Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林士駿zh_TW
dc.contributor.advisorShih-Chun Linen
dc.contributor.author胡安儀zh_TW
dc.contributor.authorAn-Yi Huen
dc.date.accessioned2023-10-03T16:35:31Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citation[1] 3GPP. Summary of email discussion on the link level evaluation for LTE URLLC. TSG RAN WG1 Meeting #92, R1-1801385, Mar. 2018. Available: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/.
[2] V. S. Annapureddy and V. V. Veeravalli. Gaussian interference networks: Sum capacity in the low-interference regime and new outer bounds on the capacity region. IEEE Trans. Inf. Theory, 55(7):3032–3050, Jan. 2009.
[3] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C. L. I, and H. V. Poor. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag., 55(2):185–191, Feb. 2017.
[4] Z. Ding, J. Xu, O. A. Dobre, and V. Poor. Joint power and time allocation for NOMAMEC offloading. IEEE Trans. Veh. Techno., 68(6):6207–6211, Mar. 2019.
[5] G. Durisi, T. Koch, and P. Popovski. Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc. IEEE, 104(9):1711–1726, Sep. 2016.
[6] A. El-Gamal and Y.-H. Kim. Network Information Theory. Cambridge University Press, 2011.
[7] W. Huang, S. Xiao, L. Wu, C. Kai, S. He, and C. Li. Achievable rate region for urllc interference channel with finite blocklength transmission. IEEE Transactions on Vehicular Technology, pages 1–12, 2023.
[8] A. M. Jonathan Scarlett and A. G. i Fàbregas. Mismatched decoding: Error exponents, second-order rates and saddlepoint approximations. IEEE Transactions on Information Theory, 60(5):2647–2666, 2014.
[9] S.-Q. Le, V. Y. F. Tan, and M. Motani. Second-order asymptotics for the gaussian interference channel with strictly very strong interference. In 2014 IEEE International Symposium on Information Theory, pages 2514–2518, 2014.
[10] S.-C. Lin, T.-H. Chang, E. A. Jorswieck, and P.-H. Lin. Information theory, mathematical optimization, and their crossroads in 6G system design. Springer Series in Wireless Technology, 1st edition, 2023.
[11] B. Liu. Sum rate optimization in 2-user interference channel using spherical codebook in finite block-length regime. Master’s thesis, National Taiwan University of Science and Technology, Jan. 2022.
[12] B. Matthiesen, C. Hellings, E. Jorswieck, and W. Utschick. Mixed monotonic programming for fast global optimization. IEEE Trans. Signal Process., 68:2529–2544, 2020.
[13] E. MolavianJazi and J. N. Laneman. A second-order achievable rate region for Gaussian multi-access channels via a central limit theorem for functions. IEEE Transactions on Information Theory, 61(12):6719–6733, 2015.
[14] Y. Polyanskiy, H. V. Poor, and S. Verdú. Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory, 56(5):2307–2359, May 2010. 32
[15] J. Scarlett, V. Y. F. Tan, and G. Durisi. The dispersion of nearest-neighbor decoding for additive non-gaussian channels. IEEE Trans. Inf. Theory, 63(1):81–92, 2017.
[16] C. E. Shannon. A mathematical theory of communication. The Bell Sys. Tech. Journal, 27(3):379–423, Jul. 1948.
[17] V. Y. Tan and O. Kosut. On the dispersions of three network information theory problems. IEEE Transactions on Information Theory, 60(2):881–903, 2013.
[18] Y. Xu, C. Shen, T.-H. Chang, S.-C. Lin, Y. Zhao, and G. Zhu. Transmission energy minimization for heterogeneous low-latency noma downlink. IEEE Transactions on Wireless Communications, 19(2):1054–1069, 2019.
[19] R. C. Yavas, V. Kostina, and M. Effros. Gaussian multiple and random access channels: Finite-blocklength analysis. IEEE Transactions on Information Theory, 67(11):6983–7009, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90550-
dc.description.abstract本文針對複數干擾信道下的有限長度正態近似的速率和優化問題。它使用干擾作為噪聲的解碼器來減少延遲,並取得高於傳統高斯碼本(球形高斯碼本)的 速率。它給出了兩種可實現的速率,分別是分開解碼(SD)和聯合解碼(JD)。 使用非凸函數優化工具——混合單調程序,本文在K個用戶的情況下提出了混合 單調函數。它提供了較低的SD速率和較低的JD速率,在多用戶情況下可以找到 不同混合單調函數的可實現速率。模擬結果表明,上述三個混合單調函數,其中 一個是用於較低JD速率,兩個是用於較低SD速率,在K個用戶的情況下可以取得非常相似的最大速率總和。本文還討論了不同可實現速率的不同混合單調性函數的迭代次數不同的問題。zh_TW
dc.description.abstractThis paper addresses the rate and optimization problems of the finite block length normal approximation under complex interference channels. It uses an interference-as-noise decoder to reduce the delay and achieve higher than the traditional Gaussian codebook— the spherical Gaussian codebook of the rate. It gives two achievable rate, the rate with separate decoding (SD) and the one with joint decoding (JD). And using the non-convex function optimization tool - mixed monotonic programming, this paper proposes mixed monotonic functions in the cases of K users for this optimization tool. It offers a lower SD rate and a lower JD rate, and the achievable rates can be found for different mixed monotonic functions in the case of multiple users. Simulations show that the above three mixed monotonic functions, one is for lower JD rate and two are for lower SD rate, can achieve very similar maximum rate sums in the case of K users. This paper also discusses the problem that the number of iterations of different mixed monotonicity functions of the proposed achievable rates differs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:35:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:35:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要iii
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Denotation xiii
Chapter 1 Introduction 1
Chapter 2 Interference Channel in the Finite Blocklength Regime 5
2.1 System Model 5
2.2 Rate for Interference Channel in the Finite Blocklength Regime with Real Part 7
2.3 Rate for Interference Channel in the Finite Blocklength Regime with Complex Part 10
Chapter 3 Mixed Motonic Programming 17
3.1 Framework and Property of MMP 17
3.2 Mixed Motonic Function of the rate 18
Chapter 4 Simulation Results 25
Chapter 5 Conclusions 29
References 31
Appendix A — Proof of Theorem 2 35
-
dc.language.isoen-
dc.subject混合單調性最佳化法zh_TW
dc.subject干涉通道zh_TW
dc.subject有限區塊長度zh_TW
dc.subject速率最大化zh_TW
dc.subject超可靠低延遲通訊zh_TW
dc.subjectrate maximizationen
dc.subjectfinite block lengthen
dc.subjectinterference channelen
dc.subjectultra-reliable low-latency communicationen
dc.subjectmixed monotone programmingen
dc.title干涉通道下有限區塊長度速率和最大化之混和單調性分析zh_TW
dc.titleMonotonicity in Sum Rate Maximization for Finite Blocklength Interference Channelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張縱輝;黃昱智zh_TW
dc.contributor.oralexamcommitteeTsung-Hui Chang;Yu-Chih Huangen
dc.subject.keyword干涉通道,有限區塊長度,速率最大化,混合單調性最佳化法,超可靠低延遲通訊,zh_TW
dc.subject.keywordinterference channel,finite block length,rate maximization,mixed monotone programming,ultra-reliable low-latency communication,en
dc.relation.page41-
dc.identifier.doi10.6342/NTU202302322-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2028-07-28-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-07-28
550.09 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved