Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡坤憲zh_TW
dc.contributor.advisorKun-Hsien Tsaien
dc.contributor.author陳盈瑄zh_TW
dc.contributor.authorYing-Hsuan Chenen
dc.date.accessioned2023-10-03T16:42:32Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-04-30-
dc.identifier.citationAbbott WS. 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267.
Awasthi AK, Wu CH, Tsai KH, King CC, Hwang JS. 2012. How does the ambush predatory copepod Megacyclops formosanus (Harada, 1931) capture mosquito larvae of Aedes aegypti? Zool Stud 51: 927-936.
Azad N, Iyer AKV. 2014. Reactive oxygen species and apoptosis. pp. 113-135. In: Laher I, (ed). Systems Biology of Free Radicals and Antioxidants. Springer-Verlag, Berlin, Heidelberg.
Bolton JR. 1999. Ultraviolet applications handbook. Edmonton: Bolton Photosciences. 31 pp.
Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, Smilenov L, Lowyc FD, Owens DM, Brenner DJ. 2017. Germicidal efficacy and mammalian skin safety of 222-nm UV light. Radiat Res 187: 483-491.
Buonanno M, Welch D, Shuryak I, Brenner DJ. 2020. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci Rep 10: 10285.
Cadet J, Sage E, Douki T. 2005. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571: 3-17.
Campbell BE, Pereira RM, Koehler PG. 2016. Complications with controlling insect eggs. pp. 83-96. In: Trdan S, (ed). Insecticides resistance. IntechOpen, London, United Kingdom.
Chandra G, Bhattacharjee I, Chatterjee SN, Ghosh A. 2008. Mosquito control by larvivorous fish. Indian J Med Res 127: 13-27.
Chen WJ. 2018. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed J 41: 283-289.
Chen YA, Lai YT, Wu KC, Yen TY, Chen CY, Tsai KH. 2020. Using UPLC-MS/MS to evaluate the dissemination of pyriproxyfen by Aedes mosquitoes to combat cryptic larval habitats after source reduction in Kaohsiung in southern Taiwan. Insects 11: 251.
Chen YC, Chen YC, Teng HJ, Shu PY, Li SY. 2019. Ecological characteristics and viral transmission capability of Aedes aegypti and Aedes albopictus. Taiwan Epidemiol Bull 35: 172-186. (In Chinese)
Chu JY. 2017. Talking about dengue fever (2) — dengue fever in Taiwan a hundred years ago and earlier. Taiwan Med J 60: 25-30. (In Chinese)
Circu ML, Aw TY. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48: 749-762.
Couch JN, Bland CE. 1985. The Genus Coelomomyces. London: Academic Press, Inc.. 398 pp.
Eadie E, Barnard IMR, Ibbotson SH, Wood K. 2021. Extreme exposure to filtered far-UVC: A case study. Photochem Photobiol 97: 527-531.
Enciso YJ, Cruz ALS, Price JFH. 2018. Scrutinizing the effects of UV-C radiation on developmental timing and adult morphology of Drosophila melanogaster. J Arizona-Nevada Acad Sci 47(2): 55-61.
Faruki SI, Das DR, Khan AR, Khatun M. 2006. Effects of ultraviolet (254nm) irradiation on egg hatching and adult emergence of the flour beetles, Tribolium castaneum, T. confusum and the almond moth, Cadra cautella. J Insect Sci 7: 36.
Fukui T, Niikura T, Oda T, Kumabe Y, Ohashi H, Sasaki M, Igarashi T, Kunisada M, Yamano N, Oe K, Matsumoto T, Matsushita T, Hayashi S, Nishigori C, Kuroda R. 2020. Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. PLoS One 15: e0235948.
Gentile C, Lima JBP, Peixoto AA. 2005. Isolation of a fragment homologous to the rp49 constitutive gene of Drosophila in the Neotropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 100: 545-547.
Gentile C, Rivas GB, Meireles-Filho AC, Lima JB, Peixoto AA. 2009. Circadian expression of clock genes in two mosquito disease vectors: cry2 is different. J Biol Rhythms 24: 444-451.
Ghanem I, Shamma M. 2007. Effect of non-ionizing radiation (UVC) on the development of Trogoderma granarium Everts. J Stored Prod Res 43: 362-366.
Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. 2016. Dengue infection. Nat Rev Dis Primers 2: 1-25.
Guzman MG, Harris E. 2015. Dengue. Lancet 385: 453-465.
Hanamura N, Ohashi H, Morimoto Y, Igarashi T, Tabata Y. 2020. Viability evaluation of layered cell sheets after ultraviolet light irradiation of 222 nm. Regen Ther 14: 344-351.
Harris E, Pérez L, Phares CR, Pérez MdlA, Idiaquez W, Rocha J, Cuadra R, Hernandez E, Campos LA, Gonzalez A, Amador JJ, Balmaseda A. 2003. Fluid intake and decreased risk for hospitalization for dengue fever, Nicaragua. Emerg Infect Dis 9: 1003-1006.
Hasan S, Jamdar SF, Alalowi M, Al Ageel Al Beaiji SM. 2016. Dengue virus: A global human threat: Review of literature. J Int Soc Prev Community Dent 6: 1-6.
Hessling M, Haag R, Sieber N, Vatter P. 2021. The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data. GMS Hyg Infect Control 16: Doc07.
Jeffreys WH, Maxwell JL. 1911. The diseases of China, including Formosa and Korea. Philadelphia: P. Blakiston's Son & Co.. 716 pp.
Kaidzu S, Sugihara K, Sasaki M, Nishiaki A, Igarashi T, Tanito M. 2019. Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague-Dawley rats. Free Radic Res 53: 611-617.
Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G. 2017. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf and Environ Prot 109: 82-96.
Kalimuthu K, Tseng LC, Murugan K, Panneerselvam C, Aziz AT, Benelli G, Hwang J-S. 2020. Ultrasonic technology applied against mosquito larvae. Appl Sci 10.
Kim M-J, Johnson WA. 2014. ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC Neurosci 15: 14.
Kitagawa H, Nomura T, Nazmul T, Omori K, Shigemoto N, Sakaguchi T, Ohge H. 2021. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am J Infect Control 49: 299-301.
Kumar S, Sahgal A. 2022. Advances in mosquito control: A comprehensive review. pp. 1-21. In: Kumar S, (ed). Advances in Diptera - Insight, challenges and management tools. IntechOpen, London, United Kingdom.
Kumar S, Warikoo R, Wahab N. 2010. Larvicidal potential of ethanolic extracts of dried fruits of three species of peppercorns against different instars of an indian strain of dengue fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 107: 901-907.
Lah EF, Musa RN, Ming HT. 2012. Effect of germicidal UV-C light(254 nm) on eggs and adult of house dustmites, Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyhidae). Asian Pac J Trop Biomed 2: 679-683.
Lai-Fook J. 1965. The repair of wounds in the integument of insects. J Insect Physiol 12: 195-226.
Lateef S, Walts D, Clark L. 2019. The effect of ultraviolet radiation and the antioxidant curcumin on the longevity, fertility, and physical structure of Drosophila melanogaster: Can we defend our DNA? J Emerg Investig 2: 1-5.
Lei C, Sun X. 2018. Comparing lethal dose ratios using probit regression with arbitrary slopes. BMC Pharmacol Toxicol 19: 61.
Lien JC. 2004. Pictorial keys to the mosquitoes of Taiwan. Taipei: Yi Hsien Publishing Co., Ltd.. 178 pp.
Liu WT, Chen CC, Ji DD, Tu WC. 2022. The cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function in mosquitoes. iScience 25: 104478.
Mangold KA, Reynolds SL. 2013. A review of dengue fever: A resurging tropical disease. Pediatr Emerg Care 29: 665-669.
Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H. 2010. Light, including ultraviolet. J Autoimmun 34: 247-257.
Meyer P, Van de Poel B, De Coninck B. 2021. UV-B light and its application potential to reduce disease and pest incidence in crops. Hortic Res 8: 194.
Minakhina S, Steward R. 2006. Melanotic mutants in Drosophila: pathways and phenotypes. Genetics 174: 253-263.
Mullenders LHF. 2018. Solar UV damage to cellular DNA: from mechanisms to biological effects. Photochem Photobiol Sci 17: 1842-1852.
Munawar K, Alahmed AM, Khalil SMS. 2021. Effects of ultraviolet radiation on Culex quinquefasciatus immature stages. Entomol Res 51: 111-117.
Murata Y, Osakabe M. 2017. Developmental phase-specific mortality after ultraviolet-B radiation exposure in the two-spotted spider mite. Environ Entomol 46: 1448-1455.
N’Guessan R, Corbel V, Akogbéto M, Rowland M. 2007. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13: 199-206.
Narita K, Asano K, Morimoto Y, Igarashi T, Hamblin MR, Dai T, Nakane A. 2018a. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. J Photochem Photobiol B 178: 10-18.
Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A. 2018b. Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS One 13: e0201259.
Narita K, Asano K, Naito K, Ohashi H, Sasaki M, Morimoto Y, Igarashi T, Nakane A. 2020. 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect 105: 459-467.
Naseem S, Malik MF, Munir T. 2016. Mosquito management: A review. J Entomol Zool Stud 4: 73-79.
Nayar JK, Ali A. 2003. A review of monomolecular surface films as larvicides and pupicides of mosquitoes. J Vector Ecol 28: 190-199.
Qualls RG, Johnson DJ. 1983. Bioassay and dose measurement in UV disinfection. Appl Environ Microbiol 45: 872-877.
Ragavendran C, Manigandan V, Kamaraj C, Balasubramani G, Prakash JS, Perumal P, Natarajan D. 2019. Larvicidal, histopathological, antibacterial activity of indigenous fungus Penicillium sp. against Aedes aegypti L and Culex quinquefasciatus (Say) (Diptera: Culicidae) and its acetylcholinesterase inhibition and toxicity assessment of zebrafish (Danio rerio). Front Microbiol 10: 427.
Rajpurohit S, Schmidt PS. 2019. Latitudinal pigmentation variation contradicts ultraviolet radiation exposure: A case study in tropical Indian Drosophila melanogaster. Front Physiol 10: 84.
Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, Valle D. 2008. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev Biol 8: 82.
Sastry SK, Datta AK, Worobo RW. 2000. Ultraviolet light. J Food Sci 65: 90-92.
Schaefer TJ, Panda PK, Wolford RW. 2022. Dengue Fever. Treasure Island: StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430732/.
Scholte E-J, Knols BGJ, Samson RA, Takken W. 2004. Entomopathogenic fungi for mosquito control: A review. J Insect Sci 4: 19.
Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101: 514-525.
Shu PY. 2016. Molecular epidemiology of dengue fever in Taiwan. pp 9-18. In: Lin (ed). The Taiwanese experience of dengue fever—new perspectives from epidemiology to clinical and basic science. Ministry of Science and Technology, Taipei. (In Chineses)
Simmons CP, Farrar JJ, Chau NvV, Wills B. 2012. Dengue. N Engl J Med 366: 1423-1432.
Sliney DH, Gilbert DW, 2nd, Lyon T. 2016. Ultraviolet safety assessments of insect light traps. J Occup Environ Hyg 13: 413-424.
Srisawat N, Thisyakorn U, Ismail Z, Rafiq K, Gubler DJ, Committee A-IWDD. 2022. World Dengue Day: A call for action. PLoS Negl Trop Dis 16: e0010586.
Taylor W, Camilleri E, Craft DL, Korza G, Granados MR, Peterson J, Szczpaniak R, Weller SK, Moeller R, Douki T, Mok WWK, Setlow P. 2020. DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation. Appl Environ Microbiol 86.
Tanaka K, Mizusawa K, & Saugstad ES. 1979. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). Sagamihara: U. S. Army Medical Laboratory. 987 pp.
Thomas SJ, Yoon IK. 2019. A review of Dengvaxia®: development to deployment. Hum Vaccin Immunother 15: 2295-2314.
Thomas WE, Ellar DJ. 1983. Mechanism of action of Bacillus thuringiensis var israelensis insecticidal δ-endotoxin. FEBS Lett 154: 362-368.
Tian N, Zheng JX, Guo ZY, Li LH, Xia S, Lv S, Zhou XN. 2022. Dengue incidence trends and its burden in major endemic regions from 1990 to 2019. Trop Med Infect Dis 7.
Turusov V, Rakitsky V, Tomatis L. 2002. Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistence, and risks. Environ Health Perspect 110: 125-128.
Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF. 2020. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. J Microbiol Immunol Infect 53: 963-978.
Welch D, Buonanno M, Grilj V, Shuryak I, Crickmore C, Bigelow AW, Randers-Pehrson G, Johnson GW, Brenner DJ. 2018. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep 8: 2752.
WHO. 2019. Guidelines for malaria vector control. WHO. 138 pp. Available from: https://apps.who.int/iris/bitstream/handle/10665/310862/9789241550499-eng.pdf.
WHO, TDR. 2009. Dengue guidelines, for diagnosis, treatment, prevention and control. WHO. 157 pp. Available from: http://apps.who.int/iris/bitstream/10665/44188/1/9789241547871eng.pdf.
Wigglesworth VB. 1933. The function of the anal gills of the mosquito larva. J Exp Biol 10: 16-26.
Wiwanitkit V. 2010. Dengue fever: diagnosis and treatment. Expert Rev Anti Infect Ther 8: 841-845.
Woods JA, Evans A, Forbes PD, Coates PJ, Gardner J, Valentine RM, Ibbotson SH, Ferguson J, Fricker C, Moseley H. 2015. The effect of 222-nm UVC phototesting on healthy volunteer skin: a pilot study. Photodermatol Photoimmunol Photomed 31: 159-166.
Yamano N, Kunisada M, Kaidzu S, Sugihara K, Nishiaki-Sawada A, Ohashi H, Yoshioka A, Igarashi T, Ohira A, Tanito M, Nishigori C. 2020. Long-term effects of 222-nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem Photobiol 96: 853-862.
Yang X, Quam MBM, Zhang T, Sang S. 2021. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med 28.
Zhao L, Becnel JJ, Clark GG, Linthicum KJ. 2010. Expression of AeaHsp26 and AeaHsp83 in Aedes aegypti (Diptera: Culicidae) larvae and pupae in response to heat shock stress. J Med Entomol 47: 367-375.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90577-
dc.description.abstract蚊蟲因可傳播瘧疾、登革熱和屈公病等嚴重的蚊媒傳染病,而有世界上最致命的動物之稱。在台灣,埃及斑蚊和白線斑蚊是傳播登革熱的兩大病媒蚊,其病媒整合管理策略包括清除孳生源、生物防治、物理防治和化學防治。傳統紫外光殺菌燈慣用的波長為 254 奈米,已被廣用於滅殺各種病原體,但其暴露於人體皮膚和眼睛的風險是一大疑慮。近年來開發的波長 222 奈米的遠紫外光 C 可作為更安全的替代方案,然而,其在病媒上的應用仍有待研究。我們進行以 222 奈米遠紫外光 C (劑量:0.753 mJ/cm2/sec;距離:10 cm) 照射白線斑蚊和埃及斑蚊之卵、幼蟲和蛹的生物檢定以評估其對蚊蟲的影響。反轉錄即時定量聚合酶連鎖反應用於定量照射劑量與免疫基因 (hsp83) 和時鐘基因 (cry2 和 per) 的基因表現量之間的關係。依據生物檢定之 90% 致死劑量結果,我們開發了一個配備有 222 奈米遠紫外燈和數位定時器的誘卵滅幼桶原型,亦進行田野試驗。存活曲線顯示遠紫外光 C 對白線斑蚊和埃及斑蚊之一至四齡幼蟲皆有顯著的滅殺效果。儘管在照射實驗中 451.80 mJ/cm2 的遠紫外光 C 對卵的孵化率沒有影響,但已證實 67.77 mJ/cm2 的遠紫外光 C 可使100% 的幼蟲死亡,而 2,710.80 mJ/cm2 則可使 90% 的蛹致死。此外,我們也觀察到一些在四齡幼蟲的異常生理表現,包括黑化作用 (83.3%,N = 18)、啃咬肛鰓行為 (80.0%,N = 15)、扭動反應 (100%)、抽搐動作和癱瘓狀態。反轉錄即時定量聚合酶連鎖反應分析顯示 hsp83 和 cry2的表現量增加,per 減少,其中僅有經遠紫外光 C 照射一分鐘 (45.18 mJ/cm2) 之埃及斑蚊幼蟲的 hsp83 表現量有顯著高於控制組。由於遠紫外光 C 對蚊蟲的幼蟲期影響最為顯著,本誘卵滅幼桶原型僅需每日照射一次3分鐘 (35.28-82.94 mJ/cm2),桶內即無幼蟲可成功羽化,田野試驗亦已印證此款不需化學藥劑即可殺滅蚊幼蟲之誘卵桶設備的應用價值。zh_TW
dc.description.abstractMosquito is the deadliest animal in the world because of mosquito-borne diseases such as malaria, dengue, and Chikungunya. In Taiwan, there are Aedes albopictus and Aedes aegypti as vectors for dengue. Integrated vector management, including source reduction, biological control, chemical control, and physical control should be systematically considered. Ultraviolet C light (254 nm) has been used to inactivate pathogens, but the exposure risk of human skin and eyes to UV light should be seriously concerned. Therefore, 222 nm far-UVC light is developed as a safer alternative in recent years. Moreover, the application of using 222 nm far-UVC on vectors is limited. We evaluated the 222 nm far-UVC light (dosage: 0.753 mJ/cm2/sec; distance: 10 cm) to irradiate eggs, larvae, and pupae of Ae. albopictus and Ae. aegypti for bioassay. For bioassay, survival curves, median and 90% lethal doses (LD50 and LD90), and establishment of the criteria for abnormal performances were presented. The RT-qPCR was applied to delineate the relationship between irradiation dosage and gene expression of immunogene (hsp83) and clock genes (cry2 and per). A prototype of larvicidal ovitrap equipped with 222 nm far-UVC light and a programmable time controller was designed for field trial. Survival curves of 1st to 4th instar larvae of Ae. albopictus and Ae. aegypti indicated significant larvicidal effects. Although bioassays of eggs did not result in significant differences, the mortality effects of far-UVC light were convinced on larvae and pupae under irradiation dosages of 45.18 mJ/cm2 and 2,710.80 mJ/cm2, respectively. In addition, some abnormal performances of larvae were observed, including melanization (83.3%, N = 18), the behavior of biting anal gills (80.0%, N = 15), writhing response (100%), convulsion motion, and paralysis state. The RT-qPCR analysis revealed the increased gene expression of hsp83 and cry2 and decreasing of per. However, a significant difference was only found that the expression of hsp83 of 4th larvae of Ae. aegypti treated with 45.18 mJ/cm2 was higher than the control group. Since the prototype of ovitrap poses a significant impact on mosquito larvae with no larva surviving after 3 min irradiation (35.28-82.94 mJ/cm2) per day, the application value of this pesticide-free larvicidal ovitrap has been determined by field trials.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:42:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:42:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
STUDY FRAMEWORK vi
CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
1. INTRODUCTION 1
1.1 Dengue fever 1
1.2 Dengue outbreaks in Taiwan 4
1.3 Dengue vector mosquitoes 6
1.4 Integrated vector management of mosquitoes 7
1.5 222 nm far-UVC light 10
1.6 Ultraviolet light on insects 12
1.7 Aim 15
2. MATERIALS AND METHODS 16
2.1 Rearing of vector mosquitoes 16
2.2 UVC irradiation equipment 16
2.3 Far-UVC dosimetry 17
2.4 Method of UVC irradiation 17
2.5 Bioassays with Aedes albopictus and Aedes aegypti 18
2.6 Abnormal performances of far-UVC light on larvae of Ae. albopictus 22
2.7 Reverse transcription quantitative PCR (RT-qPCR) analysis 22
2.8 Development of larvicidal ovitrap equipped with 222 nm far-UVC light 26
2.9 Field trial of Ae. albopictus and quasi-field trial of Ae. aegypti 27
3. RESULTS 29
3.1 Measured irradiances of far-UVC equipment 29
3.2 Bioassay with eggs, larvae, and pupae of Ae. albopictus 29
3.3 Bioassay with eggs, larvae, and pupae of Ae. aegypti 31
3.4 Abnormal performance of far-UVC light on larvae of Ae. albopictus 33
3.5 Reverse transcription quantitative PCR (RT-qPCR) analysis 34
3.6 Development of larvicidal ovitrap equipped with 222 nm far-UVC light 34
3.7 Field trial of Ae. albopictus and quasi-field trial of Ae. aegypti 35
4. DISCUSSION 36
REFERENCES 43
-
dc.language.isoen-
dc.subject物理防治zh_TW
dc.subject222 奈米zh_TW
dc.subject遠紫外光 Czh_TW
dc.subject埃及斑蚊zh_TW
dc.subject白線斑蚊zh_TW
dc.subjectAedes albopictusen
dc.subjectAedes aegyptien
dc.subjectfar-UVC lighten
dc.subjectphysical controlen
dc.subject222 nmen
dc.title遠紫外光C (222 奈米) 對登革病媒蚊之影響zh_TW
dc.titleEffects of Far-UVC Light (222 nm) on Dengue Vector Mosquitoesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor蕭旭峰zh_TW
dc.contributor.coadvisorShiuh-Feng Shiaoen
dc.contributor.oralexamcommittee黃旌集;吳立心zh_TW
dc.contributor.oralexamcommitteeChin-Gi Huang;Li-Hsin Wuen
dc.subject.keyword白線斑蚊,埃及斑蚊,遠紫外光 C,222 奈米,物理防治,zh_TW
dc.subject.keywordAedes albopictus,Aedes aegypti,far-UVC light,222 nm,physical control,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202300756-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-05-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
dc.date.embargo-lift2024-05-02-
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved