Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author劉宥里zh_TW
dc.contributor.authorYu-Li Liuen
dc.date.accessioned2023-10-03T16:39:10Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citationMasson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., ... & Waterfield, T. (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of, 1(5), 43-50.
Victorovna Morozova, T., Alayi, R., Grimaldo Guerrero, J. W., Sharifpur, M., & Ebazadeh, Y. (2022). Investigation and optimization of the performance of energy systems in the textile industry by using CHP systems. Sustainability, 14(3), 1551.
Yin, Y., Chen, S., Li, X., Jiang, B., Zhao, J. R., & Nong, G. (2021). Comparative analysis of different CHP systems using biogas for the cassava starch plants. Energy, 232, 121028.
Shahabadi, M. B., Yerushalmi, L., & Haghighat, F. (2010). Estimation of greenhouse gas generation in wastewater treatment plants–Model development and application. Chemosphere, 78(9), 1085-1092.
Metcalf & Eddy, Abu-Orf, M., Bowden, G., Burton, F. L., Pfrang, W., Stensel, H. D., ... & AECOM (Firm). (2014). Wastewater engineering: treatment and resource recovery. McGraw Hill Education.
Goldstein, L., Hedman, B., Knowles, D., Freedman, S. I., Woods, R., & Schweizer, T. (2003). Gas-fired distributed energy resource technology characterizations (No. NREL/TP-620-34783). National Renewable Energy Lab., Golden, CO.(US).
Darrow, K., Tidball, R., Wang, J., & Hampson, A. (2017). Catalog of CHP technologies, US Environmental Protection Agency.
Darrow, K., Tidball, R., Wang, J., & Hampson, A. (2015). Catalog of CHP technologies. US Environmental Protection Agency Combined Heat and Power Partnership, 2015-07.
Kao,M.H. and Lei,P.K. (2013). Journal of Agricultural Food Chemistry.62(3):213-225.
Breeze, P. (2018). Chapter 6 - Gas Turbine Combined Heat and Power Systems. Combined Heat and Power. P. Breeze, Academic Press: 51-59.
Wellinger, A., Murphy, J. D., & Baxter, D. (Eds.). (2013). The biogas handbook: science, production and applications. Elsevier.
Chambers, A. K., & Potter, I. (2002). Gas utilization from sewage waste. Alberta Research Council, Canada, 1-13.
Deublein, D., & Steinhauser, A. (2011). Biogas from waste and renewable resources: an introduction. John Wiley & Sons.
Bastian, R., Cuttica, J., Fillmore, L., Hedman, B., Hornback, C., Levy, D., & Moskal, J. (2011). Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field. US Environmental Protection Agency Combined Heat and Power Partnership.
Nasser Fahiem Abd Elaziz, A. (2017). Techno-Economic Assessment of a Combined Heat and Power Technology based on a Reciprocating Gas Spark Ignition Engine in Waste Water Treatment Plant of El Karma, Oran, Algeria (Master's thesis).
Karen Durden, Marc Walch, and Ann Hajnosz (Feb, 2013). Reframing the Economics of Combined Heat and Power ProjectsCreating a Better Business Case Through Holistic Benefit and Cost Analysis. WERF project OWSO11C10, Barriers to Biogas Use for Renewable Energy, with co- principal investigators John Willis of Brown and Caldwell and Lori Stone of Black & Veatch.
Canova, A., Chicco, G., Genon, G., & Mancarella, P. (2008). Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines. Energy Conversion and Management, 49(10), 2900-2909.
Sanaye, S., & Ardali, M. R. (2009). Estimating the power and number of microturbines in small-scale combined heat and power systems. Applied Energy, 86(6), 895-903.
Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL. (2014). Appl Energy 123: 143-156.
Wilson CA, Tanneru CT, Banjade S, Murthy SN, Novak JT. (2011). Water Environ Res 83(9): 815-825.
IPCC. AR6 Synthesis Report: Climate Change 2023.
UNEP (United Nations Environment Programme). (2022). Emissions gap report 2022.
歐修汶, 蕭宗法, & 周明顯. (2020). 養牛場使用沼氣渦輪發電機之性能表現. 畜產研究, 53(1), 56-63.
羅晨愷. (2014). 養豬場環境溫度對 30kW 沼氣渦輪發電機發電影響之實驗研究.
彭冠傑. (2012). 我國沼氣回收再利用之環境與經濟效益評估.
徐瑋勵. (2016). 沼氣發電對溫室氣體的減量及排放與環境衝擊之評估.
歐陽嶠暉,2007年《下水道工程學(四版) 》
行政院經濟建設委員會,2008年《公共建設計畫經濟效益評估及財務計畫作業手冊(97年版) 》
行政院農業委員會,2020年《沼氣再利用(發電)推廣與沼氣發電機操作手冊》
行政院環保署,2021年《我國國家溫室氣體排放清冊報告(2021年版)》
內政部營建署,2021年《污水處理廠設計及解說(110年版增修訂)》
國立臺灣大學,2006年《自償性計畫財務規劃評估作業程序書》
宋雅貞,2018年《經濟研究院-公共建設計畫效益評估之研究》
王惠如等,《內政部營建署下水道-水再生期刊第二卷第一期-下水道碳盤與溫減探討》
USEPA,(https://www.epa.gov/chp/what-chp).
BJYUS,(https://byjus.com/physics/four-stroke-engine/).
RE100,(https://www.theclimategroup.org/news/re100-member-google-set-reach-100-renewable-electricity)
科技新報,2020年(https://technews.tw/2020/07/08/orsted-tsmc/)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90564-
dc.description.abstract目前我國公共污水處理廠之處理程序大部分採二級處理,部分處理水量較大之廠別則採一級處理,無論在一級或二級處理程序中,經初沈池或二沉池之沉降程序後皆會產生污泥,而一般污水處理廠在污泥產生後通常經過濃縮及脫水之程序,將污泥含水率降至80%後即委託外運處理,其污泥處理費經常佔整體操作營運費之40%以上,然而污泥本身尚含有豐富之有機質,如可透過厭氧處理程序產生沼氣,並再利用沼氣加以發電利用,則對於污水處理廠之經濟性將有提升之可能。
本研究以我國北部某污水處理廠(本研究稱A污水廠)為基礎進行沼氣發電系統之經濟效益評估,探討在既有處理量體及處理程序之條件下,設置沼氣發電系統對於整體污水處理廠營運上之財務效益。研究內容主要將沼氣發電系統區分為兩種,分別為往復式內燃機(Reciprocating Engines)以及微渦輪發動機(Microturbines)兩種形式之熱電共生(CHP)系統,並依據其相異之特性參數、設置成本、營運成本等進行財務分析,財務評估期程部分,工程興建期為1年,營運年期為20年,共計21年期,其中財務指標分析項目包含淨現值(NPV)、內部報酬率(IRR)、回收年期(PB)、自償率(SLR)以及敏感性分析。
研究結果顯示,採傳統往復式內燃機機CHP系統,且沼氣優先使用於CHP系統進行發電,並將其產生之電力躉售予再生能源售電業,CHP系統產生之熱能再應用於污泥厭氧槽持溫以及作為其他設施之熱源方案(S2A-RE方案)為最優財務效益方案,計畫NPV為283,966仟元,計畫內部報酬率(IRR)為23.28%,計畫回收年期(PB)為5.1年,自償率(SLR)為232.09 %;惟同樣將沼氣優先使用於CHP系統進行發電,但產生之電力做為廠內用電使用時,無論採往復式內燃機機或微渦輪發動機CHP系統(S2B-RE/MT方案)皆不具財務可行性(計畫NPV小於0)。
將沼氣優先使用於厭氧消化系統持溫以及污泥乾燥機,其餘沼氣再送入CHP系統發電方案下(S1方案),無論採何種發動機形式,以及CHP系統產生之電力為躉售或廠內自用,皆具備財務可行性,且採往復式內燃機機CHP系統、產生電力採躉售方案(S1A-RE)下具有最佳財務效益,計畫NPV為145,084仟元,計畫內部報酬率(IRR)為34.44%,計畫回收年期(PB)為3.86,自償率(SLR)321.41 %。
此外在敏感性分析成果部分,營運收益為影響整體沼氣發電系統財務效益之最大因素,營運成本則為最低;納入進流污泥溫度變化、發動機負載率對於發電效率的影響因子後,S1B-RE方案之計畫NPV下降32.25 %,S1B-MT方案計畫NPV下降7.52 %,RE方案的影響大於MT方案。
zh_TW
dc.description.abstractThe majority of public wastewater treatment plants (WWTPs) in Taiwan adopt the secondary treatment process, while some larger plants use the primary treatment process. In either primary or secondary treatment process, the sewage sludge will be generated from primary clarifiers or secondary clarifiers by the separation of the solid from liquid. Typically, WWTPs are equipped with sludge thickener and sludge dewatering machine to decrease the moisture content of the sludge to around 80%. Then the sludge is sent to the incinerator for disposal after the sludge is dehydrated.
The treatment costs of sludge often account for more than 40% of the overall operating costs of WWTPs. However, the sludge is rich in organic matter so that can be utilized through anaerobic digestion process to produce biogas, which can be further utilized for power generation. This could potentially benefit the economics of WWTPs.
This research is the economic evaluation of a biogas power generation system based on a WWTP (referred to as Plant A) in the northern part of Taiwan. It aimed to explore the financial benefits of implementing a biogas power generation system under the existing treatment capacity and processes. The research primarily focused on two types of biogas power generation systems: reciprocating engines and microturbines as combined heat and power (CHP) systems respectively. Financial analysis was conducted based on its distinct parameters, installation costs, and operating expenses. The financial evaluation period consisted of a 1-year construction phase and a 20-year operational phase, totally 21 years. The financial performance indicators analyzed included net present value (NPV), internal rate of return (IRR), payback period (PB), self-liquidating ratio (SLR), and sensitivity analysis.
The results of this study revealed that the most financially beneficial option was the implementation of a traditional reciprocating engine CHP system, where biogas was prioritized for electricity generation in the CHP system and the generated power was sold to the renewable energy grid. The heat energy produced by the CHP system was utilized for maintaining the anaerobic digestion tank temperature and as a heat source for other facilities (referred to as the S2A-RE scheme). This scheme yielded a projected NPV of 283,996 thousand TWD, an IRR of 23.28%, a PB of 5.1 years, and an SLR of 232.09%. However, when the biogas was used for internal electricity consumption, both reciprocating engines and microturbine CHP systems (referred to as the S2B-RE/MT scheme) were financially unfeasible (NPV less than 0).
With the scheme where biogas was prioritized for maintaining anaerobic digestion system temperature and sludge dryer, and with the excess biogas channeled into the CHP system for power generation (referred to as the S1 scheme), both reciprocating engines and microturbine CHP systems demonstrated financial viability, whether the generated electricity was sold or consumed internally. Among these options, the reciprocating engine CHP system with power sold (S1A-RE) exhibited the best financial performance, with a projected NPV of 145,084 thousand TWD, an IRR of 34.44%, a PB of 3.86 years, and an SLR of 321.41 %.
Furthermore, with the sensitivity analysis, project revenue was identified as the most influential factor affecting the overall financial performance of the CHP system, while operating costs were found to have the lowest impact.
Considering the factors of temperature variation in the influent sludge and Partial-Load on electricity efficiency, the S1B-RE scheme shows a decrease of 32.25% in the NPV, while the S1B-MT scheme shows a decrease of 7.52% in the NPV. This indicates that the impact of the CHP system adopt RE is greater than the MT.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:39:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:39:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄

口試委員會審定書
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xi
Chapter 1、 緒論 1
1.1 研究背景 1
1.2 研究內容與目的 3
1.3 預期效益 4
Chapter 2、 文獻回顧 5
2.1 公共污水處理廠與溫室氣體排放 5
2.2 沼氣CHP系統及發動機類型 9
2.2.1 熱電共生(CHP)系統 9
2.2.2 往復式內燃機 12
2.2.3 微渦輪發動機 15
2.2.4 CHP系統設置及營運成本 17
2.3 財務效益分析 22
Chapter 3、 研究方法 28
3.1 研究簡介及流程 28
3.2 研究對象簡介及範圍界定 29
3.3 能源供需分析 31
3.3.1 能源供給 31
3.3.2 能源需求 35
3.4 CHP系統規模分析 39
3.5 方案擬定 40
3.6 財務分析 43
3.6.1 財務分析架構 43
3.6.2 基本參數假設 44
3.6.3 成本與收益 46
3.6.4 融資可行性指標 51
3.6.5 投資效益分析 52
3.6.6 自償率分析 53
Chapter 4、 結果與討論 54
4.1 各項參數分析結果 54
4.1.1 能源供需分析成果 54
4.1.2 成本與收益分析成果 56
4.2 財務分析結果 58
4.2.1 財務效益分析結果 58
4.2.2 敏感性分析 67
4.3 其他影響因子分析結果 74
Chapter 5、 結論與建議 78
5.1 結論 78
5.2 建議 80
REFERENCE 83
附錄一 87
-
dc.language.isozh_TW-
dc.subject微渦輪發動機zh_TW
dc.subject生質能zh_TW
dc.subject財務分析zh_TW
dc.subject沼氣發電zh_TW
dc.subject往復式內燃機zh_TW
dc.subjectReciprocating Enginesen
dc.subjectBiogas power generationen
dc.subjectFinancial Feasibilityen
dc.subjectBioenergyen
dc.subjectCHP systemen
dc.subjectMicro Turbinesen
dc.title污水處理廠設置沼氣熱電共生系統之財務效益研究zh_TW
dc.titleFinancial Research of Installing Biogas CHP System in Wastewater Treatment Plantsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳必晟;郭獻文zh_TW
dc.contributor.oralexamcommitteePi-Cheng Chen ;Hsion-Wen Kuoen
dc.subject.keyword生質能,財務分析,沼氣發電,往復式內燃機,微渦輪發動機,zh_TW
dc.subject.keywordBioenergy,Financial Feasibility,Biogas power generation,Reciprocating Engines,Micro Turbines,CHP system,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202302445-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2026-07-31-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved