請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90549完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭舒婷 | zh_TW |
| dc.contributor.advisor | Su-Ting Cheng | en |
| dc.contributor.author | 何勻 | zh_TW |
| dc.contributor.author | Yun Ho | en |
| dc.date.accessioned | 2023-10-03T16:35:16Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | 王松永、卓志隆、劉正字、李文昭、盧崑宗、陳奕君、葉民權、楊德新、蘇文清、蔡明哲、林振榮、吳志鴻、彭元興、吳耿東。(2022) 林產利用—林業實務專業叢書。臺北市: 行政院農業委員會林務局。
王松永、羅盛峰 (2016)。木質材料生命週期之二氧化碳排出量及碳足跡評估。林產工業,35(2),67-79。 全國法規資料庫,氣候變遷因應法 (2023)。檢自 : https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098 (Jun. 7, 2023) 卓志隆 (2018)。木材收穫作業介紹。林產工業,37(1),57-66。 卓志隆、胡子恒 (2018)。針葉樹人工林疏伐作業之生產量與二氧化碳排放量分析比較。林產工業,37(1),23-35。 林世宗、郭耀綸、簡慶德、鍾振德、何政坤、許原瑞、張淑華、張東柱、傅春旭、莊鈴木、廖天賜、游漢明、陳財輝、范貴珠、何坤益、劉興旺、顏江河、黃裕星、邱志明、吳孟玲、林敏宜、鍾智昕 (2022)。育苗造林—林業實務專業叢書。臺北市: 行政院農業委員會林務局。 林裕仁 (2008)。森林減碳能力之推算方法。農政與農情,193,77。 柳婉郁、歐岱恩、吳彥慧、蕭玉資,達成臺灣淨零排放路徑之自然為本解方 (2022)。檢自 : https://agritech-foresight.atri.org.tw/article/contents/3869 (Jun. 7, 2023) 產品碳足跡資訊網,碳足跡資料庫。檢自 : https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx (Apr. 20, 2023) 彭添旺 (2019)。不同構造建築物碳足跡評估比較分析。 經濟部能源局,110年度電力排放係數 (2022)。檢自 : https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=20850 (Apr. 20, 2023) 廖洲棚、廖興中、黃心怡 (2018)。開放政府服務策略研析調查 : 政府資料開放應用模式評估與民眾參與公共政策意願調查。行政院國家發展委員會委託之研析報告 (編號 : NDC-MIS-106-003),未出版。 劉宜君 (2019)。生命週期評估概念在公共政策應用之探討。國土與公共治理季刊,7(3),8-17。 謝廣文、余志軒、吳文鑌、洪滉祐 (2013)。電動中耕除草機節能減碳效益及對操作者之影響。農林學報,62(4),319-329。 一重喬一郎、長谷川隆大、長谷川香織、寺澤健治、山中一憲、服部順昭 (2013)。国産丸太のライフサイクルアセスメント事例。木材学会誌,59(5),269-277。 古俣寛隆、由田茂一、加藤幸浩、高山光子 (2009)。カラマツ丸太生産における CO2 排出のインベントリ分析。日本LCA学会誌,5(1),131-137。 林野庁木材利用課 (2016)。平成 27 年度木材利用推進・省エネ省CO2実証業務報告書。 仲畑力、小松埼未来、有賀一広、武井裕太郎、山口鈴子、伊藤要、村山文美、斎藤仁志、田坂聡明 (2011)。林業作業における CO2 排出量算定と収支分析: 栃木県の林業事業体を対象として。森林利用学会誌,26(3),187-194。 Agreement, P. (2015). Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December (Vol. 4, p. 2017). HeinOnline. Aldentun, Y. (2002). Life cycle inventory of forest seedling production—from seed to regeneration site. Journal of Cleaner Production, 10(1), 47-55. Arora, N. K., & Mishra, I. (2021). COP26: more challenges than achievements. Environmental Sustainability, 4, 585-588. Barreto, P., Amaral, P., Vidal, E., & Uhl, C. (1998). Costs and benefits of forest management for timber production in eastern Amazonia. Forest ecology and management, 108(1-2), 9-26. Chang, F. C., Ko, C. H., & Tsai, M. J. (2020). Afforestation and tending operations affecting the carbon footprint and renewable resources at an artificial forest in Taiwan. BioResources, 15(1), 641-653. Cambria, D., & Pierangeli, D. (2012). Application of a life cycle assessment to walnut tree (Juglans regia L.) high quality wood production: a case study in southern Italy. Journal of Cleaner Production, 23(1), 37-46. England, J. R., May, B., Raison, R. J., & Paul, K. I. (2013). Cradle-to-gate inventory of wood production from Australian softwood plantations and native hardwood forests: carbon sequestration and greenhouse gas emissions. Forest Ecology and Management, 302, 295-307. Gaboury, S., Boucher, J. F., Villeneuve, C., Lord, D., & Gagnon, R. (2009). Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Québec’s closed-crown boreal forest. Forest Ecology and Management, 257(2), 483-494. Grisso, R. D., Perumpral, J. V., Vaughan, D. H., Roberson, G. T., & Pitman, R. M. (2010). Predicting tractor diesel fuel consumption. Gibson, H. G., Strickland, R. M., & Poe, S. (1982). Preliminary Tests of Two-Stroke Cycle Engines Fueled by Ethanol/Sunflower Oil Mixtures (No. 820951). SAE Technical Paper. Han, H. S., Oneil, E., Bergman, R. D., Eastin, I. L., & Johnson, L. R. (2015). Cradle-to-gate life cycle impacts of redwood forest resource harvesting in northern California. Journal of Cleaner Production, 99, 217-229. Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., & Pajula, T. (2013). Approaches for inclusion of forest carbon cycle in life cycle assessment–a review. Gcb Bioenergy, 5(5), 475-486. Iswanto, Nurrochmat, D. R., & Siregar, U. J. (2021). Life Cycle Assessment (LCA) of Wood Pellet Production at Korintiga Hutani Company, Central Kalimantan, Indonesia. Journal of Tropical Forest Management/Jurnal Manajemen Hutan Tropika, 27(3). Kärhä, K., Haavikko, H., Kääriäinen, H., Palander, T., Eliasson, L., & Roininen, K. (2023). Fossil-fuel consumption and CO2eq emissions of cut-to-length industrial roundwood logging operations in Finland. European Journal of Forest Research, 1-17. Kumar, M., Kumar, A., Thakur, T. K., Sahoo, U. K., Kumar, R., Konsam, B., & Pandey, R. (2022). Soil organic carbon estimation along an altitudinal gradient of chir pine forests in the Garhwal Himalaya, India: A field inventory to remote sensing approach. Land Degradation & Development, 33(17), 3387-3400. Keith, H., Vardon, M., Obst, C., Young, V., Houghton, R. A., & Mackey, B. (2021). Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Science of the Total Environment, 769, 144341. Klein, D., Wolf, C., Schulz, C., & Weber-Blaschke, G. (2015). 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment, 20, 556-575. Labelle, E. R., & Lemmer, K. J. (2019). Selected environmental impacts of forest harvesting operations with varying degree of mechanization. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 40(2), 239-257. Lee, W. S., & Li, B. G. (2021). Extreme weather and mortality: Evidence from two millennia of Chinese elites. Journal of Health Economics, 76, 102401. Lü, F., Song, Y., & Yan, X. (2023). Evaluating Carbon Sink Potential of Forest Ecosystems under Different Climate Change Scenarios in Yunnan, Southwest China. Remote Sensing, 15(5), 1442. Markewitz, D. (2006). Fossil fuel carbon emissions from silviculture: impacts on net carbon sequestration in forests. Forest Ecology and Management, 236(2-3), 153-161. Mohan, M. (2018). Perovskite Photovoltaics: Life Cycle Assessment. In Perovskite Photovoltaics (pp. 447-480). Academic Press. Mirabella, N., Castellani, V., & Sala, S. (2014). Forestry operations in the alpine context. Life cycle assessment to support the integrated assessment of forest wood short supply chain. The International Journal of Life Cycle Assessment, 19, 1524-1535. Miner, R., & Gaudreault, C. (2013). A review of biomass carbon accounting methods and implications. NCASI. Neri, F., Laschi, A., Marchi, E., Marra, E., Fabiano, F., Frassinelli, N., & Foderi, C. (2022). Use of Battery-vs. Petrol-Powered Chainsaws in Forestry: Comparing Performances on Cutting Time. Forests, 13(5), 683. Nakano, K., Shibahara, N., Nakai, T., Shintani, K., Komata, H., Iwaoka, M., & Hattori, N. (2018). Greenhouse gas emissions from round wood production in Japan. Journal of Cleaner Production, 170, 1654-1664. Nurrochmat, D. R., & Siregar, U. J. (2021). Life Cycle Assessment (LCA) of Wood Pellet Production at Korintiga Hutani Company, Central Kalimantan, Indonesia. Journal of Tropical Forest Management/Jurnal Manajemen Hutan Tropika, 27(3). Poje, A., & Mihelič, M. (2020). Influence of chain sharpness, tension adjustment and type of electric chainsaw on energy consumption and cross-cutting time. Forests, 11(9), 1017. Poje, A., Potočnik, I., & Mihelič, M. (2018). Comparison