Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90573
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孟子青zh_TW
dc.contributor.advisorTzu-Ching Mengen
dc.contributor.author陳常善zh_TW
dc.contributor.authorChang-Shan Chenen
dc.date.accessioned2023-10-03T16:41:30Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationSung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209-249 (2021).
Ferley J, et al. Global Cancer Observatory: Cancer Today (2020)
Morgan E, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72, 338-344 (2023).
Hossain MS, et al. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel) 14, 1732 (2022).
International WCRF. Colorectal cancer statistics. Available online: https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/?fbclid=IwAR0DG6affwi3HZiYtqfLwNaRH-UO1CJnH4ZWSDYdw6PMQu8SUnigJtfDdkI (accessed on 19 July 2023).
衛生福利部. 每31分鐘14秒就有1名國人罹患大腸癌 定期篩檢減少29%晚期大腸癌發生率.) (2023).
Toma M, et al. Rating the environmental and genetic risk factors for colorectal cancer. J Med Life 5, 152-159 (2012).
Taylor DP, Burt RW, Williams MS, Haug PJ, Cannon-Albright LA. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology 138, 877-885 (2010).
Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 10, 639-645 (2012).
Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 383, 1490-1502 (2014).
GLOBOCAN. Global Cancer Observatory (GCO): Cancer Today. Available online: https://gco.iarc.fr/today/# (accessed on 19 July 2023).
Michor F, Iwasa Y, Lengauer C, Nowak MA. Dynamics of colorectal cancer. Semin Cancer Biol 15, 484-493 (2005).
Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol 27, 1423-1431 (2012).
Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20, 695-723 (2004).
Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28, 1254-1261 (2010).
Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 19, 4875-4887 (2008).
Tighe A, Johnson VL, Taylor SS. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J Cell Sci 117, 6339-6353 (2004).
Ye Q, Cai W, Zheng Y, Evers BM, She QB. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Oncogene 33, 1828-1839 (2014).
Lee H, Lee H, Chin H, Kim K, Lee D. ERBB3 knockdown induces cell cycle arrest and activation of Bak and Bax-dependent apoptosis in colon cancer cells. Oncotarget 5, 5138-5152 (2014).
Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 97, 4820-4825 (2000).
Gonsalves WI, et al. Patient and tumor characteristics and BRAF and KRAS mutations in colon cancer, NCCTG/Alliance N0147. J Natl Cancer Inst 106, (2014).
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel) 6, 31 (2018).
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 16, 9-18 (2018).
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059-2072 (2010).
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16, 713-732 (2019).
Pickhardt PJ, et al. Assessment of volumetric growth rates of small colorectal polyps with CT colonography: a longitudinal study of natural history. Lancet Oncol 14, 711-720 (2013).
Manne U, Shanmugam C, Katkoori VR, Bumpers HL, Grizzle WE. Development and progression of colorectal neoplasia. Cancer Biomark 9, 235-265 (2010).
de Freitas Junior JC, Morgado-Diaz JA. The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget 7, 19395-19413 (2016).
Network NCC. NCCN Guidelines Version 2.2023-colon cancer (2023).
Network NCC. NCCN Guidelines Version 4.2023-rectal cancer (2023).
Yothers G, et al. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol 29, 3768-3774 (2011).
Andre T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350, 2343-2351 (2004).
Todd RC, Lippard SJ. Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280-291 (2009).
Haaz MC, Rivory L, Jantet S, Ratanasavanh D, Robert J. Glucuronidation of SN-38, the active metabolite of irinotecan, by human hepatic microsomes. Pharmacol Toxicol 80, 91-96 (1997).
Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13, 1551-1569 (2008).
Peters GJ, et al. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta 1587, 194-205 (2002).
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14, e1002533 (2016).
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 7, 688-693 (2006).
Ursell LK, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146, 1470-1476 (2014).
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031 (2006).
Chung H, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578-1593 (2012).
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837-848 (2006).
Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The role of the gut microbiota in bile acid metabolism. Annals of Hepatology 16, S21-S26 (2017).
Larsbrink J, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498-502 (2014).
Goh YJ, Klaenhammer TR. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu Rev Food Sci Technol 6, 137-156 (2015).
Rowland I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57, 1-24 (2018).
Portincasa P, et al. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci 23, 1105 (2022).
Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv 30, 1533-1542 (2012).
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 157, 121-141 (2014).
Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 535, 65-74 (2016).
Lau K, et al. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients 9, 859 (2017).
Hou K, et al. Microbiota in health and diseases. Signal Transduct Target Ther 7, 135 (2022).
Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7, e7502 (2019).
Odamaki T, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16, 90 (2016).
Bokulich NA, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8, 343ra382 (2016).
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212-215 (2016).
Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The role of microbiota in infant health: from early life to adulthood. Front Immunol 12, 708472 (2021).
Zhang N, Ju Z, Zuo T. Time for food: The impact of diet on gut microbiota and human health. Nutrition 51-52, 80-85 (2018).
Wang X, Qi Y, Zheng H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants (Basel) 11, 1212(2022).
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 95, 35-53 (2021).
Huda MN, et al. Neonatal vitamin A supplementation and vitamin A status are associated with gut microbiome composition in Bangladeshi infants in early infancy and at 2 Years of age. J Nutr 149, 1075-1088 (2019).
Bielik V, Kolisek M. Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. Int J Mol Sci 22, 6803 (2021).
Tang M, et al. Iron in micronutrient powder promotes an unfavorable gut microbiota in Kenyan infants. Nutrients 9, 776 (2017).
Kato K, Ishiwa A. The role of carbohydrates in infection strategies of enteric pathogens. Trop Med Health 43, 41-52 (2015).
Musilova S, et al. Prebiotic effects of a novel combination of galactooligosaccharides and maltodextrins. J Med Food 18, 685-689 (2015).
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients 12, 381 (2020).
Kirpich IA, et al. Saturated and unsaturated dietary fats differentially modulate ethanol-induced changes in gut microbiome and metabolome in a mouse model of alcoholic liver disease. Am J Pathol 186, 765-776 (2016).
Magne F, et al. The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).
Haro C, et al. Consumption of two healthy dietary patterns restored microbiota dysbiosis in obese patients with metabolic dysfunction. Mol Nutr Food Res 61, 1700300 (2017).
Wu S, et al. Effect of dietary protein and processing on gut microbiota-A systematic rReview. Nutrients 14, 453 (2022).
Ferrari L, Panaite SA, Bertazzo A, Visioli F. Animal- and Plant-Based Protein Sources: A scoping review of human health outcomes and environmental impact. Nutrients 14, 5115 (2022).
Wirbel J, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med 25, 679-689 (2019).
Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer 21, 1325 (2021).
Yachida S, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25, 968-976 (2019).
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 20, 429-452 (2023).
He Z, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289-300 (2019).
Johnson WM, Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb Pathog 4, 103-113 (1988).
Arthur JC, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120-123 (2012).
Boleij A, Tjalsma H. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect Dis 13, 719-724 (2013).
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195-206 (2013).
Rubinstein MR, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep 20, e47638 (2019).
Guo P, et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res 39, 202 (2020).
Tsoi H, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152, 1419-1433.e5 (2017).
Chung L, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203-214.e5 (2018).
Kuipers EJ, et al. Colorectal cancer. Nat Rev Dis Primers 1, 15065 (2015).
Lee CH CS, Tung HY, Chang SC, Ching CY, Wu SF. The risk factors affecting survival in colorectal cancer in Taiwan. Iran J Public Health 47, 519-530 (2018).
Drago L, Toscano M, De Grandi R, Casini V, Pace F. Persisting changes of intestinal microbiota after bowel lavage and colonoscopy. Eur J Gastroenterol Hepatol 28, 532-537 (2016).
De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43, 5588-5592 (2005).
Cronin P, Joyce SA, O'Toole PW, O'Connor EM. Dietary fibre modulates the gut microbiota. Nutrients 13, 1655 (2021).
Jin Y, et al. Gut microbiota in patients after surgical treatment for colorectal cancer. Environ Microbiol 21, 772-783 (2019).
Deng X, Li Z, Li G, Li B, Jin X, Lyu G. Comparison of microbiota in patients treated by surgery or chemotherapy by 16S rRNA sequencing reveals potential biomarkers for colorectal cancer therapy. Front Microbiol 9, 1607 (2018).
Cong J, et al. A pilot study: Changes of gut microbiota in post-surgery colorectal cancer patients. Front Microbiol 9, 2777 (2018).
Shuwen H, et al. Using whole-genome sequencing (WGS) to plot colorectal cancer-related gut microbiota in a population with varied geography. Gut Pathog 14, 50 (2022).
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581-583 (2016).
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
Dixon P. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14, 927-930 (2003).
Lin I-H. 16S rDNA V3-V4 amplicon sequencing analysis. (2021).
Long X, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol 4, 2319-2330 (2019).
Wilson MR, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, (2019).
Pleguezuelos-Manzano C, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 580, 269-273 (2020).
Chang H, et al. Metagenomic analyses expand bacterial and functional profiling biomarkers for colorectal cancer in a hainan cohort, china. Curr Microbiol 78, 705-712 (2021).
Kononen E, Gursoy UK. Oral prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front Microbiol 12, 798763 (2021).
Tian T, Zhang X, Luo T, Wang D, Sun Y, Dai J. Effects of short-term dietary fiber intervention on gut microbiota in young healthy people. Diabetes Metab Syndr Obes 14, 3507-3516 (2021).
Wang T, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6, 320-329 (2012).
Cao Y, et al. Enterotoxigenic Bacteroidesfragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology 161, 1552-1566 e1512 (2021).
Musher DM. Haemophilus Species. In: Medical Microbiology (ed Baron S). 4th edn (1996).
Iadsee N, et al. Identification of a novel gut microbiota signature associated with colorectal cancer in Thai population. Sci Rep 13, 6702 (2023).
Ju T, Kong JY, Stothard P, Willing BP. Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J 13, 1520-1534 (2019).
Joossens M, et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 60, 631-637 (2011).
Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E. High Molecular Weight Barley beta-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Front Microbiol 7, 129 (2016).
Precup G, Vodnar DC. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr 122, 131-140 (2019).
Iljazovic A, et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14, 113-124 (2021).
Ley RE. Gut microbiota in 2015: Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol 13, 69-70 (2016).
Sheng Q, et al. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncol Lett 18, 4834-4844 (2019).
Feng Q, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6, 6528 (2015).
Allali I, et al. Gut microbiome of Moroccan colorectal cancer patients. Med Microbiol Immunol 207, 211-225 (2018).
Jia W, Rajani C, Xu H, Zheng X. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell 12, 374-393 (2021).
Hua H, Sun Y, He X, Chen Y, Teng L, Lu C. Intestinal Microbiota in Colorectal Adenoma-Carcinoma Sequence. Front Med (Lausanne) 9, 888340 (2022).
Chen J, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8, 43 (2016).
Kim M, et al. Fusobacterium nucleatum in biopsied tissues from colorectal cancer patients and alcohol consumption in Korea. Sci Rep 10, 19915 (2020).
Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal cancer stage-specific fecal bacterial community fingerprinting of the taiwanese population and underpinning of potential taxonomic biomarkers. Microorganisms 9, (2021).
Belotserkovsky I, Sansonetti PJ. Shigella and enteroinvasive Escherichia Coli. Curr Top Microbiol Immunol 416, 1-26 (2018).
Abed J, et al. Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-galnac. Cell Host Microbe 20, 215-225 (2016).
Liang Q, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 23, 2061-2070 (2017).
Lun H, et al. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. Microbiologyopen 8, e00678 (2019).
Kwan SY, et al. Gut microbiome features associated with liver fibrosis in Hispanics, a population at high risk for fatty liver disease. Hepatology 75, 955-967 (2022).
Liang JQ, et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut 69, 1248-1257 (2020).
Cai YY, et al. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ Biofilms Microbiomes 8, 11 (2022).
Werner H, Rintelen G, Kunstek-Santos H. [A new butyric acid-producing bacteroides species: B. splanchnicus n. sp. (author's transl)]. Zentralbl Bakteriol Orig A 231, 133-144 (1975).
Thomas AM, et al. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16s rrna community profiling. Front Cell Infect Microbiol 6, 179 (2016).
Zhang W, et al. Variation of serum uric acid is associated with gut microbiota in patients with diabetes mellitus. Front Cell Infect Microbiol 11, 761757 (2021).
Forslund K, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262-266 (2015).
Zhang X, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther 8, 293-307 (2017).
Yang J, et al. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp Mol Med 51, 1-15 (2019).
Wang Y, et al. Alterations in the oral and gut microbiome of colorectal cancer patients and association with host clinical factors. Int J Cancer, (2021).
Koliarakis I, et al. Intestinal microbiota in colorectal cancer surgery. Cancers (Basel) 12, (2020).
van Iterson M, Boer JM, Menezes RX. Filtering, FDR and power. BMC Bioinformatics 11, 450 (2010).
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015).
Jalanka J, et al. Effects of bowel cleansing on the intestinal microbiota. Gut 64, 1562-1568 (2015).
Kaku N, et al. Effect of probiotics on gut microbiome in patients with administration of surgical antibiotic prophylaxis: A randomized controlled study. J Infect Chemother 26, 795-801 (2020).
Makki K, Deehan EC, Walter J, Backhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 23, 705-715 (2018).
David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563 (2014).
Kitamoto S, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447-462 e414 (2020).
Chen YJ, et al. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. J Gastroenterol Hepatol 33, 1844-1852 (2018).
Zou S, Fang L, Lee MH. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf) 6, 1-12 (2018).
Mayer EA, Nance K, Chen S. The Gut-Brain Axis. Annu Rev Med 73, 439-453 (2022).
Zhang Y, Zhou X, Lu Y. Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration. Front Cell Infect Microbiol 12, 968992 (2022).
Bibbo S, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 20, 4742-4749 (2016).
Rinninella E, et al. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients 11, (2019).
Moszak M, Szulinska M, Bogdanski P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-A Review. Nutrients 12, (2020).
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17-44 (2014).
Post SM, et al. Cafestol increases serum cholesterol levels in apolipoprotein E*3-Leiden transgenic mice by suppression of bile acid synthesis. Arterioscler Thromb Vasc Biol 20, 1551-1556 (2000).
van Dam RM, Hu FB, Willett WC. Coffee, Caffeine, and Health. N Engl J Med 383, 369-378 (2020).
Wang K, Song M. Personalized nutrition for colorectal cancer. Adv Cancer Res 151, 109-136 (2021).
Kashino I, et al. Coffee drinking and colorectal cancer and its subsites: A pooled analysis of 8 cohort studies in Japan. Int J Cancer 143, 307-316 (2018).
Um CY, McCullough ML, Guinter MA, Campbell PT, Jacobs EJ, Gapstur SM. Coffee consumption and risk of colorectal cancer in the Cancer Prevention Study-II Nutrition Cohort. Cancer Epidemiol 67, 101730 (2020).
Oman Evans Ii M, Starley B, Galagan JC, Yabes JM, Evans S, Salama JJ. Tea and Recurrent Clostridium difficile Infection. Gastroenterol Res Pract 2016, 4514687 (2016).
Kitahara M, Sakamoto M, Ike M, Sakata S, Benno Y. Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55, 2143-2147 (2005).
Munoz-Munoz J ND, Fernandez-Julia P, Walton G, Henrissat B, Gilbert HJ. Sulfation of arabinogalactan proteins confers privileged nutrient status to bacteroides plebeius. mBio, (2021).
Kearney SM, Gibbons SM, Erdman SE, Alm EJ. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep 24, 1842-1851 (2018).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90573-
dc.description.abstract腸道微生物在個體健康中扮演重要角色,包括能量代謝和免疫反應等功能。過去的臨床研究發現,大腸直腸癌患者的菌相出現特殊的組成,且近期研究也釐清部分菌種促進腫瘤生成的機制。然而,大腸直腸癌患者手術後腸道菌相的動態變化與組成仍不清楚。因此,本研究募集101名無癌症民眾以及134名大腸直腸癌患者的腸道菌相數據,建立本族群中非癌症對照組和大腸直腸癌患者的微生物差異標的。本研究同時持續追蹤收集患者手術後兩年間的菌相與生活飲食數據。結果顯示,腸道菌相的多樣性在手術後顯著下降,並在術後一年才趨向穩定。此外,我們觀察到發生排便異常和感覺神經異常的患者與其他患者的腸道菌相存在差異。並進一步以本族群的微生物差異,探討手術後腸道菌相的重建趨勢。相較於非癌症對照組,大腸直腸癌患者整體而言在手術後一年時,潛在優勢菌屬總量依舊低落,而潛在風險菌屬總量依舊較高。然而,進一步分析顯示,菌相組成較佳的患者攝取全麥食物和水果的頻率較高,而菌相組成較差的患者則更頻繁地攝取咖啡。整體而言,本研究以追蹤收案的研究方式呈現了手術治療對大腸直腸癌患者腸道菌相組成的長期影響,並分析治療間常見的後遺症與菌相之間潛在的關聯。最終,本研究發現了生活飲食習慣的選擇與菌相重建間存在重要的關聯性。zh_TW
dc.description.abstractGut microbiota plays crucial roles in health by regulating the energy metabolism and immune responses. A distinct gut microbiota composition is observed in patients with colorectal cancer (CRC), and some bacteria promotes its tumor development. However, the dynamic changes and regulation mechanisms of gut microbiota post-surgery in patients with CRC remain unclear. Therefore, in this study, we investigated the changes in the microbiota of 134 patients with CRC before and two years after surgery. The results revealed a significant decrease in the gut microbiota diversity after surgery, which tended to stabilize one-year post-surgery. Compared to other patients, differences in gut microbiota were observed in patients with abnormal bowel movements and sensory nerve abnormalities. Additionally, we identified several microbes at the genus level that were enriched in non-cancer controls and patients with CRC. We investigated the trends in gut microbiota reconstruction after surgery using these markers. Overall, compared to the non-cancer control group, patients with CRC exhibited high levels of CRC-enriched genera one-year post-surgery, whereas the levels of control-enriched genera remained low. Further analysis indicated that patients with a favorable gut microbiota composition exhibited a high frequency of whole grain food and fruit consumption, whereas those with an unfavorable composition exhibited a high frequency of coffee intake. In conclusion, this follow-up study demonstrated the long-term impact of surgical treatment on the gut microbiota composition of patients with CRC and elucidated the dietary effects on the restructuring of gut microbiota after surgery.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:41:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:41:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
謝辭I
中文摘要 II
Abstract III
List of Abbreviations IV
Chapter 1: Literature review 1
1.1 Epidemiology and Carcinogenesis of CRC 1
1.2 Development of CRC 5
1.3 Current available therapies for colon and rectal cancer 8
1.4 The role of gut microbiota in health and disease 10
1.5 The role of dietary nutrients in the gut microbiota 13
1.6 Gut microbiota in CRC development 15
1.7 Effect of Colorectal Cancer treatment on gut microbiota 17
1.8 Aim of the study 18
Chapter 2: Microbiota profiles of patients with CRC and non-cancer controls 20
2.1 Introduction 20
2.2 Materials and methods 21
2.2.1 Subject enrollment and study design 21
2.2.2 Human fecal sample collection 23
2.2.3 Genomic extraction and sequencing of human fecal samples 23
2.2.4 Sequencing data processing and statistical analysis 24
2.3 Results 26
2.3.1 Distinct fecal microbiome profiles in patients with colorectal cancer compared to non-cancer controls 26
2.3.2 Faecal microbial biomarkers in patients with CRC 28
2.4 Discussion 35
2.5 Summary 40
Chapter 3: The impact of surgery on the long-term disruption of gut microbiota 41
3.1 Introduction 41
3.2 Materials and methods 42
3.2.1 Sample enrollment and study design 42
3.2.2 Fecal sample collection and genomic sequencing 44
3.2.3 Processing of sequencing data and statistical analysis 44
3.3 Results 45
3.3.1 Post-surgical restructuring of the gut microbiota in patients with CRC 45
3.3.2 Gut microbiota profiles of patients with CRC one year after surgery 49
3.3.3 Correlations between known sequelae and post-treatment gut microbial profiles in patients with CRC 52
3.4 Discussion 56
3.5 Summary 64
Chapter 4: Dietary effects on the post-surgery restructuring of gut microbiota in patients with CRC 65
4.1 Introduction 65
4.2 Materials and methods 66
4.2.1 Subject enrollment and study design 66
4.2.2 Fecal sample collection and genomic sequencing 66
4.2.3 Processing of sequencing data and questionnaires and statistical analysis 66
4.3 Results 67
4.3.1 Profiles of control- and CRC-enriched microbial compositions in patients before and after surgery 67
4.3.2: Effects of postoperative dietary habits on the restructuring of gut microbiota in patients with CRC 70
4.4 Discussion 78
4.5 Conclusion 91
Chapter 5: Summary and Future Studies 93
References 94
Appendix-1 Questionnaire 106

List of Figures
Figure 1. Global distribution of CRC incidence and mortality rates 11. 3
Figure 2. World CRC incidence and mortality rates in 2020 by income level, gender, and age groups 11. 4
Figure 3. Representation of the prevalent genetic mutations in the course of CRC advancement and the cellular mechanisms that are triggered 28. 7
Figure 4. Progression of colorectal cancer, its stages, and the principal genetic alterations across the continuum of tumor development 4. 7
Figure 5. Colon cancer surveillance process 29. 9
Figure 6. Human microbiota dysbiosis into various diseases 52. 12
Figure 7. The development of CRC is influenced by gut microbial dysbiosis, which occurs through a variety of molecular mechanisms 75. 16
Figure 8. Flow chart of patient enrollment in this chapter. 22
Figure 9. The workflow of 16S rRNA gene sequencing data processing and analysis97. 25
Figure 10. Fecal microbiome distribution in patients with CRC. 27
Figure 11. Cladogram obtained from Linear Discriminant Analysis (LDA) effect size (LEfSe) analysis showing characteristics of taxonomic signatures in patients with CRC. 31
Figure 12. Relative abundance of the control- and CRC-enriched genera. 32
Figure 13. Predictive performance in patients with CRC using receiver opera ROC analysis with different data. 34
Figure 14. Gut microbiota with clinical data target selection. 39
Figure 15. Follow-up process of data collection. 43
Figure 16. Fecal microbiome diversity in patients undergoing treatment. 46
Figure 17. Fecal microbiome distribution in patients undergoing treatment. 47
Figure 18. The Firmicutes/Bacteroidetes Ratio in patients undergoing treatment. 48
Figure 19. Cladogram obtained from LEfSe analysis showing the characteristics of taxonomic signatures in 12 months post-surgery patients with CRC. 50
Figure 20. Significantly enriched bacterial taxa from controls, patients before surgery, and the one-year post-surgery group. 51
Figure 21. Cladogram from LEfSe analysis revealing taxonomic signatures in patients with bowel dysfunction. 53
Figure 22. Relative abundance of characteristic genera and species in patients with bowel dysfunction. 54
Figure 23. Cladogram obtained from LEfSe analysis showing the characteristics of taxonomic signatures in patients with paresthesia. 56
Figure 24. Colonoscopy did not exert any significant impact on gut microbial diversity. 58
Figure 25. Impact of colonoscopy on gut microbial communities. 59
Figure 26. Effect of surgical antibiotic prophylaxis on gut microbiome diversity. 60
Figure 27. Impact of short-term dietary changes on gut microbiome. 61
Figure 28. Impact of chemotherapy on gut microbiome restructuring in post-surgery patients with CRC. 62
Figure 29. Microbial biomarkers at 12 months post-surgery. 68
Figure 30. Development trends of microbial biomarkers 12 months post-surgery. 69
Figure 31. Principal component analysis (PCA) illustrating the relationship between one-year post-surgery gut microbiota composition and lifestyle and dietary habits of patients with CRC one-year post-surgery (n = 134). 72
Figure 32. Classification of gut microbiota composition as good or bad one year after surgery. 74
Figure 33. Principal component analysis (PCA) illustrates the grouping effect based on the composition of gut microbiota targeting control-enriched genera (ConR) and CRC-enriched genera (CRCR) in one-year post-surgery patients with CRC. 82
Figure 34. Principal component analysis (PCA) illustrated the relationship between the changes in gut microbiota composition of CRC patients one year after surgery and their lifestyle and dietary habits (n = 130). 83
Figure 35. Clinical characterization of B. plebeius in non-cancer control, patients before surgery, and 12 months post-surgery. 85
Figure 36. Development trends of microbial biomarkers in patients with recurrence or metastasis. 88
Figure 37. Development trends of microbial biomarkers in patients who died. 90

List of Tables
Table 1. Information on the study participants. 23
Table 2. List of control- and CRC-enriched genera. 33
Table 3. Comparison of control-enriched and CRC-enriched genera and their associations from existing studies. 36
Table 4. Odds ratios and 95% confidence intervals (CIs) present the differences in lifestyle and dietary habit questionnaire items between two microbiota composition groups. 75
Table 5. Negative relative risk reduction (RRR) presenting the differences in lifestyle and dietary habit questionnaire items between two microbiota composition groups. 76
Table 6. Positive relative risk reduction (RRR) presents the differences in lifestyle and dietary habit questionnaire items between two microbiota composition groups. 77
Table 7. Odds ratios and relative risk reduction (RRR) presenting the correlation in milk and sugar intake between two microbiota composition groups. 80
Table 8. Patient outcomes in the project and study cohort. 87
Table 9. Microbiota grouping and related information in patients with metastasis or recurrence. 87
Table 10. Microbiota grouping and related information in patients passed away. 89
-
dc.language.isoen-
dc.title探討手術治療對大腸直腸癌患者腸道菌相的干擾以及飲食與營養對患者術後腸道菌相重建的影響zh_TW
dc.titleEvaluation of surgical impact on the long-term disruption of gut microbiota and dietary effects on the post-surgery restructuring of gut microbiota in patients with colorectal canceren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳明汝;潘文涵;魏柏立;楊欣洲zh_TW
dc.contributor.oralexamcommitteeMing-Ju Chen;Wen-Harn Pan;Po-Li Wei;Hsin-Chou Yangen
dc.subject.keyword大腸直腸癌,腸道微生物相,臨床追蹤研究,手術治療,16S rRNA基因,營養攝取,菌群失調,zh_TW
dc.subject.keywordcolorectal cancer,gut microbiota,clinical follow-up study,post-surgery,16S rRNA gene,dietary,dysbiosis,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202303283-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
7.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved