請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90562完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任 | zh_TW |
| dc.contributor.advisor | Yuh-Renn Wu | en |
| dc.contributor.author | 洪筱鈞 | zh_TW |
| dc.contributor.author | Hsiao-Chun Hung | en |
| dc.date.accessioned | 2023-10-03T16:38:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | [1] Jun-Yu Huang, Hsiao-Chun Hung, Kung-Chi Hsu, Chia-Hsun Chen, Pei-Hsi Lee, Hung-Yi Lin, Bo-Yen Lin, Man-kit Leung, Tien-Lung Chiu, Jiun-Haw Lee, et al. Numerical analysis and optimization of a hybrid layer structure for triplet–triplet fu sion mechanism in organic light-emitting diodes. Advanced Theory and Simulations, 6(2):2200633, 2023.
[2] Jun-Yu Huang, Mei-Tan Wang, Guan-Yu Chen, Jung-Yu Li, Shih-Pu Chen, Jiun Haw Lee, Tien-Lung Chiu, and Yuh-Renn Wu. Analysis of the triplet exciton transfer mechanism at the heterojunctions of organic light-emitting diodes. Journal of Physics D: Applied Physics, 53(34):345501, 2020. [3] Jun-Yu Huang, Jiun-Haw Lee, Yuh-Renn Wu, Tse-Ying Chen, Yu-Cheng Chiu, Jau -Jiun Huang, Man-kit Leung, and Tien-Lung Chiu. Revealing the mechanism of carrier transport in host-guest systems of organic materials with a modified poisson and drift-diffusion solver. Physical Review Materials, 4(12):125602, 2020. [4] Yuge Huang, En-Lin Hsiang, Ming-Yang Deng, and Shin-Tson Wu. Mini-led, micro led and oled displays: present status and future perspectives. Light: Science & Applications, 9(1):105, 2020. [5] Marc A Baldo, David F O’Brien, Y You, A Shoustikov, S Sibley, Mark E Thomp son, and Stephen R Forrest. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395(6698):151–154, 1998. [6] Jiun-Haw Lee, Chia-Hsun Chen, Pei-Hsi Lee, Hung-Yi Lin, Man-kit Leung, Tien -Lung Chiu, and Chi-Feng Lin. Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C, 7(20):5874–5888, 2019. [7] Young Gu Lee, Ho-Nyeon Lee, Sung Kee Kang, Tae Sik Oh, Soonil Lee, and Ken HaKoh. Fabrication of highly efficient and stable doped red organic light-emitting de vice using 2-methyl-9, 10-di (2-napthyl) anthracene and tris (8-hydroxyquinolinato) aluminum as cohost materials. Applied physics letters, 89(18), 2006. [8] Dawei Di, Le Yang, Johannes M Richter, Lorenzo Meraldi, Rashid M Altamimi, Ahmed Y Alyamani, Dan Credgington, Kevin P Musselman, Judith L MacManus Driscoll, and Richard H Friend. Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Advanced Materials, 29(13):1605987, 2017. [9] Hiroki Uoyama, Kenichi Goushi, Katsuyuki Shizu, Hiroko Nomura, and Chihaya Adachi. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492(7428):234–238, 2012. [10] Chia-Hsun Chen, Pei-Hsi Lee, Hung-Yi Lin, Bo-Yen Lin, Man-kit Leung, Tien-Lung Chiu, and Jiun-Haw Lee. Hyper triplet-triplet fusion blue fluorescent organic light -emitting diode. 2022. [11] Satomi Tasaki, Kazuki Nishimura, Hiroaki Toyoshima, Tetsuya Masuda, Masato Nakamura, Yuki Nakano, Hiroaki Itoi, Emiko Kambe, Yuichiro Kawamura, and Hi toshi Kuma. Realization of ultra-high-efficient fluorescent blue oled. Journal of the Society for Information Display, 30(5):441–451, 2022. [12] Yifan Zhang, Michael Slootsky, and Stephen R Forrest. Enhanced efficiency in high- brightness fluorescent organic light emitting diodes through triplet management. Applied Physics Letters, 99(22), 2011. [13] Hyoungcheol Lim, Seung-Je Woo, Yeon Hee Ha, Yun-Hi Kim, and Jang-Joo Kim. Breaking the efficiency limit of deep-blue fluorescent oleds based on anthracene derivatives. Advanced Materials, 34(1):2100161, 2022. [14] Christian Gärtner, Christian Karnutsch, Uli Lemmer, and Christof Pflumm. The influence of annihilation processes on the threshold current density of organic laser diodes. Journal of Applied Physics, 101(2), 2007. [15] Yuh-Renn Wu. Optoelectronic device simulation laboratory. http://yrwu-wk.ee. ntu.edu.tw/. [16] Te-Jen Kung, Jun-Yu Huang, Jau-Jiun Huang, Snow H Tseng, Man-Kit Leung, Tien- Lung Chiu, Jiun-Haw Lee, and Yuh-Renn Wu. Modeling of carrier transport in organic light emitting diode with random dopant effects by two-dimensional simulation. Optics Express, 25(21):25492–25503, 2017. [17] W Chr Germs, JJM Van der Holst, SLM Van Mensfoort, PA Bobbert, and R Co ehoorn. Modeling of the transient mobility in disordered organic semiconductors with a gaussian density of states. Physical Review B, 84(16):165210, 2011. [18] Reinder Coehoorn, WF Pasveer, PA Bobbert, and MAJ Michels. Charge-carrier concentration dependence of the hopping mobility in organic materials with gaussian disorder. Physical Review B, 72(15):155206, 2005. [19] Marek Zdzisław Szymański, Beata Łuszczyńska, and David Djurado. Modeling the transient space-charge-limited current response of organic semiconductor diodes using the master equation approach. IEEE Journal of Selected Topics in Quantum Electronics, 19(5):1–7, 2013. [20] Wen-Yi Hung, Tung-Huei Ke, Yu-Ting Lin, Chung-Chih Wu, Tsung-Hsi Hung, Teng-Chih Chao, Ken-Tsung Wong, and Chih-I Wu. Employing ambipolar oligoflu orene as the charge- generation layer in time-of-flight mobility measurements of or ganic thin films. Applied physics letters, 88(6):064102, 2006. [21] M Bouhassoune, SLM Van Mensfoort, PA Bobbert, and Reinder Coehoorn. Carrier -density and field-dependent charge-carrier mobility in organic semiconductors with correlated gaussian disorder. Organic Electronics, 10(3):437–445, 2009. [22] Samir Cherian, Carrie Donley, David Mathine, Lynn LaRussa, Wei Xia, and Neal Armstrong. Effects of field dependent mobility and contact barriers on liquid crys talline phthalocyanine organic transistors. Journal of applied physics, 96(10):5638–5643, 2004. [23] A Haugeneder, M Neges, C Kallinger, W Spirkl, U Lemmer, J Feldmann, Ullrich Scherf, E Harth, A Gügel, and Klaus Müllen. Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Physical Review B, 59(23):15346, 1999. [24] Anna Köhler and Heinz Bässler. What controls triplet exciton transfer in organic semiconductors? Journal of Materials Chemistry, 21(12):4003–4011, 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90562 | - |
| dc.description.abstract | 本論文利用實驗室開發的1D-DDCC軟體,模擬具有不同發光層材料的TTF-OLED裝置,其中模擬軟體考慮了高斯能態密度及field-dependent載子遷移率,以更完整呈現有機材料的電特性,亦包含同時考慮單重態及三重態激子的激子擴散模型,並有效模擬新一代OLED元件的性質。透過軟體我們計算TTF-OLEDs之電流密度-電壓曲線、內部量子效率及TREL頻譜等特性,及分析造成TTF-OLEDs效率產生損耗的原因,發現在hyper-TTF-OLEDs當中,嚴重的三重態激子-極化子熄滅效應會導致三重態融合效應減弱,並降低元件效率表現。在單發光層non-TTF-OLEDs當中,較弱的三重態激子-極化子熄滅效應將會帶來嚴重的三重態激子-單重態激子湮滅效應,導致效率下降。而藉由討論發光層之能帶結構、載子遷移率及激子擴散等性質,我們總結出幾項能讓TTF-OLEDs效率優化的方法,並在最後章節,透過這些論點比較具有不同發光層材料DMPPP,DCPPP和PPC之TTF-OLEDs的表現差異。 | zh_TW |
| dc.description.abstract | In this research, we utilize the 1D-DDCC solver developed in our laboratory to simulate TTF-OLED devices with different emissive layer materials. The simulation solver includes the Gaussian density of states and field-dependent carrier mobility to comprehensively analyze the electrical properties of organic materials. It includes a model that considers both singlet and triplet exciton diffusion and effectively simulates the performance of the next-generation OLED devices. We calculate various properties of TTF-OLEDs, such as current density-voltage curves, internal quantum efficiency, and TREL spectrum, and analyze the reasons for efficiency losses in TTF-OLEDs and identify that in hyper-TTF-OLEDs, severe triplet-polaron quenching weakens the triplet-triplet fusion effect, leading to reduced device efficiency. In non-TTF-OLEDs with a single emissive layer, weaker triplet-polaron quenching results in significant triplet-singlet exciton annihilation, causing the efficiency decrease. By investigating the band structure, carrier mobility, and exciton diffusion properties of the emissive layers and summarizing several methods for optimizing the efficiency of TTF-OLEDs. In the final section, we compare the performance differences of TTF-OLEDs with different emissive layer materials: DMPPP, DCPPP, and PPC. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:38:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:38:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 The Principle of hyper-TTF-OLEDs 3 1.3 The IQE Loss of non-TTF-OLED with Single EML and hyper-TTF OLEDs 5 1.3.1 The IQE Loss of hyper-TTF-OLEDs 5 1.3.2 The IQE Loss of non-TTF-OLED with single EML 6 Chapter 2 Methodology 9 2.1 Overview 9 2.2 DDCC Solver 9 2.2.1 Gaussian Density of State 11 2.2.2 Field-Dependent Mobility Model 13 2.3 Exciton Diffusion Solver 13 Chapter 3 OLEDs Device with the DMPPP Emissive Layer 17 3.1 Electrical Properties 18 3.2 Exciton Properties and IQE Loss 19 Chapter 4 The Optimization of The Device: Electron Properties of the EML 25 4.1 LUMO of the DMPPP Layer 26 4.2 Electron Mobility of the DMPPP Layer 30 4.2.1 The LUMO of DMPPP is 2.5 eV 30 4.2.2 Lowering the LUMO of the DMPPP Layer 33 4.3 Electron Mobility of the NPAN Layer 35 Chapter 5 The Optimization of The Device: Hole Properties of the DMPPP Layer 39 5.1 HOMO of the DMPPP Layer 40 5.2 The Hole Mobility of the DMPPP Layer 43 5.2.1 The DMPPP HOMO set as 5.8 eV 44 5.2.2 Increasing the HOMO of the DMPPP Layer 47 Chapter 6 The Optimization of The Device: Exciton Properties of the DMPPP Layer 51 6.1 Triplet Diffusion Coefficient of the DMPPP Layer 51 6.2 TSA Coefficient of the DMPPP Layer 54 6.3 The Optimized Hyper-TTF-OLEDs 55 Chapter 7 Alternative Materials of the Triplet Tank Layer: DCPPP and PPC 59 7.1 J-V curve and Efficiency Properties of the DCPPP and the PPC Layers 60 7.2 IQE Performance of the Hyper-TTF-OLEDs 62 7.3 IQE Performance of the Single EML OLEDs 65 Chapter 8 Conclusion 67 References 69 | - |
| dc.language.iso | en | - |
| dc.subject | 激子擴散模型 | zh_TW |
| dc.subject | field-dependent載子遷移率 | zh_TW |
| dc.subject | 高斯能態密度 | zh_TW |
| dc.subject | 激子-極化子熄滅效應 | zh_TW |
| dc.subject | 三重態融合有機發光二極體 | zh_TW |
| dc.subject | field-dependent mobility | en |
| dc.subject | Gaussian density of state | en |
| dc.subject | triplet fusion OLEDs | en |
| dc.subject | exciton diffusion model | en |
| dc.subject | triplet-polaron quenching | en |
| dc.title | 三重態融合有機發光二極體之模擬及優化 | zh_TW |
| dc.title | The Simulation and Optimization of Triplet-Triplet Fusion Organic Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李君浩;劉舜維 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Haw Lee;Shun-Wei Liu | en |
| dc.subject.keyword | 高斯能態密度,field-dependent載子遷移率,激子擴散模型,三重態融合有機發光二極體,激子-極化子熄滅效應, | zh_TW |
| dc.subject.keyword | Gaussian density of state,field-dependent mobility,exciton diffusion model,triplet fusion OLEDs,triplet-polaron quenching, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202304150 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
