請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許少瑜 | zh_TW |
| dc.contributor.advisor | Shao-Yiu Hsu | en |
| dc.contributor.author | 詹凱翔 | zh_TW |
| dc.contributor.author | Kai-Xiang Zhan | en |
| dc.date.accessioned | 2023-10-03T16:47:27Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Anwar, A. (2008), Estimation of mass-transfer coefficients using air-liquid interfacial area in porous media, Journal of environmental research and development, 3(2), 331-341.
Anwar, A. F. (2013), Mass transfer characteristics of nonaqueous phase liquid based on air–liquid interfacial area in variably saturated porous media, Water, Air, & Soil Pollution, 224, 1-11. Bauer, I., T. Dreher, D. Eibl, R. Glöckler, U. Husemann, G. John, S. Kaiser, P. Kampeis, J. Kauling, S. Kleebank (2020), Recommendations for process engineering characterisation of single-use bioreactors and mixing systems by using experimental methods, DECHEMA Gesellschaft für Chemische Technik und Biotechnologie eV. Cussler, E. L. (2009), Diffusion: mass transfer in fluid systems, Cambridge university press. Fabbri, A., H. Wong, B. Lai, T. Bui, D. Branque (2019), Constitutive elasto-plastic model for fine soils in the unsaturated to saturated saturation zone, Computers and Geotechnics, 111, 10-21. Fry, V. A., J. D. Istok, L. Semprini, K. T. O'Reilly, T. E. Buscheck (1995), Retardation of dissolved oxygen due to a trapped gas phase in porous media, Groundwater, 33(3), 391-398. Fukano, T., A. Kariyasaki (1993), Characteristics of gas-liquid two-phase flow in a capillary tube, Nuclear engineering and design, 141(1-2), 59-68. Geller, J., J. Hunt (1993), Mass transfer from nonaqueous phase organic liquids in water‐saturated porous media, Water resources research, 29(4), 833-845. Holocher, J., F. Peeters, W. Aeschbach-Hertig, W. Kinzelbach, R. Kipfer (2003), Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition, Environmental science & technology, 37(7), 1337-1343. Holocher, J., F. Peeters, W. Aeschbach-Hertig, M. Hofer, M. Brennwald, W. Kinzelbach, R. Kipfer (2002), Experimental investigations on the formation of excess air in quasi-saturated porous media, Geochimica et Cosmochimica Acta, 66(23), 4103-4117. Huang, Q.-Z., J.-C. Huang, C.-W. Tsao, S.-Y. Hsu (2023), Pore doublet micromodel experiments of evaporation influence on pre-event water entrapment and pre-event and event water interaction, Advances in Water Resources, 177, 104464. Kim, H., M. D. Annable, P. S. C. Rao (2001), Gaseous Transport of Volatile Organic Chemicals in Unsaturated Porous Media: Effect of Water-Partitioning and Air− Water Interfacial Adsorption, Environmental science & technology, 35(22), 4457-4462. Kravchenko, A., A. Guber, B. Razavi, J. Koestel, M. Quigley, G. Robertson, Y. Kuzyakov (2019), Microbial spatial footprint as a driver of soil carbon stabilization, Nature Communications, 10(1), 3121. Lake, L. W. (1989), Enhanced oil recovery. Leung, D. Y., G. Caramanna, M. M. Maroto-Valer (2014), An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Reviews, 39, 426-443. Moriasi, D. N., M. W. Gitau, N. Pai, P. Daggupati (2015), Hydrologic and water quality models: Performance measures and evaluation criteria, Transactions of the ASABE, 58(6), 1763-1785. Muñoz, C., L. Paulino, C. Monreal, E. Zagal (2010), Greenhouse gas (CO2 and N2O) emissions from soils: a review, Chilean journal of agricultural research, 70(3), 485-497. Mumford, K. G., S. E. Dickson, J. E. Smith (2009), Slow gas expansion in saturated natural porous media by gas injection and partitioning with non-aqueous phase liquids, Advances in Water Resources, 32(1), 29-40. Nash, J. E., J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I—A discussion of principles, Journal of hydrology, 10(3), 282-290. Nissan, A., U. Alcolombri, N. Peleg, N. Galili, J. Jimenez-Martinez, P. Molnar, M. Holzner (2023), Global warming accelerates soil heterotrophic respiration, Nature Communications, 14(1), 3452. Nordbotten, J. M., M. A. Celia, S. Bachu, H. K. Dahle (2005), Semianalytical solution for CO2 leakage through an abandoned well, Environmental science & technology, 39(2), 602-611. Oertel, C., J. Matschullat, K. Zurba, F. Zimmermann, S. Erasmi (2016), Greenhouse gas emissions from soils—A review, Geochemistry, 76(3), 327-352. Parker, L., R. Yarwood, J. Selker (2006), Observations of gas flow in porous media using a light transmission technique, Water resources research, 42(5). Patmonoaji, A., T. Suekane (2017), Investigation of CO2 dissolution via mass transfer inside a porous medium, Advances in Water Resources, 110, 97-106. Ransohoff, T., C. Radke (1988), Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore, Journal of colloid and interface science, 121(2), 392-401. Rivett, M. O., G. P. Wealthall, R. A. Dearden, T. A. McAlary (2011), Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones, Journal of contaminant hydrology, 123(3-4), 130-156. Saripalli, K. P., R. J. Serne, P. D. Meyer, B. P. McGrail (2002), Prediction of diffusion coefficients in porous media using tortuosity factors based on interfacial areas, Groundwater, 40(4), 346-352. Seemann, R., M. Brinkmann, T. Pfohl, S. Herminghaus (2011), Droplet based microfluidics, Reports on progress in physics, 75(1), 016601. Soucy, N. C., K. G. Mumford (2017), Bubble-facilitated VOC transport from LNAPL smear zones and its potential effect on vapor intrusion, Environmental science & technology, 51(5), 2795-2802. Washburn, E. W. (1921), The dynamics of capillary flow, Physical review, 17(3), 273. Yoon, H., J. H. Kim, H. M. Liljestrand, J. Khim (2002), Effect of water content on transient nonequilibrium NAPL–gas mass transfer during soil vapor extraction, Journal of contaminant hydrology, 54(1-2), 1-18. Zohuri, B., B. Zohuri (2017), Laminar Incompressible Forced Convection, Thermal-Hydraulic Analysis of Nuclear Reactors, 147-221. 張祖榮(2022),以微铣削進行高分子微流體裝置之製程整合,國立中央大學機械工程學系,碩士論文。 黃鈞琮(2019),應用雙通道微模型探討空氣殘餘型態對新舊水互動的影響,國立中央大學水文與海洋科學研究所,碩士論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90596 | - |
| dc.description.abstract | 地表下二氧化碳傳輸因為土壤碳排、碳匯、與地質碳封存等溫室氣體與氣候變遷相關議題而受到關注。在非飽和層此空氣-水-土壤系統中是必須考慮空氣對流體傳輸的影響,以及二氧化碳在液-氣介面的動態傳輸過程。然而此機制不易在達西尺度模式描述,即,缺乏將此孔隙尺度現象深尺度為達西尺度模式可用之模型;為此,本研究以孔隙尺度實驗初步探討孔隙中水分與空氣分佈對於二氧化碳傳輸的影響與傳輸行為特性。本研究孔隙尺度實驗包含毛細管實驗與雙通道微模型實驗。毛細管實驗旨在相同飽和度與孔隙幾何下,液相的不同分段形式對於二氧化碳傳輸過程的影響;而雙通道微模型旨在檢驗新水中的溶解二氧化碳能否能擴散至孔隙介質中的受空氣侷限的殘餘水。對於兩實驗皆有建立以及相對應數學模式說明所發現之氣體-水-溶解二氧化碳互動行為在。毛細管實驗發現:在空氣存在的情況下,隨著液相分段數增加,氣相體積發展以及液相傳遞速度呈現遞減的趨勢。當二氧化碳從液相進入氣相的過程中,會導致氣泡體積增加。雙通道微模型實驗結果顯示,新水中的二氧化碳可能透過氣相傳輸或者角落薄膜流(corner film flow)進入殘餘水。透過比較數學模式模擬結果與實驗結果發現,考慮介面質傳與侷限空氣段影響等建立的模式具備足夠的預測準確度。然而模式在模擬實驗後期呈現低估濃度與氣泡體積的現象,推測可能原因有濃度較高的情況下亨利定律無法成立、蒸發影響、流道幾何形狀等其他尚未考量的因素。論文最後探討模式應用於雙通道微模型上無法預測以及仍需解決的議題。 | zh_TW |
| dc.description.abstract | The subsurface transportation of carbon dioxide draws a great attention due to its relevance to greenhouse gas emissions, carbon sinks, and geological carbon sequestration in relation to climate change. In the unsaturated zone, the air-water-soil system, the impact of air entrapment on fluid transport and the dynamic transfer process of carbon dioxide at the liquid-gas interface must be considered. However, those mechanisms are not easily described in Darcy-scale models, i.e., lacking models that can bridge the pore-scale phenomena to the Darcy-scale models. Therefore, our study preliminarily investigates the influence and transport behavior of water and air distribution in pores on carbon dioxide transport through pore-scale experiments. The pore-scale experiments in this study include capillary tube experiments and dual-channel micro-model experiments. The capillary tube experiments aim to examine the influence of different liquid phase configurations (numbers of air segments) under the same saturation and pore geometry on the process of carbon dioxide transport. The dual-channel micro-model is designed to explore whether dissolved carbon dioxide in new water can diffuse into the air-restricted residual water in the pore medium. Mathematical models have been established for both experiments to explain the discovered gas-water-dissolved carbon dioxide interaction behaviors. The results of capillary tube experiments show that in the presence of air segments, as the number of liquid phase segments increases, the development of the gas phase volume and the rate of liquid phase transmission show a decreasing trend. The process of carbon dioxide transitioning from the liquid phase to the gas phase leads to an increase in bubble volume. The results of the dual-channel micro-model experiments showed that carbon dioxide in new water may enter the residual water through gas-phase transport or corner film flow. By comparing the simulated results from mathematical models with experimental findings, it was determined that the models, which take into account interfacial mass transfer and restricted air segments, exhibit sufficient predictive accuracy. However, the models tend to underestimate the concentration and bubble volume in the later stages of the experiments. This phenomenon could be attributed to factors not yet considered, such as the breakdown of Henry's law at higher concentrations, evaporation effects, and geometric shapes of flow channels. In conclusion, the paper explores the unresolved issues and limitations of applying the model to the dual-channel micro-model, emphasizing the need for further investigation and resolution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:47:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:47:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 x 第1章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究目的 4 第2章 研究方法 4 2-1 研究架構 4 2-2 理論 6 2-2-1 擴散、介面傳輸與侷限空氣壓力之理論方程式 6 2-2-2 雙通道微模型理論方程式 7 2-2-3 模式一與模式二建立 9 2-2-4 模式準確度評估 14 2-3 實驗 14 2-3-1 實驗配置 15 2-3-1 率定曲線建立與滴定介紹 15 2-3-2 毛細管連續液-氣-液傳輸 25 2-3-3 微模型殘餘相液-氣-液傳輸 26 第3章 結果與討論 29 3-1 模式驗證 29 3-1-1 有限差分法模擬結果與解析解比較 29 3-1-2 有限差分法模擬與測試實驗比較 30 3-2 毛細管液-氣-液分布的侷限空氣發展與液相傳輸分析 33 3-3 雙通道微模型殘餘相傳輸之實驗分析 54 第4章 結論 61 參考資料 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 非飽和層 | zh_TW |
| dc.subject | 孔隙尺度 | zh_TW |
| dc.subject | 侷限空氣 | zh_TW |
| dc.subject | 二氧化碳傳輸 | zh_TW |
| dc.subject | 介面質傳 | zh_TW |
| dc.subject | 殘餘相 | zh_TW |
| dc.subject | residual phase | en |
| dc.subject | interfacial mass transfer | en |
| dc.subject | restricted air segments | en |
| dc.subject | pore scale | en |
| dc.subject | unsaturated zone | en |
| dc.subject | carbon dioxide transport | en |
| dc.title | 利用毛細管與雙通道微模型探討侷限空氣對非飽和層二氧化碳傳輸過程的影響 | zh_TW |
| dc.title | Using Capillary Tube and Pore Doublet Micromodel to Investigate the Effect of Entrapped Gas Phase on the Transport Process of Carbon Dioxide in Unsaturated Zone | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭友晉;郭修伯;曹嘉文 | zh_TW |
| dc.contributor.oralexamcommittee | Yo-Jin Shiau;Hsiu-Po Kuo;Chia-Wen Tsao | en |
| dc.subject.keyword | 非飽和層,孔隙尺度,二氧化碳傳輸,介面質傳,侷限空氣,殘餘相, | zh_TW |
| dc.subject.keyword | unsaturated zone,pore scale,carbon dioxide transport,interfacial mass transfer,restricted air segments,residual phase, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202303345 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2028-08-07 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