of electric and petrol chainsaws in terms of efficiency and safety when used in young spruce stands in small-scale private forests. Small-scale forestry, 17(3), 411-422. Raw, J. L., Van Niekerk, L., Chauke, O., Mbatha, H., Riddin, T., & Adams, J. B. (2023). Blue carbon sinks in South Africa and the need for restoration to enhance carbon sequestration. Science of The Total Environment, 859, 160142. Šumanovac, L., Jug, D., Jug, I., Japundžić-Palenkić, B., Mirosavljević, K., Popijač, M., & Benković-Lačić, T. (2021). Influence of aggregated tillage implements on fuel consumption and wheel slippage. Tehnički vjesnik, 28(3), 956-962. Sun, X., Wang, P., Ferris, T., Lin, H., Dreyfus, G., Gu, B. H., ... & Wang, Y. (2022). Fast action on short-lived climate pollutants and nature-based solutions to help countries meet carbon neutrality goals. Advances in Climate Change Research. Timmermann, V., & Dibdiakova, J. (2014). Greenhouse gas emissions from forestry in East Norway. The International Journal of Life Cycle Assessment, 19, 1593-1606. Tahara, K., Onoye, T., Kobayashi, K., Yamagishi, K., Tsuruta, S., & Nakano, K. (2010, November). Development of inventory database for environmental analysis (IDEA). In Proceedings of the 9th International Conference on Ecobalance (Vol. 119, No. 10.1109). Vennesland, B., Hohle, A. M. E., Kjøstelsen, L., & Gobakken, L. R. (2013). Prosjektrapport KlimaTre. Energiforbruk og kostnader-Skog og bioenergi. Rapport fra Skog og landskap. Yoshioka, T., Inoue, K., & Hartsough, B. (2015). Cost and greenhouse gas (GHG) emission analysis of a growing, harvesting, and utilizing system for willow trees aimed at short rotation forestry (SRF) in Japan. Journal of the Japan Institute of Energy, 94(6), 576-581. Zhang, F., Johnson, D. M., Wang, J., & Yu, C. (2016). Cost, energy use and GHG emissions for forest biomass harvesting operations. Energy, 114, 1053-1062. Zanchi, G., Pena, N., & Bird, N. (2012). Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Gcb Bioenergy, 4(6), 761-772. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90549 | - |
| dc.description.abstract | 近年來全球氣候變遷對環境、人類及生態造成眾多影響,促使各國重視此議題,並訂立2050年淨零碳排目標。為減少因人為所產生之過量溫室氣體,以自然為本之造林為各界所仰賴;然而,造林活動除林木之固碳作用外,亦會因一定之機具使用或活動而產生溫室氣體排放。因此,本研究回顧國內外文獻及訪談國內相關林業單位於原木生產前各階段之人為施業與經營措施可能產生之溫室氣體排放,整理並歸納計算方法,以生命週期盤查法估算臺灣森林經營從育苗到收穫之溫室氣體排放,並建立溫室氣體排放參照表與溫室氣體盤查紀錄表,以利國內林業經營者檢視與計算不同階段人為施業活動之溫室氣體排放量。根據訪談國內林業單位所得之資訊,估算臺灣人工林森林經營過程中人為施業所產生之溫室氣體排放量約為 8578.7-10021.9 kg CO2e/ha,而國外研究之原木生產過程中人為施業所產生之溫室氣體排放量約為7083.4-19155.1 kg CO2e/ha,且商業性伐採階段的溫室氣體排放量高於最終伐採階段;比較國內外使用鏈鋸機伐採和怪手集材整堆造成的溫室氣體排放量,臺灣林業經營亦高於國外研究所提供之數據結果。推測造成差異之可能原因為臺灣地勢環境過於崎嶇,或是相關伐採法規之限制。在環境限制與法規未改變之情況下,未來若要減少臺灣森林經營時因人為施業所產生之溫室氣體排放量,以使用再生能源或提升機具之使用效率為較可行之方案。本研究亦建議未來應建立林業生產活動相關之公開資料庫,以促進相關研究發展並推動永續森林經營與利用。 | zh_TW |
| dc.description.abstract | In recent years, global climate change has caused numerous impacts on the environment, humans, and ecosystems, prompting countries to respond to this issue and set a net-zero carbon emissions target by 2050. To reduce excessive greenhouse gas emissions caused by human activities, afforestation based on natural principles, is relied upon by various sectors. However, aside from the function of carbon sequestration from afforestation activities, the use of certain machinery or practices associated with afforestation can also result in greenhouse gas (GHG) emissions. Therefore, this study reviewed domestic and international literature and interviewed relevant forestry organizations in Taiwan to estimate the potential GHG emissions associated with activities and management measures during the stages before timber production. This study organized and summarized calculation methods and established a GHG emission inventory for Taiwan's forest management activities from seedling cultivation to harvest using a life cycle inventory method. Following that, a reference table and a record table for GHG emissions inventory were provided for domestic forestry operators to examine and estimate the associated GHG emissions during different forest management activities. According to the information obtained from interviews with the domestic forestry organizations, the estimated GHG emissions from the plantation management activities and anthropogenic practices in Taiwan were approximately 8578.7-10021.9 kg CO2e/ha. In contrast, foreign studies reported GHG emissions from the log production process due to activities in the range of 7083.4-19155.1 kg CO2e/ha. The commercial harvesting stage had higher GHG emissions than the final harvesting stage. Comparing the GHG emissions caused by chainsaw logging and mechanized harvesting and stacking between domestic and foreign studies, the forestry operations in Taiwan also yield higher emissions than the data provided by the international practices from the literatures.
The differences may be attributed to Taiwan's rugged terrain and restrictions imposed by relevant logging regulations. In the future, under the constraints of environmental limitations and regulations, to reduce GHG emissions raised during Taiwan's forest management stages, the use of renewable energy and improving the efficiency of machinery usage may be more feasible solutions. Establishing publicly accessible open database associated with forestry production activities is also suggested to promote forestry research and sustainable forest management and utilization in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:35:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:35:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 iii Abstract iv 圖目錄 vii 表目錄 viii 第一章 前言 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 2 第二章 材料及方法 5 2.1. 系統框架之建立 5 2.2. 溫室氣體排放量計算 6 2.3. 臺灣森林經營活動之使用機具與消耗品 8 2.4. 比較國內外林業單位以生命週期盤查法估算GHG排放之情形 14 2.5. 溫室氣體盤查紀錄表之建立 18 第三章 結果 19 3.1. 國內林業單位溫室氣體排放量訪談結果 19 3.2. 溫室氣體盤查紀錄表之建立 26 第四章 討論 33 第五章 結論 36 第六章 參考文獻 37 附錄 43 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 淨零碳排 | zh_TW |
| dc.subject | 森林經營 | zh_TW |
| dc.subject | 原木生產 | zh_TW |
| dc.subject | 生命週期盤查 | zh_TW |
| dc.subject | 溫室氣體排放 | zh_TW |
| dc.subject | 紀錄表 | zh_TW |
| dc.subject | Greenhouse gas emission | en |
| dc.subject | Log production | en |
| dc.subject | Forest management | en |
| dc.subject | Life cycle inventory (LCI) | en |
| dc.subject | Net zero carbon emission | en |
| dc.subject | Record table | en |
| dc.title | 以生命週期盤查法估算臺灣人工林人為施業之溫室氣體排放 | zh_TW |
| dc.title | Estimating greenhouse gas emission of plantation management activities by life cycle inventory method in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭智馨;江博能;顏添明 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hsin Cheng;Po-Neng Chiang;Tian-Ming Yen | en |
| dc.subject.keyword | 森林經營,原木生產,生命週期盤查,溫室氣體排放,紀錄表,淨零碳排, | zh_TW |
| dc.subject.keyword | Forest management,Log production,Life cycle inventory (LCI),Greenhouse gas emission,Record table,Net zero carbon emission, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202302271 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2028-07-27 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-07-27 | 1.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
