Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國zh_TW
dc.contributor.advisorFuh-Kuo Chenen
dc.contributor.author李昱勳zh_TW
dc.contributor.authorYu-Hsun Leeen
dc.date.accessioned2023-10-03T16:40:59Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] Y. Dong, R. J. T. Lin, D. Bhattacharyya, “Determination of critical material parameters for numerical simulation of acrylic sheet forming,” Journal of materials science, vol. 2, no. 40, pp. 399-410, Jan. 2005.
[2] M. Hajhashemkhani, M. R. Hematiyan, S. Goenezen, “Identification of hyper-viscoelastic material parameters of a soft member connected to another unidentified member by applying a dynamic load,” International Journal of Solids and Structures, vol. 165, pp. 50-62, Jan. 2019.
[3] C. Hung, R. H. Chen, C. R. Lin, “The characterisation and finite-element analysis of a polymer under hot pressing,” The International Journal of Advanced Manufacturing Technology, vol. 20, no. 3, pp. 230-235, Dec. 2002.
[4] A. Abdel-Wahab, S. Ataya, V. V. Silberschmidt, “Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling,” Polymer Testing, vol. 5, no. 8, pp. 86-95, Feb. 2017.
[5] P. Moy, C. A. Gunnarsson, T. Weerasooriya, W. Chen, "Stress-Strain Response of PMMA as a Function of Strain-Rate and Temperature," Journal of Dynamic Behavior of Materials, vol. 1, no. 18, pp. 99, Jan. 2011.
[6] D.W. van Krevelen, K. Te Nijenhuis, Properties of Polymers, 4th Ed., Amsterdam, 2009.
[7] Natalia NUÑO, R. GROPPETTI, N. SENIN, “Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants,” Clinical Biomechanics,vol. 21, no. 9, pp. 956-962, Nov. 2006.
[8] I. R. Kuznetsov, D. S. Stewart, “Modeling the thermal expansion boundary layer during the combustion of energetic materials,” Combustion and flame, vol. 126, no. 4, pp. 1747-1763, Jan. 2001.
[9] S. Agarwal, N. S. Saxena, V. Kumar, “Temperature dependence thermal conductivity of ZnS/PMMA nanocomposite,” Physics of Semiconductor Devices, vol. 10, no. 3, pp. 737, Dec. 2013.
[10] D. Yun, J. B. Kim, “Material modeling of pmma film for hot embossing process,” Polymers, vo. 13, no.19, pp. 3398, Jan. 2021.
[11] D. Mathiesen, R. Dupaix, “Characterizing the Temperature Dependent Spring-Back Behavior of Poly (Methyl Methacrylate)(PMMA) for Hot Embossing,” Challenges in Mechanics of Time-Dependent Materials, vol. 2, no. 9, pp. 73-80, Jan. 2015.
[12] M. J. Assael, S. Botsios, K. Gialou, I. N. Metaxa, “Thermal conductivity of polymethyl methacrylate (PMMA) and borosilicate crown glass BK7,” International Journal of Thermophysics, vol. 26, no. 5, pp. 1595-1605, Sep. 2005.
[13] A. Dawson, M. Rides, C. R. G. Allen, J. M. Urquhart, “Polymer–mould interface heat transfer coefficient measurements for polymer processing,” Polymer Testing, vol. 27, no. 5, pp. 555-565, Feb. 2008.
[14] J. M. Crissman, G. B. McKenna, “Relating creep and creep rupture in PMMA using a reduced variable approach,” Journal of Polymer Science Part B: Polymer Physics, vol. 25, no. 8, pp. 1667-1677, Jan. 1987.
[15] Z. Z. Gao, W. Liu, Z. Q. Liu, Z. F. Yue, “Experiment and simulation study on the creep behavior of PMMA at different temperatures,” Polymer-Plastics Technology and Engineering, vol. 49, no. 14, pp. 1478-1482, Dec. 2010.
[16] J. C. Arnold, V. E. White, “Predictive models for the creep behaviour of PMMA,” Materials Science and Engineering: A, vol. 197, no. 2, pp. 251-260, April 1995.
[17] Y. Yan, D. Zhang, G. Zhang, “Numerical Simulation of Forming Process of Aircraft Transparencies Manufactured by Polymeric Plate,” International Council of the Aeronautical Sciences, vol. 26, no. 1, pp. 16-22, May. 2008.
[18] 林明俊,楊永吉,李平惠,《PMMA 板材某些特定性質之研究》,桃園創新學報,vol. 1,no. 34,pp. 31-47,2014。
[19] 陳家揚,《鋁合金飛機蒙皮拉伸成形缺陷分析與製程優化設計》,國立台灣大學機械工程學系碩士論文,2022。
[20] J. Yu, X. Tao, H. Tam, M. S. Demokan, “Modulation of refractive index and thickness of poly (methyl methacrylate) thin films with UV irradiation and heat treatment,” Applied surface science, vol. 252, no. 5, pp. 1283-1292, March 2005.
[21] R. Wimberger-Friedl, “The assessment of orientation, stress and density distributions in injection-molded amorphous polymers by optical techniques,” Progress in Polymer Science, vol. 20, no. 3, pp. 369-401, Dec. 1995.
[22] L. Su, Y. Y. Allen, “Investigation of the effect of coefficient of thermal expansion on prediction of refractive index of thermally formed glass lenses using FEM simulation,” Journal of non-crystalline solids, vol. 357, no. 15, pp. 3006-3012, Jan. 2011
[23] L. Zhang, W. Zhou, Y. Y. Allen, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Applied Optics, vol. 57, no. 22, pp. 6358-6368, June 2018.
[24] 洪景華,《顯示屏光學元件之有限元素模擬研究》,行政院國家科學委員會,2001。
[25] 蘇致豪,《非球面玻璃透鏡模造成形之模仁形狀補償與玻璃殘留應力探討》,國立交通大學機械工程學系碩士論文,2012。
[26] 羅元智,《透明玻璃扭曲瑕疵檢測》,朝陽科技大學工業工程與管理系碩士論文,2015。
[27] J. P. Mercier, G. Zambelli, W. Kurz, Introduction to Materials Science, 1st Ed., Elsevier, 2002.
[28] A. Sancho Montagut, “Material Characterization for the Simulation of Drop Tests Against PMMA Sheets,” Sweden, Jönköping University, Master Thesis, 2020.
[29] Y. W. Chang, J. H. Cheng, “Material characterization of polycarbonate near glass transition temperature,” Journal of the Chinese institute of engineers, vol. 35, no. 8, pp. 967-978, Dec. 2012.
[30] Y. Dong, R. J. T. Lin, D. Bhattacharyya, “Finite element simulation on thermoforming acrylic sheets using dynamic explicit method,” Polymers and Polymer Composites, vol. 14, no. 3, pp. 307-328, Jan. 2006.
[31] J. Ibrulj, E. Dzaferovic, M. Obucina, M. K. Kuzman, “Numerical and experimental investigations of polymer viscoelastic materials obtained by 3D printing,” Polymers, vol. 13, no. 19, pp. 3276, Jan. 2021.
[32] 黃信晏,《鋁合金飛機蒙皮拉伸成形之研究》,國立台灣大學機械工程學系碩士論文,2022。
[33] D. C. William, G. R. David, Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th Ed., Wiley (2016).
[34] 戴暘,《熱沖壓成形高溫摩擦特性之分析》,國立台灣大學機械工程學系碩士論文,2013。
[35] 蔡沛吾,《熱沖壓界面熱傳係數之量測方法與實驗平台建立》,國立台灣大學機械工程學系碩士論文,2014。
[36] 羅世軒,《鋁合金7075板件溫成形與熱成形製程特性之研究》,國立台灣大學機械工程學系碩士論文,2021。
[37] 成家齊,《鋁合金板件溫成形與熱成形製程之基礎研究》,國立台灣大學機械工程學系碩士論文,2020。
[38] W. Xiao, B. Wang, K. Zheng, J. Zhou, J. Lin, “A Study of Interfacial Heat Transfer and Its Effect on Quenching when Hot Stamping AA7075”, Archives of Civil and Mechanical Engineering, vol. 18, pp. 723-730, 2018.
[39] 鄭耀煒,《高溫摩擦試驗設備改良與熱沖壓摩擦特性研究》,國立交通大學機械工程學系碩士論文,2018。
[40] L. Ying, T. Gao, M. Dai, P. Hu, “Investigation of Interfacial Heat Transfer Mechanism for 7075-T6 Aluminum Alloy in HFQ Hot Forming Process”, Applied Thermal Engineering, vol. 118, pp. 266-282, 2017.
[41] S. H. Goods, "Thermal Expansion and Hydration Behavior of PMMA Moulding Materials for LIGA Applications," Sandia National Lab, Albuquerque, NM, SNL-CA, Livermore, CA, 2003.
[42] W.D. Drotning, E. P. Roth, "Effects of moisture on the thermal expansion of poly(methylmethacrylate)," Journal of materials science, vol. 1, no. 24, pp. 3137-3140, Dec. 1989.
[43] M. Mohammadi, J. Davoodi, “The glass transition temperature of PMMA: A molecular dynamics study and comparison of various determination methods,” European Polymer Journal, vol. 91, no. 5, pp. 121-133, Jun. 2017.
[44] M. Worgull, M. Heckele, J. Hetu, J-F Hétu, K. Kabanemi, “Modeling and Optimization of the Hot Embossing Process for Micro and Nanocomponent Fabrication,” Journal of Microlithography Microfabrication and Microsystems, vol. 5, no. 1, Sep. 2006.
[45] J. Wang, M. K. Lee, S. M. Park, S. Hong, N. Kim, “A study on the mechanical properties and deformation behavior of injection molded PMMA-TSP laminated composite,” Korea-Australia rheology journal, vol. 24, no. 1, pp. 23-33, March 2012.
[46] X. Chen, M. Z. Li, W. Fu, and Z. Y. Cai, “Numerical Simulation of Different Clamping Modes on Stretch Forming Parts,” Advanced Materials Research, vol. 193, pp. 1922-1925, Feb. 2011.
[47] A. Kacem, M. Mense, Y. Pizzo, G. Boyer, S. Suard, P. Boulet, B. Porterie, “A fully coupled fluid/solid model for open air combustion of horizontally-oriented PMMA samples,” Combustion and Flame, vol. 170, vol. 1, pp. 135-147, Dec. 2016
[48] J. Cai, Y. Ishikawa, K. Wada, “Strain induced bandgap and refractive index variation of silicon,” Optics express, vol. 21, no. 6, pp. 7162-7170, Dec. 2013.
[49] 黃莉婷,《射出成型光學鏡片之光學性質分析與檢測》,國立清華大學動力機械工程學系碩士論文,2016。
[50] A. Y. Yi, B. Tao, F. Klocke, O. Dambon, F. Wang, “Residual stresses in glass after molding and its influence on optical properties,” Procedia Engineering, vol. 19, no. 1, pp. 402-406, Dec. 2011.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90571-
dc.description.abstract飛機的明膠玻璃風檔傳統上是以人工或低程度自動化的方式生產,為了優化相關領域的製程與品質,本論文研究旨在建立明膠玻璃溫間拉伸成形製程之CAE分析模型,並藉由材料特性、製程參數和光學表現的初步探討了解影響風檔產品的各項因素,以供相關製程參考與應用。
透過文獻的蒐集和研究,本論文對明膠玻璃材料的特性和行為有了深入的了解,並成功建立了超黏彈材料模型的CAE模擬模型,並以實體元素搭配隱式(Implicit)運算方式進行模擬分析,但仍待實際製程機台之驗證。
在材料特性方面,本研究進行了明膠玻璃材料的高溫拉伸實驗、界面摩擦實驗、界面熱傳實驗,而熱膨脹和高溫潛變性質則藉由文獻數據的蒐集和比較進行分析。這些實驗結果提供了重要的材料參數數據資料,也藉由材料拉伸模擬驗證了CAE材料模型之正確性,這有助於更準確地模擬明膠玻璃材料在高溫成形過程中的變形與反應,也為CAE模型之正確性提供了初步的驗證。
在製程參數方面,本論文研究了夾爪型態與作動軌跡、冷卻時間和不等寬下料等參數對成形結果的影響。通過模擬和分析,歸納出夾爪間之空隙越小對於成形情況越好;而夾爪速度隨時保持與板材邊緣垂直,不僅可以讓成形後的殘留應力更小,也對厚度的成形品質有良好效果。此外也發現冷卻階段能進一步讓應力釋放,但效果僅至70℃以上。至於針對不等曲率造型之製程,以不等寬下料方式可以有效改善成形結果且調整難度相對較低。
在光學表現方面,透過蒐集相關的光學理論和文獻,初步分析了光學表現如影像扭曲以及色散問題與成形指標間的對應性,包括厚度分佈、殘留應力分佈和密度分佈等參數對光學性能的影響。此外也評估出風擋光學表現由電腦自動化檢測是目前最好的方式。
本論文之研究內容可提供未來相關製程之分析或優化作為參考。
zh_TW
dc.description.abstractTraditionally, the acrylic glass windshields of airplanes were produced by manual or low-level automation. In order to optimize the process and quality in related fields, this thesis aimed to establish a CAE analysis model for the acrylic glass thermo-stretch forming process. Through preliminary exploration of material properties, process parameters, and optical performance, various factors affecting windshield products were understood for reference and application in related processes.
Through literature collection and research, this thesis gained an in-depth understanding of the characteristics and behavior of acrylic glass materials and successfully established a CAE simulation model for the superelastic material model. The simulation analysis was carried out using solid elements in conjunction with implicit calculation methods, but still awaited verification by actual process equipment.
In terms of material properties, this study conducted high-temperature stretching experiments, interface friction experiments, and interface heat transfer experiments on acrylic glass materials. The thermal expansion and high-temperature creep properties were analyzed by collecting and comparing literature data. These experimental results provided important material parameter data and also verified the correctness of the CAE material model through material stretching simulation. This helped to more accurately simulate the deformation and reaction of acrylic glass materials during high-temperature forming, and also provided preliminary verification of the correctness of the CAE model.
As to process parameters, this thesis studied the effects of parameters such as clamp type and operating trajectory, cooling time, and unequal width blanking on forming results. Through simulation and analysis, it was concluded that the smaller the gap between clamps, the better the forming situation; while keeping the clamp speed perpendicular to the edge of the plate at all times not only made the residual stress after forming smaller but also had a good effect on thickness forming quality. It was also found that the cooling stage could further release stress, but only above 70°C. As for processes with unequal curvature modeling, using unequal width blanking can effectively improve forming results and is relatively easy to adjust.
In respect of optical performance, through collecting relevant optical theories and literature, preliminary analysis was conducted on the correspondence between optical performance such as image distortion and chromatic aberration problems and forming indicators, including the effects of parameters such as thickness distribution, residual stress distribution, and density distribution on optical performance. It was also evaluated that computer-automated detection is currently the best way to measure windshield optical performance.
The research content of this thesis can provide reference for future analysis or optimization of related processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:40:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:40:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 4
1.3 研究方法與步驟 7
1.4 論文總覽 8
第二章 材料特性與材料模型探討 10
2.1 明膠玻璃材料特性 10
2.1.1 玻璃轉化溫度和溫度敏感度 10
2.1.2 潛變特性 12
2.2 超彈性與黏彈性模型之比較 14
2.2.1 Hyperelasticity超彈性材料模型 14
2.2.2 Viscoelasticity黏彈性材料模型 16
2.2.3 Hyper-visco-elasticity超黏彈材料模型 18
2.3 材料模型初步模擬與比較 21
2.3.1 Elastic-Plastic與Hyperelastic比較 21
2.3.2 Hyper-visco-elastic的 Prony Series階數比較 22
2.3.3 Hyper-visco-elastic的各模型比較 24
2.4 本章小結 26
第三章 溫間拉伸成形分析技術建立 27
3.1 風檔製程介紹 27
3.2 明膠風檔CAE模擬分析建立 29
3.2.1 等曲率造型模型建立 29
3.2.2 不等曲率造型模型建立 33
3.2.3 模擬模型收斂性分析 35
3.3 本章小結 37
第四章 明膠玻璃材料高溫性質實驗 39
4.1 高溫拉伸實驗 40
4.1.1 實驗目的與規劃 40
4.1.2 實驗設備與步驟流程 42
4.1.3 實驗結果 44
4.2 高溫界面摩擦實驗 49
4.2.1 實驗目的與規劃 49
4.2.2 實驗設備與步驟流程 51
4.2.3 實驗結果 53
4.3 界面熱傳實驗 56
4.3.1 實驗目的與規劃 56
4.3.2 實驗設備與步驟流程 56
4.3.3 實驗結果 60
4.4 熱膨脹係數與溫度對密度關係 64
4.4.1 研究目的 64
4.4.2 文獻數據收集整理與比較 65
4.4.3 未來實驗方向 67
4.5 高溫潛變性質 68
4.5.1 研究目的 68
4.5.2 文獻數據收集整理與比較 69
4.5.3 未來實驗方向 70
4.6 本章小結 72
第五章 製程參數探討與光學特性分析 74
5.1 製程參數探討 74
5.1.1 夾爪型態與作動軌跡之影響分析 74
5.1.2 冷卻對溫度與應力之影響 79
5.1.3 不等寬下料對不等曲率造型之影響分析 81
5.2 光學表現之影響因素探討 86
5.3 光學表現與成形指標之對應性 89
5.3.1 厚度分佈與光學表現之對應性 89
5.3.2 殘留應力分佈與光學表現之對應性 90
5.3.3 密度分佈與光學表現之對應性 91
5.4 風擋光學表現檢驗方法之評估 93
5.5 本章小結 95
第六章 結論 96
6.1 結果與討論 96
6.2 未來展望 98
參考文獻 99
-
dc.language.isozh_TW-
dc.subject溫間拉伸成形zh_TW
dc.subject光彈性原理zh_TW
dc.subject影像扭曲zh_TW
dc.subject超黏彈材料模型zh_TW
dc.subject明膠玻璃zh_TW
dc.subjectacrylic glassen
dc.subjectPhotoelasticityen
dc.subjectimage distortionen
dc.subjecthyper-viscoelastic modelen
dc.subjectthermo-stretch formingen
dc.title明膠玻璃溫間拉伸成形之研究zh_TW
dc.titleA Study on Thermo-Stretch Forming of Acrylic Glassen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃永茂 ;洪景華;林恆勝;楊侑倫zh_TW
dc.contributor.oralexamcommitteeYong-Mao Hwang;Ching-Hua Hung;Heng-Sheng Lin;You-Lun Yangen
dc.subject.keyword明膠玻璃,溫間拉伸成形,超黏彈材料模型,影像扭曲,光彈性原理,zh_TW
dc.subject.keywordacrylic glass,thermo-stretch forming,hyper-viscoelastic model,image distortion,Photoelasticity,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202303427-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2028-08-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-31
6.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved