.description.abstractIn our study, we investigate the effects of shear stress on human vessels using a vessel-on-a-chip device. Shear stress is an important physiological cue in the mechanism of arteriogenesis, which promotes vessel remodeling and prevents blockages, ensuring proper blood flow. This mechanism is also crucial for the future drug development for arterial thrombosis. In this study, cyclic pressure is applied to induce shear stress within the vessels to the effect of shear stress on arteriogenesis. The vascular remodeling of vessels formed by human umbilical arterial (HUAEC) and vein (HUVEC) endothelial cells are also investigated.
The developed device is a single-chamber microfluidic device with two perfusion channels. Vasculogenesis and angiogenesis are sequentially induced using hypoxia, forming microtissues with vascular networks from both HUAECs or HUVECs. The corresponding average vessel diameters are 23 μm and 21 μm. By introducing cyclic pressure to perfused arterial vessels, arteriogenesis is successfully induced. This leads to a 133% increase in vessel diameter within 48 hours, reaching a diameter of 69 μm. Vascular remodeling is also observed after 72 hours of cyclic shear stresses. Finite element analysis reveals that the induced arteriogenesis may occur within a shear stress of 1 to 7 Pa and a shear rate of 1000 to 10,000 1/s, falling within the physiological range in human arterioles vessels. This vessel remodeling depends on vessel diameter and volumetric flow rate. The vessels exhibiting arteriogenesis show an average of 52% increase in diameter. This result suggests that this method can develop a more physiologically relevant vascular model for cardiovascular disease research and drug development. In the case of venous vascular tissue, vessel diameter increment is also observed. The average diameter of large-diameter vessels can reach 31 μm. However, vessel quantity and diameter shrinkage are observed under a high cyclic pressure.
In summary, this study experimentally verified that the arterial and venous endothelial cells respond differently to the shear stress caused by blood flow. It is a new physiological stimulus that can be applied to grow larger vessels in a microfluidic model system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:51:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:51:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目標 3
1.4 論文架構 5
第二章 文獻回顧 6
2.1 人體內之血管新生機制 6
2.1.1 人體內血管組織結構 8
2.2 人體內血管微環境 9
2.3 可灌注之體外三維血管晶片 11
2.3.1 圖案化血管網絡之體外晶片 11
2.3.2 應用血管新生機制自組織血管網絡之體外晶片 12
2.3.3 應用於心血管疾病之體外晶片 15
2.4 可產生剪應力之體外晶片 17
2.4.1 可產生剪應力之二維內皮細胞晶片 17
2.4.2 可產生剪應力之三維血管晶片 19
第三章 設計理念與研究方法 22
3.1 血管晶片之微生理環境模擬設計 22
3.1.1 微流體設計原理 22
3.1.2 血管晶片腔室設計 28
3.1.3 擴散質傳效應之血管晶片微流體平台設計 30
3.1.4 可產生剪應力之血管晶片微流體對流平台設計 33
3.2 血管晶片之研究方法 36
3.2.1 血管晶片之三維組織培養平台流程 37
第四章 微流體晶片開發與實驗方法 40
4.1 微流體晶片之製程開發 40
4.1.1 微流道晶片之製程架構 40
4.1.2 晶片繪製與光罩製作 40
4.1.3 黃光微影製程 41
4.1.4 微流道軟微影製程 47
4.1.5 微流道系統量測 50
4.2 細胞培養及生物技術 50
4.2.1 細胞培養技術 50
4.2.2 晶片內細胞培養技術 51
4.2.3 細胞固定與免疫螢光染色 52
4.3 有限元素法之微流體流場模擬分析 52
4.3.1 有限元素法分析之建模 53
4.3.2 有限元素法分析之統御方程式 54
4.3.3 有限元素法分析之邊界條件 57
4.3.4 有限元素法分析之材料屬性 57
4.3.5 有限元素法分析之網絡 58
4.4 血管新生之量化分析 59
4.4.1 擴散培養之血管新生量化分析 60
4.4.2 動脈新生術之血管量化分析 60
第五章 實驗結果與討論 62
5.1 誘導血管新生機制之生理環境控制分析與培養結果 62
5.1.1 擴散培養平台流場之有限元素法分析 62
5.1.2 擴散培養平台之養分周轉時間分析 63
5.1.3 以擴散平台培養血管組織之實驗結果分析 66
5.2 可產生週期性剪應力之對流平台應用於人類臍動脈血管組織之實驗結果分析 68
5.2.1 誘發動脈血管新生機制於動脈內皮細胞培養之血管組織的實驗結果分析 69
5.2.2 比較有無產生動脈血管新生機制的血管組織差異 75
5.2.3 誘發動脈血管新生機制之流場與剪應力有限元素法分析 76
5.2.4 誘發動脈新生機制之血管內剪應力分析 79
5.3 可產生週期性剪應力之對流平台應用於人類臍靜脈血管組織之結果分析 83
5.3.1 施加週期性低壓力於人類臍靜脈內皮細胞培養之血管組織培養結果 83
5.3.2 施加週期性高壓力於人類臍靜脈內皮細胞培養之血管組織培養結果 85
5.3.3 比較有無施加週期性低壓力於人類臍靜脈內皮細胞培養之血管組織差異 86
第六章 實驗結論與未來展望 89
6.1 結論 89
6.2 未來展望 90
Reference 91
-
dc.language.isozh_TW-
dc.title以血管晶片探討剪應力對人類血管重塑的影響zh_TW
dc.titleStudy on the effect of shear stress on the remodeling of human vessel using a vessel-on-a-chipen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee秦咸靜;蘇裕家;董奕鍾zh_TW
dc.contributor.oralexamcommitteeHsian-Jean Chin;Yu-Chia Su;Yi-Chung Tungen
dc.subject.keyword微流體,血管新生,動脈血管心生,血管晶片,剪應力,zh_TW
dc.subject.keywordmicrofluidic,vasculogenesis,angiogenesis,arteriogenesis,vessel-on-a-chip,organ-on-a-chip,shear stress,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202302947-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-08-06-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
11.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved