請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90583
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅立成 | zh_TW |
dc.contributor.advisor | Li-Chen Fu | en |
dc.contributor.author | 陳有文 | zh_TW |
dc.contributor.author | Yu-Wen Chen | en |
dc.date.accessioned | 2023-10-03T16:44:05Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-04 | - |
dc.identifier.citation | H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48572– 48634, 2019.
P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscholios, “A compilation of uav applications for precision agriculture,” Computer Networks, vol. 172, p. 107148, 2020. F. Nex and F. Remondino, “Uav for 3d mapping applications: a review,” Applied geomatics, vol. 6, pp. 1–15, 2014. M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, “Multipurpose uav for search and rescue operations in mountain avalanche events,” Geomatics, Natural Hazards and Risk, vol. 8, no. 1, pp. 18–33, 2017. S. Jordan, J. Moore, S. Hovet, J. Box, J. Perry, K. Kirsche, D. Lewis, and Z. T. H. Tse, “State-of-the-art technologies for uav inspections,” IET Radar, Sonar & Navigation, vol. 12, no. 2, pp. 151–164, 2018. K. U. Lee, Y. H. Choi, and J. B. Park, “Backstepping based formation control of quadrotors with the state transformation technique,” Applied Sciences, vol. 7, no. 11, p. 1170, 2017. R. Amin, L. Aijun, and S. Shamshirband, “A review of quadrotor uav: control methodologies and performance evaluation,” International Journal of Automation and Control, vol. 10, no. 2, pp. 87–103, 2016. M. Idrissi, M. Salami, and F. Annaz, “A review of quadrotor unmanned aerial vehicles: applications, architectural design and control algorithms,” Journal of Intelligent & Robotic Systems, vol. 104, no. 2, p. 22, 2022. R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab, A. K. Al-Ali, K. A. Harras, and M. Guizani, “Design challenges of multi-uav systems in cyberphysical applications: A comprehensive survey and future directions,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3340–3385, 2019. J. Scherer and B. Rinner, “Persistent multi-uav surveillance with energy and communication constraints,” in 2016 IEEE international conference on automation science and engineering (CASE), pp. 1225–1230, IEEE, 2016. J. Castillo-Zamora, J. Escareno, I. Boussaada, O. Labbani, and K. Camarillo, “Modeling and control of an aerial multi-cargo system: Robust acquiring and transport operations,” in 2019 18th European Control Conference (ECC), pp. 1708–1713, IEEE, 2019. M. Thammawichai, S. P. Baliyarasimhuni, E. C. Kerrigan, and J. B. Sousa, “Optimizing communication and computation for multi-uav information gathering applications,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 2, pp. 601–615, 2017. K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, 2015. W. Li, Z. Chen, and Z. Liu, “Leader-following formation control for second-order multiagent systems with time-varying delay and nonlinear dynamics,” Nonlinear Dynamics, vol. 72, pp. 803–812, 2013. D. Xu, X. Zhang, Z. Zhu, C. Chen, and P. Yang, “Behavior-based formation control of swarm robots,” Mathematical Problems in Engineering, vol. 2014, 2014. W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control, vol. 27. Springer, 2008. S. Huang, R. S. H. Teo, and K. K. Tan, “Collision avoidance of multi unmanned aerial vehicles: A review,” Annual Reviews in Control, vol. 48, pp. 147–164, 2019. Z. Pan, C. Zhang, Y. Xia, H. Xiong, and X. Shao, “An improved artificial potential field method for path planning and formation control of the multi-uav systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1129–1133, 2022. B. Di, R. Zhou, and H. Duan, “Potential field based receding horizon motion planning for centrality-aware multiple uav cooperative surveillance,” Aerospace Science and Technology, vol. 46, pp. 386–397, 2015. D. Alejo, J. Cobano, G. Heredia, and A. Ollero, “Optimal reciprocal collision avoidance with mobile and static obstacles for multi-uav systems,” in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1259–1266, IEEE, 2014. C. Y. Tan, S. Huang, K. K. Tan, and R. S. H. Teo, “Three dimensional collision avoidance for multi unmanned aerial vehicles using velocity obstacle,” Journal of Intelligent & Robotic Systems, vol. 97, pp. 227–248, 2020. P. Yao, H. Wang, and Z. Su, “Cooperative path planning with applications to target tracking and obstacle avoidance for multi-uavs,” Aerospace Science and Technology, vol. 54, pp. 10–22, 2016. P. Yao, Y. Wei, and Z. Zhao, “Null-space-based modulated reference trajectory generator for multi-robots formation in obstacle environment,” ISA transactions, vol. 123, pp. 168–178, 2022. L. Quan, L. Yin, T. Zhang, M. Wang, R. Wang, S. Zhong, Y. Cao, C. Xu, and F. Gao, “Formation flight in dense environments,” arXiv preprint arXiv:2210.04048, 2022. M. Ille and T. Namerikawa, “Collision avoidance between multi-uav-systems considering formation control using mpc,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 651–656, IEEE, 2017. Z. Sun and Y. Xia, “Receding horizon tracking control of unicycle-type robots based on virtual structure,” International Journal of Robust and Nonlinear Control, vol. 26, no. 17, pp. 3900–3918, 2016. Q. Ouyang, Z. Wu, Y. Cong, and Z. Wang, “Formation control of unmanned aerial vehicle swarms: A comprehensive review,” Asian Journal of Control, vol. 25, no. 1, pp. 570–593, 2023. Z. Han, L. Wang, and Z. Lin, “Local formation control strategies with undetermined and determined formation scales for co-leader vehicle networks,” in 52nd IEEE Conference on Decision and Control, pp. 7339–7344, IEEE, 2013. Z. Liu, Z. Yang, and H. Yu, “A time-evolving topology based obstacle avoidance algorithm for multi-uav formation,” in Communications, Signal Processing, and Systems: Proceedings of the 2017 International Conference on Communications, Signal Processing, and Systems, pp. 2476–2485, Springer, 2019. J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot navigation in formation via sequential convex programming,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4634–4641, 2015. K. Yuhang, Y. Kuang, J. Cheng, B. Zhang, Q. Yahui, Z. Shaolei, and M. Kai, “Robust leaderless time-varying formation control for unmanned aerial vehicle swarm system with Lipschitz nonlinear dynamics and directed switching topologies,” Chinese Journal of Aeronautics, vol. 35, no. 1, pp. 124–136, 2022. X. Dong and G. Hu, “Time-varying formation control for general linear multi-agent systems with switching directed topologies,” Automatica, vol. 73, pp. 47–55, 2016. H. Du, W. Zhu, G. Wen, Z. Duan, and J. Lü, “Distributed formation control of multi- ple quadrotor aircraft based on nonsmooth consensus algorithms,” IEEE Transactions on cybernetics, vol. 49, no. 1, pp. 342–353, 2017. A. Askari, M. Mortazavi, and H. Talebi, “Uav formation control via the virtual structure approach,” Journal of Aerospace Engineering, vol. 28, no. 1, p. 04014047, 2015. H. Liu, T. Ma, F. L. Lewis, and Y. Wan, “Robust formation control for multiple quadrotors with nonlinearities and disturbances,” IEEE Transactions on Cybernetics, vol. 50, no. 4, pp. 1362–1371, 2018. W. Xiao, J. Yu, R. Wang, X. Dong, Q. Li, and Z. Ren, “Time-varying formation control for time-delayed multi-agent systems with general linear dynamics and switching topologies,” Unmanned Systems, vol. 7, no. 01, pp. 3–13, 2019. M. Turpin, N. Michael, and V. Kumar, “Trajectory design and control for aggressive formation flight with quadrotors,” Autonomous Robots, vol. 33, pp. 143–156, 2012. J. Wang, X.-B. Wu, and Z.-L. Xu, “Decentralized formation control and obstacles avoidance based on potential field method,” in 2006 International Conference on Machine Learning and Cybernetics, pp. 803–808, IEEE, 2006. Y. Hu, H. Yu, Y. Zhong, and Y. Lv, “Distributed collision-avoidance formation control: a velocity obstacle-based approach,” in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1994–2000, IEEE, 2019. C. Rosales, P. Leica, M. Sarcinelli-Filho, G. Scaglia, and R. Carelli, “3d formation control of autonomous vehicles based on null-space,” Journal of Intelligent & Robotic Systems, vol. 84, pp. 453–467, 2016. S. Shao, Y. Peng, C. He, and Y. Du, “Efficient path planning for uav formation via comprehensively improved particle swarm optimization,” ISA transactions, vol. 97, pp. 415–430, 2020. D. Liang, Z. Liu, and R. Bhamra, “Collaborative multi-robot formation control and global path optimization,” Applied Sciences, vol. 12, no. 14, p. 7046, 2022. L. Quan, L. Yin, C. Xu, and F. Gao, “Distributed swarm trajectory optimization for formation flight in dense environments,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 4979–4985, IEEE, 2022. R. Van Parys and G. Pipeleers, “Distributed model predictive formation control with inter-vehicle collision avoidance,” in 2017 11th Asian Control Conference (ASCC), pp. 2399–2404, IEEE, 2017. C. Zhihao, W. Longhong, Z. Jiang, W. Kun, and W. Yingxun, “Virtual target guidance-based distributed model predictive control for formation control of multiple uavs,” Chinese Journal of Aeronautics, vol. 33, no. 3, pp. 1037–1056, 2020. J. Alonso-Mora, E. Montijano, M. Schwager, and D. Rus, “Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus,” in 2016 IEEE international conference on robotics and automation (ICRA), pp. 5356–5363, IEEE, 2016. S. Agarwal and S. Akella, “Simultaneous optimization of assignments and goal formations for multiple robots,” in 2018 IEEE international conference on robotics and automation (ICRA), pp. 6708–6715, IEEE, 2018. A. Desai, E. A. Cappo, and N. Michael, “Dynamically feasible and safe shape transitions for teams of aerial robots,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5489–5494, IEEE, 2016. S. Guo, B. Liu, S. Zhang, J. Guo, and C. Wang, “Continuous-time gaussian pro- cess trajectory generation for multi-robot formation via probabilistic inference,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9247–9253, IEEE, 2021. J. Li, K. Sun, H. Ma, A. Felner, T. Kumar, and S. Koenig, “Moving agents in formation in congested environments,” in Proceedings of the International Symposium on Combinatorial Search, vol. 11, pp. 131–132, 2020. G. Taubin, “A signal processing approach to fair surface design,” in Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 351–358, 1995. B. Bollobás, Modern graph theory, vol. 184. Springer Science & Business Media, 1998. M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering perspective,” 2021. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM, vol. 24, p. 381–395, jun 1981. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in kdd, vol. 96, pp. 226– 231, 1996. P. Kumar and E. A. Yildirim, “Minimum-volume enclosing ellipsoids and core sets,” Journal of Optimization Theory and applications, vol. 126, no. 1, pp. 1–21, 2005. L. G. Khachiyan, “Rounding of polytopes in the real number model of computation,” Mathematics of Operations Research, vol. 21, no. 2, pp. 307–320, 1996. D. Eberly, “Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid,” Geometric Tools, LLC, 2011. R. L. Burden, J. D. Faires, and A. M. Burden, Numerical analysis. Cengage learning, 2015. T.-C. Lee, R. L. Kashyap, and C.-N. Chu, “Building skeleton models via 3-d medial surface axis thinning algorithms,” CVGIP: graphical models and image processing, vol. 56, no. 6, pp. 462–478, 1994. D. G. Morgenthaler, Three-dimensional digital topology: The genus. Computer Vision Laboratory, Computer Science Center, University of Maryland, 1980. H. Liu, D. Li, Z. Zuo, and Y. Zhong, “Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2263–2274, 2016. J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, “Learning to fly—a gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” 2016. S. Lucia, A. Tătulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid development of modular and sustainable nonlinear model predictive control solutions,” Control Engineering Practice, vol. 60, pp. 51–62, 2017. M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation,” Journal of field robotics, vol. 36, no. 2, pp. 416–446, 2019. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90583 | - |
dc.description.abstract | 本論文探討在障礙環境中的多無人機(multi-UAV)的編隊控制任務。編隊控制任務包含三個主要目標:到達目的地、維持編隊形態和避免碰撞。近年來有許多編隊控制系統使用優化框架來整合不同的控制目標,但基於梯度的優化方法通常只能獲得局部最優解,並且缺乏全局規劃能力。為了應對這一挑戰,我們提出了一種專為編隊控制而設計的路徑規劃演算法,並將其集成到多無人機編隊控制系統中。該系統由兩個主要組成部分組成。首先,我們開發了一種編隊路徑規劃算法,能夠為編隊中心生成安全的參考路徑,並為每個無人機的尋找安全航點並保有最小化的編隊形態的變形。其次,我們引入了分布式模型預測控制器(MPC)用於具有非線性動態特性的四旋翼飛行器。這種模型預測控制器能夠使無人機追蹤由路徑規劃得來的參考軌跡,並通過鄰近無人機提供的訊息維持編隊形態。此外,與許多假設已知環境並僅通過模擬驗證的現有研究不同,我們設計了一種能夠處理感測器數據、對周圍障礙物進行建模的演算法,並且在現實環境中實現提出的編隊控制系統。我們在論文的最後用多樣的模擬場景與實際實驗驗證了我們提出的編隊控制系統的效果與可行性。 | zh_TW |
dc.description.abstract | The thesis considers the formation control task for multiple unmanned aerial vehicles (multi-UAV) in obstacle environments. This task encompasses three primary objectives, which are target reaching, formation maintenance, and collision avoidance, respectively. While most recent formation control systems employ optimization frameworks to synthesize control objectives, gradient-based optimization methods often yield only locally optimal solutions and lack global planning capabilities. To tackle this challenge, we propose a planning algorithm specifically designed for formation control, integrating it into the proposed multi-UAV formation control system. The system comprises two main components. Firstly, we develop a formation path planning algorithm capable of generating a safe reference path for the formation center and determining secure waypoints for each agent to minimize formation pattern deformation. Secondly, we introduce a distributed model predictive controller (MPC) for the quadrotor agents, which possess nonlinear dynamics. This MPC controller facilitates agent tracking of the reference trajectory calculated by the planner and maintains the formation based on information from neighboring agents. Furthermore, unlike many previous works that assume a known environment and only validate through simulation, we design our algorithm to process sensor data, model surrounding obstacles, and implement the proposed formation control system in real-world. Finally, we conduct simulation examples and real-world experiments in diverse scenarios to showcase the feasibility and effectiveness of the proposed formation control system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:44:05Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:44:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures ix Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Preliminary 12 2.1 Graph Theory and Communication Structure of Formation System . . 12 2.1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Communication Structure of Formation Control System . . . . . . . 14 2.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Formation Description . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 3 Distributed MPC with Minimum Deformation Guidance 19 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Point Cloud Process and Obstacle Modeling . . . . . . . . . . . . . . 21 3.2.1 Ground Point Removal . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 Point Cloud Clustering . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.3 Minimal Bounding Ellipsoid Finding . . . . . . . . . . . . . . . . . 24 3.2.4 Coordinate Transform from Camera Frame to World Frame . . . . . 25 3.3 Reference Path Finding and Minimum Formation Deformation . . . . 27 3.3.1 Minimum Formation Deformation Guidance . . . . . . . . . . . . . 27 3.3.2 Formation Reference Path Finding . . . . . . . . . . . . . . . . . . 31 3.4 Distributed MPC with Adjustable Formation Rigidity . . . . . . . . . 33 3.4.1 Discrete Time Subscription . . . . . . . . . . . . . . . . . . . . . . 34 3.4.2 Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.5 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 4 Simulations, Experiments, and Analysis 42 4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.2 Cluttered Environment w/wo Reference Path Planning . . . . . . . 44 4.1.3 Narrow Environment w/wo Rigidity Adjustment . . . . . . . . . . . 50 4.1.4 3D Cluttered Environment with 3D Formation Pattern . . . . . . . . 56 4.2 Real-World Experiments . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.1 UAV Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Obstacle Modeling Experiment . . . . . . . . . . . . . . . . . . . . 61 4.2.3 Formation Flight Experiments . . . . . . . . . . . . . . . . . . . . 63 Chapter 5 Conclusion 66 References 67 | - |
dc.language.iso | en | - |
dc.title | 具最小變形引導之分散式模型預測控制之無人機編隊控制系統 | zh_TW |
dc.title | Distributed Model Predictive Control with Minimum Deformation Guidance for Multi-UAV Formation Control System | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江明理;連豐力;黃志良;劉吉軒 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Li Chiang;Feng-Li Lian;Chih-Lyang Hwang;Jyi-Shane Liu | en |
dc.subject.keyword | 路徑規劃,編隊控制,分散式模型預測控制,多無人機系統,障礙空間, | zh_TW |
dc.subject.keyword | motion planning,formation control,distributed model predictive control,multi-UAV system,obstacle environments, | en |
dc.relation.page | 75 | - |
dc.identifier.doi | 10.6342/NTU202302307 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電機工程學系 | - |
dc.date.embargo-lift | 2026-08-04 | - |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2026-08-04 | 15.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。