Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭舒婷zh_TW
dc.contributor.advisorSu-Ting Chengen
dc.contributor.author汪子洋zh_TW
dc.contributor.authorZih-Yang Wangen
dc.date.accessioned2023-10-03T16:46:25Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-03-
dc.identifier.citation王文能 (2019)。大規模崩塌的地質特性與九份二山崩塌案例。技師期刊,(87), 43-51。
內政部地政司 (2018)。新版臺灣本島20公尺網格DTM資料。民111年6月5日,取自:https://data.gov.tw/dataset/88733
行政院農業委員會 (2017)。衛星判釋全島崩塌地圖。民111年7月13日,取自:https://data.gov.tw/dataset
行政院農業委員會林務局 (2013)。102年運用光學衛星影像於全島崩塌地判釋與災害分析。
何春蓀 (1986)。台灣地質概論-台灣地質圖說明書 (增訂二版)。經濟部中央地質調查所,共,164。
邱清安、呂金誠、林博雄、廖敏君 (2005a)。臺灣地區 Holdridge 生命帶之繪製。國家公園學報,15(1),61-78。
邱清安、林鴻志、廖敏君、曾彥學、歐辰雄、呂金誠、曾喜育 (2008)。臺灣潛在植群形相分類方案。林業研究季刊,30(4),89-111。
林文賜、黃碧慧 (2013)。應用 SOM 模式於九九峰震災崩塌地萃取之研究。水保技術,8(4),174-178。
林榮潤、周柏儀、許世孟、林燕初、張閔翔、黃智昭、費立沅 (2013)。應用孔內水文地質調查成果於山崩潛勢評估。中華水土保持學報,44(3),245-254。
胡元瑋、何郁庭、馬復京、游漢明 (2018)。臺灣崩塌地植生復育方法之研究。林業研究季刊,40(4),289-298。
洪如江 (1998)。膠結作用與砂岩之強度。地工技術,(65),101-116。
紀宗吉、林朝宗、劉桓吉 (1998)。林肯大郡地層滑動災變原因之探討。地工技術,(68),67-74。
涂建翊、余嘉裕 (1997)。台灣地區降水之時空氣候特徵。氣象預報與分析,152,23-33。
陳明杰、曾俊偉、周明德 (2004)。應用食鹽水檢層法於九份二山崩塌地地下水特性之研究。中華林學季刊,37(3),269-281。
陳信雄 (1995)。崩塌地調查與分析。渤海堂文化事業有限公司。
陳俊愷、林伯勳、冀樹勇 (2014)。石門水庫集水區國有林班地艾利颱風災後崩塌地人為及自然復育評估。中興工程,(124),51-59。
國科會臺灣氣候變遷推估資訊與調適知識平台 (2021)。網格化觀測日資料 - 降雨量 - 北部。民111年5月18日,取自:https://tccip.ncdr.nat.gov.tw/ds_03_mall_one.aspx?c=%E7%B6%B2%E6%A0%BC%E5%8C%96%E8%A7%80%E6%B8%AC%E6%97%A5%E8%B3%87%E6%96%99&p=%E9%99%8D%E9%9B%A8%E9%87%8F&a=%E5%8C%97%E9%83%A8&r=0.05
國科會臺灣氣候變遷推估資訊與調適知識平台 (2021)。網格化觀測日資料 - 降雨量 - 中部。民111年5月18日,取自:https://tccip.ncdr.nat.gov.tw/ds_03_mall_one.aspx?c=%E7%B6%B2%E6%A0%BC%E5%8C%96%E8%A7%80%E6%B8%AC%E6%97%A5%E8%B3%87%E6%96%99&p=%E9%99%8D%E9%9B%A8%E9%87%8F&a=%E4%B8%AD%E9%83%A8&r=0.05
國科會臺灣氣候變遷推估資訊與調適知識平台 (2021)。網格化觀測日資料 - 降雨量 - 東部。民111年5月18日,取自:https://tccip.ncdr.nat.gov.tw/ds_03_mall_one.aspx?c=%E7%B6%B2%E6%A0%BC%E5%8C%96%E8%A7%80%E6%B8%AC%E6%97%A5%E8%B3%87%E6%96%99&p=%E9%99%8D%E9%9B%A8%E9%87%8F&a=%E6%9D%B1%E9%83%A8&r=0.05
張斐章、張麗秋 (2014)。類神經網路導論: 原理與應用。滄海圖書資訊出版。
黃雅喬、林國峰、張明瑞、何瑞益 (2016)。支援向量機於降雨引致崩塌潛勢分析之研究。中國土木水利工程學刊,28(1),57-66。
楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011)。臺灣常用山崩分類系統。第十四屆大地工程研討會。桃園縣:中華民國大地工程學會。
楊薇玉、姜善鑫 (2007)。台灣季節降雨之週期現象。華岡地理學報,(20),77-88。
萬昆明、林親義、游繁結 (1996)。濁水巷地滑地穩定性之探討。中華水土保持學報,27(1),47-52。
萬絢、張士勳 (2014)。比較模糊分群自組織映射圖在建構崩塌地之影像判釋之差異。水保技術,9(3),35-42。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46(1),19-28。
經濟部中央地質調查所 (2008)。都會區及周緣坡地環境地質資料庫圖集說明。 新北市。
經濟部中央地質調查所 (2014)。流域地質圖-地層。民112年11月21日,取自:https://data.nat.gov.tw/dataset/8937
經濟部中央地質調查所 (2015)。山崩與地滑地質敏感區劃定計畫書 L0007新北市。民112年6月15日,取自:https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiygO2XyfH_AhXYQN4KHU4ECWcQFnoECBoQAQ&url=https%3A%2F%2Fwww.moeacgs.gov.tw%2FReadFile%2F%3Fp%3DArticle%26n%3Dd27e0c9ca3264000ab47a088131b1418.pdf&usg=AOvVaw0RpAhOe0SAK6sfgU7GumPI&opi=89978449
經濟部中央地質調查所 (2015)。山崩與地滑地質敏感區劃定計畫書 L0011桃園市。民112年6月15日,取自:https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiMvMCyyfH_AhVG4WEKHV33C4oQFnoECBQQAQ&url=https%3A%2F%2Fwww.moeacgs.gov.tw%2FReadFile%2F%3Fp%3DArticle%26n%3D054d9295408b44b4ae9393d5cfc77d3d.pdf&usg=AOvVaw28rypH-7ltk_lkoFBiEwoi&opi=89978449
劉衍淮 (1964)。台灣氣候變化之趨勢與週期。氣象學報,10(3),31-51。
劉憲德、侯秉承 (1985)。臺灣坡地社區工程地質調查與探勘報告 第四卷第二集 新竹地區。經濟部中央地質調查所。
Ahmed, B., & Forte, R. (2016, February). Landslide Risk Zoning Applying Kohonen's Self-Organizing Map Neural Network Technique. Department of Urban and Regional Planning, Jahangirnagar University.
Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the environment, 58, 21-44.
Anagnostopoulos, G. G., Fatichi, S., & Burlando, P. (2015). An advanced process‐based distributed model for the investigation of rainfall‐induced landslides: The effect of process representation and boundary conditions. Water Resources Research, 51(9), 7501-7523.
Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
Baum, R. L., Savage, W. Z., & Godt, J. W. (2008). TRIGRS: a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0 (pp. 2008-1159). Reston, VA, USA: US Geological Survey.
Bragagnolo, L., Da Silva, R. V., & Grzybowski, J. M. V. (2020). Artificial neural network ensembles applied to the mapping of landslide susceptibility. Catena, 184, 104240.
Breard, G. T. (2017). Evaluating self-organizing map quality measures as convergence criteria.
Chang, F. J., Chang, L. C., Kao, H. S., & Wu, G. R. (2010). Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology, 384(1-2), 118-129.
Chen, I. T., Chang, L. C., & Chang, F. J. (2018). Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. Journal of Hydrology, 556, 131-142.
Corominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260-271.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., ... & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of engineering geology and the environment, 73, 209-263.
Crosta, G. B., & Frattini, P. (2001, October). Rainfall thresholds for triggering soil slips and debris flow. In Proceeding of 2nd EGS Plinius Conference on Mediterranean Storms, Siena (Vol. 1, pp. 463-487).
Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering geology, 64(1), 65-87.
Dai, J. Y., & Cheng, S. T. (2022). Modeling shallow soil moisture dynamics in mountainous landslide active regions. Frontiers in Environmental Science, 10: 913509.
El-Habil, A. M. (2012). An application on multinomial logistic regression model. Pakistan journal of statistics and operation research, 271-291.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering geology, 102(3-4), 85-98.
Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I., Gisladottir, G., Sigfusson, B., ... & Oskarsson, N. (2009). Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 277(1-2), 213-222.
Gomez, H., & Kavzoglu, T. (2005). Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78(1-2), 11-27.
Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5, 3-17.
Hamel, L., & Brown, C. W. (2011). Improved interpretability of the unified distance matrix with connected components. In Proceedings of the International Conference on Data Science (ICDATA) (p. 1). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
Highland, L., & Bobrowsky, P. T. (2008). The landslide handbook: a guide to understanding landslides (p. 129). Reston, VA, USA: US Geological Survey.
Huang, F., Chen, J., Liu, W., Huang, J., Hong, H., & Chen, W. (2022). Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 408, 108236.
Huang, F., Yin, K., Huang, J., Gui, L., & Wang, P. (2017). Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Engineering Geology, 223, 11-22.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern. 43 (1), 59–69.
Kohonen, T. (2001). Self-organizing Maps. Springer-Verlag, Berlin Heidelberg.
Kohonen, T. (2005). "Intro to SOM". SOM Toolbox. Retrieved 2006-06-18.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., & Dong, J. J. (2008). Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology, 100(1-2), 43-58.
Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental geology, 40, 1095-1113.
Lee, S., Ryu, J. H., Won, J. S., & Park, H. J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3-4), 289-302.
Liang, W. L., & Chan, M. C. (2017). Spatial and temporal variations in the effects of soil depth and topographic wetness index of bedrock topography on subsurface saturation generation in a steep natural forested headwater catchment. Journal of Hydrology, 546, 405-418.
Lin, Huan-Yu & Hu, Jer-Ming & Chen, Tze-Ying & Hsieh, Chang-Fu & Wang, Guangyu & Wang, Tongli. (2018). A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania. 63. 251-266. 10.6165/tai.2018.63.251.
Marin, R. J., Velásquez, M. F., García, E. F., Alvioli, M., & Aristizábal, E. (2021). Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. Catena, 206, 105563.
Medina, V., Hürlimann, M., Guo, Z., Lloret, A., & Vaunat, J. (2021). Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena, 201, 105213.
Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3-4), 171-191.
Quevedo, R. P., Velastegui-Montoya, A., Montalván-Burbano, N., Morante-Carballo, F., Korup, O., & Daleles Rennó, C. (2023). Land use and land cover as a conditioning factor in landslide susceptibility: a literature review. Landslides, 20(5), 967-982.
Reichenbach, P., Rossi, M., Malamud, B., Mihir, M., & Guzzetti, F. (2018). A review of statistically based landslide susceptibility models. Earth science reviews.
Stark, C. P., & Hovius, N. (2001). The characterization of landslide size distributions. Geophysical research letters, 28(6), 1091-1094.
Stefanovič, P., & Kurasova, O. (2011). Visual analysis of self-organizing maps. Nonlinear Analysis: Modelling and Control, 16(4), 488-504.
Su, H. J. (1984). Studies on the climate and vegeation type of the natural forest in Taiwan(Ⅱ). Altitudinal vegetation zones in relation to temperature gradient. Quart. Journ. Chin. Forest. 17(4):57-73.
Ultsch, A. (1990). Kohonen's self organizing feature maps for exploratory data analysis. INNC'90.
Uriarte, E. A., & Martín, F. D. (2005). Topology preservation in SOM. International journal of applied mathematics and computer sciences, 1(1), 19-22.
Varnes, D. J. (1958). Landslide types and processes. Landslides and engineering practice, 29(3), 20 45.
Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
Vesanto, J. (1999). SOM-based data visualization methods. Intelligent data analysis, 3(2), 111-126.
Wehrens, R., & Buydens, L. M. (2007). Self-and super-organizing maps in R: the Kohonen package. Journal of Statistical Software, 21, 1-19.
Yilmaz, I. (2010). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61, 821-836.
Yin, H., & Allinson, N. M. (1995). On the distribution and convergence of feature space in self-organizing maps. Neural computation, 7(6), 1178-1187.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90592-
dc.description.abstract臺灣位處板塊交界及颱風路徑上,使得崩塌成為臺灣山區常見的災害,崩塌不僅威脅山區居民生命及財產安全,也影響水庫壽命及下游地區用水,造成經濟上的損失。為評估不同降雨及環境因子與崩塌特性之關聯性,本研究以臺灣北部地區石門水庫集水區為研究區域,蒐集林務局2004年到2016年之衛星判釋崩塌地圖公開資料,將崩塌地圖轉換成網格資料,計算此區域崩塌網格之年間變化,並繪製各年度的崩塌面積變遷圖。為配合崩塌面積及網格崩塌面積變遷率等崩塌資料時間單位為年,本研究以年度最大日雨量、全年總降雨事件數及全年降雨天數等因子量化降雨特性,輔以人工智慧自組織映射網路分析技術,依據拓樸結果探討所選降雨因子與崩塌特性間之非線性關係,最後再利用多項邏輯式迴歸了解崩塌特性與高程、坡度、岩層等環境因子間之關連性。
崩塌地變遷分析結果顯示2004到2005年間及2009到2010年間崩塌擴張情形較為嚴重,且崩塌多發生在集水區的中部區域及西南部區域,而自2011年後集水區的中部區域崩塌已大幅減少,西南部區域仍持續崩塌。自組織映射網路拓樸結果將輸入資料分成9群,可將集水區內不同規模的崩塌依照不同的降雨型態加以分類;結果顯示集水區內的崩塌類型可分為大雨量造成的大規模崩塌、小雨量造成的大規模崩塌及大雨量造成的小規模崩塌等類型,有助於集水區的崩塌管理及防災計畫制定。此外,本研究發現石門水庫集水區崩塌與全年降雨事件數呈正相關;而崩塌與全年降雨天數則具有不同之鏈結關係,於年雨量週期的相對高峰時期,崩塌與全年降雨天數呈負相關,而於年雨量週期的相對低谷時期,崩塌則與全年降雨天數呈正相關。多項邏輯式迴歸分析結果則顯示研究區域內高程超過1500公尺之區域,崩塌潛勢與高程呈正比,高程越高崩塌潛勢越大;在坡度的部分,五級坡的崩塌潛勢較六級坡來的大;在地層的部分,汶水層、石底層、大桶山層及粗窟層等由砂岩及頁岩或硬頁岩互層所組成的地層的崩塌潛勢較水長流層來得大,而四稜砂岩雖較為穩定,但砂岩與頁岩夾層處仍具有較高之崩塌風險。綜上所述,本研究建議針對集水區內崩塌潛勢較高之區域進行監測,並依照不同降雨之特性及其重現週期進行防災之規劃。最後,為了解氣候變遷影響下集水區內降雨週期可能造成之改變,本研究亦建議持續監測降雨週期之變化。
zh_TW
dc.description.abstractTaiwan is located at the junction of tectonic plates and lies along the path of typhoons, making landslides a common disaster in its mountainous areas. Landslides threaten the lives and property of mountain residents, and affect the life of reservoirs and water use of downstream areas, leading to economic losses. This research investigates the relationship between landslide characteristics, rainfall, and environmental factors in the catchment area of the Shimen Reservoir in northern Taiwan. The publicly available satellite-interpreted landslide maps were gathered from the Forestry Bureau from 2004 to 2016 and converted into grid data to calculate the annual variations of landslide occurrences in the study area. Annual maximum daily rainfall, the total number of rainfall events in a year, and the number of rainy days in a year were quantified as rainfall characteristics. Artificial intelligence self-organizing map (SOM) network analysis techniques were employed to explore the nonlinear relationship between the selected rainfall factors and landslide characteristics. Lastly, based on the SOM map, multinomial logistic regression was applied to understand the relationship between landslide characteristics and environmental factors such as elevation, slope, and geological formations.
The results of the landslide change analysis revealed more severe landslide expansion during the periods of 2004-2005 and 2009-2010. Landslides were more frequent in the central and southwestern regions of the catchment area, while the occurrence of landslides in the central region significantly decreased after 2011, but continued in the southwestern region. The results of the SOM network classified the input data into 9 clusters, enabling the categorization of landslides of different scales based on various rainfall patterns within the catchment area. Moreover, the results showed that the types of landslides in the catchment area can be classified as large-scale landslides caused by heavy rainfall, large-scale landslides caused by light rainfall, and small-scale landslides caused by heavy rainfall. This classification helps in developing landslide management and disaster prevention plans in the catchment. Furthermore, the SOM results revealed a positive correlation between landslides and the total number of rainfall events in a year. However, landslides exhibited different relationships with the number of rainy days in a year. During the relatively high peak of the annual rainfall cycle, landslides were negatively correlated with the number of rainy days in a year, whereas during the relatively low periods of the annual rainfall cycle, landslides were positively correlated with the number of rainy days in a year. The results of the multinomial logistic regression analysis showed that in areas with elevations exceeding 1500 meters, landslide potential was positively correlated with elevation, indicating that higher elevations had a greater landslide potential. Regarding slope, landslides had a higher potential on grade 5 slopes compared to grade 6 slopes. In terms of geological formations, formations composed of alternating sandstone and shale or hard shale, such as the Wenshui (Ws) Formation, Shiti (St) Formation, Tatongshan (Tt) Formation, and Tsuku (Tu) Formation, exhibited higher landslide potential compared to the Shuichanglui (Om) Formation. Although the Xileng Sandstone (Em) Formation was relatively stable, the interface between sandstone and shale still posed a higher landslide susceptibility. In conclusion, it is recommended to carry out long-term monitoring of areas with a higher risk of landslide occurrences within the catchment area and to conduct disaster prevention plans based on the characteristics of different rainfall patterns and their recurrence cycles. Lastly, to understand the influence of climate change on potential changes in rainfall patterns within the catchment area, it is recommended to monitor the potential changes in the rainfall patterns.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:46:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:46:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 崩塌定義 2
1.2.2 崩塌影響因子 2
1.2.3 崩塌相關研究 3
1.3 研究目的 5
第二章 材料與方法 6
2.1 研究流程 6
2.2 研究區域 6
2.3 研究材料 8
2.3.1 崩塌資料 8
2.3.2 崩塌地區環境相關資訊 8
2.3.3 降雨特性資料 10
2.4 資料網格化 11
2.5 崩塌地變遷分析 14
2.6 自組織映射網路 15
2.6.1 自組織映射網路輸入資料前處理 15
2.6.2 自組織映射網路演算法 16
2.7 自組織映射網路分類結果資料探勘 18
2.7.1 自組織映射網路權重拓樸 18
2.7.2 自組織映射網路分類神經元資料特性 19
2.7.3 自組織映射網路分類結果之時間分析 19
2.7.4 自組織映射網路分類結果之環境因子分析 19
第三章 結果 22
3.1 崩塌地變遷分析結果 22
3.2 降雨因子相關係數矩陣 27
3.3 自組織映射網路 27
3.3.1 自組織映射網路因子與參數 27
3.3.2 自組織映射網路拓樸結果 31
3.3.3 自組織映射網路分類結果之時間分析 44
3.3.4 自組織映射網路分類結果之環境因子分析 47
第四章 討論 50
4.1 崩塌地變遷分析 50
4.2 SOM分類結果探討 50
4.3 時間週期 52
4.4 環境因子的影響 53
4.4.1 高程 53
4.4.2 坡度 53
4.4.3 地層 54
4.5 研究限制與建議 56
4.5.1 網格 56
4.5.2 降雨因子 56
第五章 結論 57
第六章 參考文獻 59
附錄一 完整多項邏輯式迴歸模型參數表 68
-
dc.language.isozh_TW-
dc.subject多項邏輯式迴歸zh_TW
dc.subject石門水庫集水區zh_TW
dc.subject崩塌特性zh_TW
dc.subject降雨因子zh_TW
dc.subject崩塌地面積變遷率zh_TW
dc.subject自組織映射網路zh_TW
dc.subjectSelf-organizing map (SOM)en
dc.subjectMultinomial logistic regressionen
dc.subjectRainfall factorsen
dc.subjectLandslide area change rateen
dc.subjectLandslide characteristicsen
dc.subjectCatchment of Shihmen Reservoiren
dc.title以類神經網路評估石門水庫集水區崩塌特性zh_TW
dc.titleInvestigating landslide characteristics in the catchment of Shihmen Reservoir by artificial neural networken
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張麗秋;衛強;黃國文zh_TW
dc.contributor.oralexamcommitteeLi-Chiu Chan;Chiang Wei;Gwo-Wen Hwangen
dc.subject.keyword石門水庫集水區,崩塌特性,降雨因子,崩塌地面積變遷率,自組織映射網路,多項邏輯式迴歸,zh_TW
dc.subject.keywordCatchment of Shihmen Reservoir,Landslide characteristics,Rainfall factors,Landslide area change rate,Self-organizing map (SOM),Multinomial logistic regression,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202302772-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2028-08-03-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-03
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved